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ABSTRACT

This paper compares state-equation models to state-machine models. It compares continu-
ous system models to discrete system models. The examples were designed to be at the
same level of abstraction. This paper models these systems with the following methods: the
state-space approach of Linear Systems Theory, set-theoretic notation, block diagrams, use
cases, UML diagrams and SysML diagrams. This is the first paper to use all of these modeling
methods on the same examples. © 2008 Wiley Periodicals Inc. Syst Eng 12: 183–200, 2009
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1. INTRODUCTION

System design can be requirements based, function
based, or model based. Model-based system engineer-
ing and design has an advantage of executable models
that improve efficiency and rigor. One of the earliest
developments of this technique was Wymore’s [1993]
book entitled Model-Based System Engineering, al-
though the phrase Model-Based System Design was in
the title and topics of Rosenblit’s [1985] Ph.D. disser-
tation. Model-based systems engineering depends on
having and using well-structured models that are appro-
priate for the given problem domain.

There are two types of systems: static and dynamic.
In a static system, the outputs depend only on the
present values of the inputs, whereas in a dynamic
system the outputs depend on the present and past
values of the inputs [Botta, Bahill, and Bahill, 2006]. In
computer design, these two basic types of systems are
called combinational and sequential. Combinational
systems do not require memory devices; hence they are
called memoryless. Sequential systems require mem-
ory to capture the state behavior. In combinatorial sys-
tems, the output depends only on the present inputs,
whereas in sequential systems the output depends on
the sequence of previous inputs. In mechanical engi-
neering, these two types of systems are called static and
dynamic. Static systems are described with algebraic
equations and the outputs depend only on the present
values of the inputs, whereas dynamic systems are
described with differential or difference equations and
the system behavior depends on the history of the
inputs. This paper only considers dynamic systems.
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The purpose of this paper is to compare and contrast
several systems engineering methods for modeling two
different types of dynamic systems and eventually to
explain systems composed of both types of systems.

The motivation for this paper was to show how the
SysML diagrams fit in with traditional modeling meth-
ods. The paper is intended to assist a modeler in under-
standing the pros and cons of different modeling
methods as they apply to different classes of problems.

Some dynamic systems are modeled best with state
equations while others are modeled best with state
machines. State-equation systems are modeled with
differential or difference equations. For example, a
baseball’s movement can be modeled with state equa-
tions for position, linear velocity, and angular velocity
all as functions of time. In contrast, state-machine sys-
tems focus less on physical variables and more on
logical attributes. Therefore, these systems have mem-
ory and are modeled with finite state machines. Most
digital computer systems are modeled best with state
machines.

Newton [1687] was the first to apply equations to
model and understand state-equation systems. Much
later, during World War II, the use of feedback produced
a dramatic improvement in system design. In this pe-
riod, because the primary purpose of dynamic system
design was to stabilize the firing of guns on naval ships,
the field was called fire control systems. After the war
the frequency response techniques for solving differen-
tial equations were developed. Later, in the 1960s, the
state-space techniques bloomed and they are still the
dominant method [Szidarovszky and Bahill, 1998].
Typical state-equation systems include analog comput-
ers as well as electrical, mechanical, hydraulic, pneu-
matic, thermal, economic, chemical and biological
systems.

Turing [1936] was the first to model and explain
state-machine systems. His Turing Machine (a state
machine with a memory) could solve all solvable se-
quential logic problems. The field came to be known as
finite state machines. The digital computer is the pre-
eminent example of state-machine systems.

The methods that will be used in this paper to model
these systems include the state-space approach of Lin-
ear Systems Theory (for both continuous and discrete
systems) [Szidarovszky and Bahill, 1998], Wymorian
set-theoretic notation [Wymore, 1993], block diagrams,
use cases, UML diagrams [OMG UML, 2007; Fowler,
2004] and SysML diagrams [OMG SysML , 2007
SysML, 2007].

In designing complex systems, such as an airplane
or an automobile, it might be necessary to use all of
these methods together. Some parts might be continu-
ous while others are discrete. Some might be modeled

best with UML diagrams and others with block dia-
grams, depending on the problem and the backgrounds
of the engineers involved. So, although one system
could use all of these methods, in this paper we will
discuss each method separately.

Section 2 of this paper examines state-equation sys-
tems and uses as an example a simple spring, mass,
dashpot system. Section 3 examines state-machine sys-
tems and uses as an example a simple spelling checker.
Most real-world systems are modeled as either state-
equation systems or state-machine systems. However,
there are physical systems where both types of models
are useful together: for example, systems using water,
because the heat flow equations are different depending
on whether H2O is in its liquid, solid or gas state.
Section 4 presents a problem where the selection of the
preferred modeling approach is not clear.

2. STATE-EQUATION SYSTEMS

First, we will look at an example from the field of Linear
Systems Theory. In particular, we will use a method
called the state-space approach.

2.1. Continuous Systems

This section is based on Szidarovszky and Bahill [1998]
and Ogata [2004]. Consider the mechanical system
illustrated in Figure 1. Assume an ideal spring, mass and
dashpot, and frictionless wheels. Assume initial condi-
tions are zero and do a small signal analysis. Create a
state-space model for this system.

In general, the systems engineer gets models from
the domain experts. For this system, assume we are
given these models: fk = kx, fb = b dx/dt = bx

.
, and

fm = ma = mx
..
. We will use SI units: the spring constant

(k) has units of N/m, the damping coefficient (b) has
units of N⋅s/m, and the mass (m) has units of kg.

Now, let us define the input, output and states. The
force f(t) is applied to the system and it produces a
displacement x(t). Define f(t) as the input u and the
displacement x as the output. From the diagram
f (t) = mx

..
 + bx

.
 + kx, which can be rewrit ten as

x
..
 = (1/m)(−kx − bx

.
 + f (t)). The system is of second

order, so we need to select two state variables. Let us
choose the position x and the velocity x

.
 . So that we have

Figure 1. SpringMassDashpot system.
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u = f (t) = input,
x1 = x = position,
x2 = x

.
 = velocity.

The state equations then become

x
.
1 = x2,

x
.
2 = − 

k
m

 x1 − 
b
m

 x2 + 
1
m

 u.

For the output variable we choose

y = x1 = output

Rewriting the state equations and the output equation
in matrix form, we obtain





x
.
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x
.
2
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0
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m
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These equations are in the standard form of

x
.
 = Ax + Bu,

y = Cx + Du

with

A = 











0

− 
k
m

     
1

− 
b
m










 ,    B = 











0

1
m










 ,    C = (1  0),    D = 0.

2.1.1. Block Diagrams
Block diagrams, as shown in Figure 2, are used to
illustrate state-equation systems [Buede, 2000].

2.2. Discrete-Time Systems

Unlike the previous continuous-time system, for physi-
cal systems containing computers we are only inter-
ested in the system’s behavior at discrete time intervals.
Many other physical systems can also be modeled as
discrete systems [Wymore, 1993], if we assume a fast
enough sampling rate. For discrete systems, we have as
a good approximation

x(t + h) − x(t)
h

 = Ax(t) + Bu(t),

implying that

x(t + h) = x(t) + h (Ax(t) + Bu(t)).

That is,

x(t + h) = (I + hA)x(t) + hBu(t),

in which case we have

x(t + h) = 











1

− 
hk
m

     
h

1 − 
hb
m










x(t) + 











0

h
m










 u(t),    x(0) = 


0
0




                    t ≥ 0.

y(t) = (1    0)x(t),

If we write this as

x(t + h) = Px + Qu

Figure 2. Block diagram of the SpringMassDashpot system.
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and if

A = 




a11

a21
     

a12

a22




 ,    B = 





b1

b2




 ,

then in general

P = 




1 + ha11

ha21

     
ha12

1 + ha22




 ,    Q = 





hb1

hb2




 .

There are also systems that are inherently discrete
without computer control. For instance, if you bor-
rowed B0 dollars from a bank and agreed to pay interest
of r percent per month and make n monthly payments
of amount P, then the balance B that you will owe can
be written as B(t + h) = (1 + r)B(t) − P(t), where h is 1
month.

2.2.1. Stability of Continuous and Discrete Systems
It is well known that if you start with a continuous
system and add sensors, a digital processor, and actua-
tors to make it discrete, then the discrete system will be
closer to instability than the continuous system.

Consider a continuous system

x
.
(t) = Ax(t) + Bu(t)

and its discrete counterpart

x(t + h) = x(t) + h[Ax(t) + Bu(t)].

For the continuous system the coefficient matrix is
A, while for the discrete system it is I + hA, where h is
the step size in the time scale. Let λ1, λ2, . . . , λn  be the
eigenvalues of A, then the eigenvalues of the corre-
sponding discrete system are 1 +
hλ1, 1 + hλ2, . . . , 1 + hλn.  Assume now that
λ = α + jβ is an eigenvalue of A. The condition for
asymptotic stability is that α be negative. The corre-
sponding condition for the discrete system is that
1 + h(α + jβ) be inside the unit circle, which happens if
and only if (1 + hα)2 + (hβ)2 < 1.

In summary, to be stable

(i) for a continuous system α < 0,
(ii) for a discrete system (1 + hα)2 + (hβ)2 < 1.

Notice that (ii) implies (i). If (ii) is true, then
|1 + hα| < 1, that is, –1 < 1 + hα < 1, which can be
written as –2/h < α < 0. However, notice that (i) does
not imply (ii). So the asymptotic stability of the discrete
system implies that the corresponding continuous sys-
tem is also asymptotically stable. However, the asymp-
totic stability of the continuous system does not imply

asymptotic stability of the corresponding discrete sys-
tem for all h.

We usually choose h to be small. But how small
should it be? Assume that α < 0. The discrete system
will be asymptotically stable if h is sufficiently small.
Condition (i i)  can be rewrit ten as
1 + 2hα + h2(α2 + β2) < 1, that is, h(α2 + β2) < −2α or
h < −2α / (α2 + β2), where the right-hand side is posi-
tive.

In the case of nonlinear systems we have the same
conclusions, except instead of the matrix A, we use the
Jacobian of the continuous system.

2.3. Wymorian Notation

Next, we can put this SpringMassDashpot system into
Wymorian set-theoretic notation [Wymore, 1993]. Wy-
more uses, for example, the symbol p2 for a particular
value of the second input, x2 for a particular value of
the second state variable, and y2 for a particular value
of the next state of the second state variable, etc. Thus,
Wymore’s y is not the same as the output y in the above
equations. Comments are enclosed in /* markers */. Let
us name the system Zsmd. Then

Zsmd = {SZsmd, IZsmd, OZsmd, NZsmd, RZsmd}
where
SZsmd = RLS ^ 2, /*There are 2 state variables

and they take values from the set of real num-
bers, R .*/

IZsmd = RLS,  /*The input values will be real
numbers.*/

OZsmd = RLS,  /*The output values will be real
numbers.*/

NZsmd = {((x, p), y): x ∈ SZsmd; p ∈ IZsmd; y
∈ SZsmd;

    if x = (x1, x2) then
    y = [y1, y2] = [(x1 + hx2), (- hkx1/m +

    (1 – hb/m)x2 + hp/m)]}, /*The state
    equation. Remember p is a value of 
    the input.*/
RZsmd = S1Zsmd. /*The output is the first state

variable.*/

Please note that with Wymorian notation a system
can be described with a dumb typewriter: It does not
require a computer, a word processor, a drawing pro-
gram, an equation editor, subscripts, superscripts, or
even italic and boldface fonts.

2.4. UML Representation

There are no appropriate UML diagrams for state-equa-
tion systems.
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2.5. OMG SysML Model

The OMG Systems Modeling Language (OMG
SysML ) was created as systems engineering exten-
sions to the Unified Modeling Language (UML).
SysML reduces UML’s software-centric restrictions
and adds two new types of diagrams: Requirement
diagrams to help manage requirements, and Parametric
diagrams to help with performance and quantitative
analysis. SysML was designed to model large complex
systems such as an automobile. Requirement diagrams
are used to efficiently capture functional, performance
and interface requirements, and Parametric diagrams
are used to precisely define performance and mechani-
cal constraints such as maximum acceleration, curb
weight, air conditioning capacity, and interior cabin
noise. SysML also enhanced the semantics and greatly
increased the usage of UML’s Activity diagram, Block
Definition diagram, and Internal Block diagram.

This section is written at the nuts and bolts level. It
shows complete, detailed use of SysML constructs.
However, it does not present top-down descriptions of
large complex systems. It does not address the massive
concurrency and interfaces of large complex systems.
Most examples of large complex systems do not give a
complete model at the nuts and bolts level. They usually
discuss the top-level and then drive down to the bottom
on only a few traces: They only show slivers of the
whole system. A nice example that spans the whole
hierarchy is the Hybrid SUV example [OMG SysML,
2007; Friedenthal, Moore, and Steiner, 2007]. It is
impossible to show a complete example of a highly
complex highly parallel system. Therefore, this paper
does not discuss the hierarchy of systems: This paper
models only simple systems, but its coverage is com-
plete. All of the examples are deliberately at the same
level of abstraction [Mellor et al., 2004; Bahill et al.,
2008].

SysML is supported by the OMG XMI 2.1 model
interchange standard for UML 2 modeling tools. It has
also been conceptually aligned with the ISO 10303
STEP AP233 (http://www.ap233.org/) data interchange
standard for systems engineering tools. SysML sup-
ports model management concepts that include views
and viewpoints, which extend UML’s capabilities and
are architecturally aligned with IEEE-Std-1471-2000.

The SysML can use state equations to specify con-
straints on properties of the system and its environment
using the block definition diagram (bdd) and the para-
metric diagram (par) [OMG SysML, 2007].

First, we define the input and output of our Spring-
MassDashpot system. The input is a flow port: energy
flows through this port. It is the force applied to the
mass. The output is the position of the mass: It is a
standard port. Inputs and outputs are often shown on an
internal block diagram (ibd).

Next, we want to show the components of our
SpringMassDashpot system. We do this in a block
definition diagram, as shown in Figure 3. The block for
each component can be further elaborated to shows its
functions, interfaces and properties. In Figure 3, we
only see examples of some of the properties of the
blocks, such as the position of the Mass. The applied
force is labeled Fixed Reference.

In SysML diagrams the header has four fields: the
type of diagram (in this case, bdd standing for block
definition diagram), the type of model element that the
diagram represents (package), the name of the model
element described in the diagram (Mechanical System),
and the fourth field is user defined and can, for example,
state the purpose of the diagram (Components of
SpringMassDashpot system). The arrow with a black
diamond head indicates a composition relationship.

Table I explains the roles and abbreviations shown
in Figures 3–7.

Figure 3. Block definition diagram (bdd) showing the components of the Mechanical System.
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Next, we want to present the constraints or equations
that describe our mechanical system.

The bdd of Figure 4 defines the state equations in
the <<constraint>> blocks. These state equations for
this smd Analysis Context may have originally been
specified in an analysis library. This enables the same
equations to be reused for many different contexts. The
arrows with solid (black) diamond endings are compo-
sition relationships, which means that the smd Analysis
Context comprises the FirstStateEquation, the Second-
StateEquation, and the OutputEquation. The arrow with
a white (open) diamond head indicates an aggregation
relationship between the smd AnalysisContext and the
SpringMassDashpot block from Figure 3. In the pa-
rameter lists, on the left of the colon are the parameters,
or names as they appear in the equation, and on the right
of the colon are their units.

Now we want to show how these general equations
can be instantiated to a particular SpringMassDashpot
system. The top part of Figure 5 is based on the blocks
of Figure 3, and the bottom part is based on the con-
straints of Figure 4. The interconnections show the
bindings of the parameters.

The parametric diagram of Figure 5 shows how the
parameters from each of the equations can be bound
together to create a complex network of equations. The
constraint blocks that were specified in the bdd of
Figure 4 are bound to one another to create a network
of the state equations that bind the parameters together.
Although not explicitly shown here, the parametric
diagram enables the properties of the SysML design
models, such as the spring constant of the spring, to be
unambiguously associated with the parameters of the
equations. In this way, the “system design model” and
the “system analysis model” can be fully integrated.
The full power of this approach becomes apparent as
many different analysis models related to performance,
reliability, mass properties, etc. are integrated with the
system design model that may be defined via activity
diagrams, internal block diagrams, etc.

Each property that is constrained by the parametric
equations may include values, including probability
distributions, with units and dimensions. The dimen-
sion represents the fundamental quantity type. For ex-
ample, the width of an object may have a dimension of

Table I. Explanation of Role Names

Figure 4. Block definition diagram (bdd) defining constraints for the mechanical system.
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length and units of feet or meters. The assignment of
units and dimensions is accomplished by typing the
property with a value type that includes the applicable
dimensions and units. A fully compliant SysML tool
can check to confirm the compatibility of the units and
dimensions of its properties, and avoid significant is-
sues that have occurred when the units have been im-
properly matched.

A parametric diagram is not an equation solver like
MATLAB or Mathematica. It does not define inde-
pendent and dependent variables. It merely shows bind-
ings, or equality. For example, the parametric diagram
of Figure 5 shows that dx1/dt is equal to the velocity of
the mass. It does not tell you how to solve for it. In
contrast, an equation solver might state something like,
to update x1 start with the initial position and integrate
x2 using Adams-Moulton or Runge-Kutta integration
routines.

Figure 6 presents an alternative parametric diagram
with the same content but a different notation. Figure 5
uses nested part notation. For example, the parameter b
in the second state equation is bound to the damping-
Coef, which is drawn as a box inside of the Dashpot,
which is in turn drawn as a box inside of the Spring-
MassDashpot, whereas Figure 6 uses dot notation,
which specifies the path down through the nested part
hierarchy to the property. For example, “smd.b1.damp-
ingCoef” specifies that the dampingCoef is a property
of the Dashpot “b1”, which is part of the SpringMass-
Dashpot “smd”. The abbreviations smd and b1 were
introduced in Figures 3 and 4. These part names are
separated with periods or “dots.”

State equations are always tightly coupled: They are
usually thought of as a matrix. In SysML, constraints
can be composed of more than one equation. Therefore,
our bdd could be composed as shown in Figure 7.

Figure 5. Parametric diagram (par) using nested part notation showing the state-space equations for a particular SpringMass-
Dashpot system.
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Figure 7. Block definition diagram (bdd) for the mechanical system, with two equations in one constraint of the StateEquation.

Figure 6. Parametric diagram (par) using dot notation showing the state-space equations for a particular SpringMassDashpot
system.
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3. STATE-MACHINE SYSTEMS

3.1. Spelling Checker

State-machine systems are studied in traditional digital
logic books such as Katz [1993] and in contemporary
object-oriented books such as Blaha and Rumbaugh
[2005]. The following is problem 3-11 from Chapman,
Bahill, and Wymore [1992]. Design a system for detect-
ing spelling errors. Or, more simply, create a state
machine to implement the spelling rule “i before e
except after c.” If a word violates this rule, your system
should stop processing words and produce an error
signal. When the human acknowledges the mistake and
turns off the error signal, your system should resume
processing words. For example, the words piece and
receive are correct so your system should continue
processing words. However, weird violates this rule, so
your system should stop and wait for human action. You
may assume that bizarre sequences such as “ceie” will
go undetected, and that Professor Lucien Duckstein will
not use it. Describe your inputs, outputs, and states.
Label your states with meaningful names. Assume the
system starts in a reset state. State all assumptions you
make. Finally, describe how you will test your system.

3.2. The Use Case Approach

Name: Check Spelling
Iteration: 1.4
Derived from: Problem 3-11 of Chapman, Ba-

hill, and Wymore [1992]
Brief description: The system scans a document

and implements the spelling rule “i before e
except after c.”

Added value: Author gets a more professional
document.

Level: Low
Scope: The document being processed
Primary actor: Author
Supporting actor: Document (We are not using

a dictionary)
Frequency: Many times per day
Precondition: A document must be open.
Trigger: Author asks the system to check the

spelling.
Main Success Scenario: 
1a. System scans the document one letter at a time.

If it finds a spelling-rule violation, it turns on the
error signal and waits for Author to respond.

2. Author resets the system [repeat at step 1].
Alternate Flows:
1b. System reaches the end of the document [exit use

case].

Postcondition: The whole document has been
checked for violations of this spelling rule.

Specific Requirements
Functional Requirements:
The system shall check a document and find viola-

tions of the spelling rule “i before e except after
c.”

The system shall signal a violation until turned
off by the Author.

Nonfunctional Requirements: The system shall
ignore numbers, blank spaces, and punctua-
tion.

Author/owner: Terry Bahill
Last changed: January 1, 2007

3.2.1. Define Input Ports, Output Ports, and Their
Legal Values
There are two input ports: the character stream and the
human reset.

Input Port 1 = {a-z, A-Z}, This port accepts
lowercase and uppercase letters, and there is
no difference between uppercase and lower-
case letters. Numbers, spaces, and punctua-
tion will be ignored. We will label the inputs
“c” for the character c, “e” for the character e,
“i” for the character i, and “other” for any
other character. We are using lowercase letters
for the inputs and uppercase letters in the state
names.

Input Port 2 = {humanReset, HR
___

}, The human
either presses the reset button or he does not
(HR
___

).

There is one output port: the error signal.

Output Port = {OK, error}. Items in braces { } are le-
gal values for that port.

Inputs of state-machine systems should be simple.
Typical input ports are switches that can be open or
closed. Inputs should not be described as having mem-
ory. For example, in this spelling checker you should
not describe the input as “c received then e received then
i received.” However, such a description could be the
name of a state. Inputs should be named with nouns or
noun phrases.

Most systems not only have many inputs, but also
have many kinds of inputs. Each different kind of input
may be designated as an input port. There is sometimes
a question as to whether a model should have one input
with multiple input values or multiple input ports with
fewer input values. Inputs that can occur simultane-
ously must be assigned to different input ports. Inputs
that have different values and cannot occur simultane-
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ously can be allowed in the legal value set for one port.
An input port has a set of allowed values each of which
is possible individually, but no two can occur simulta-
neously. Input ports are interfaces.

Input ports are not UML events. An event is an
occurrence that has a location in time and space. In state
machine diagrams, events are the inputs that cause
transitions between states. Events should be named
with verbs or verb phrases. Typically, the first letter of
the first word is lowercase, the first letters of subsequent
words are uppercase, and there are no spaces between
the words: this is called lower camel case. Events may
be composed of Boolean expressions and guard condi-
tions.

In classical state machines, the transitions between
states were labeled with the current values for the input,
e. g. (c, HR

___
), where HR

___
 means No humanReset. In

UML state machine diagrams, these transitions are
labeled as events, e.g., “c received [HR

___
].” Things in

square brackets [ ] are guard conditions.
In other words, classical state machines track the

values of all input ports at all times, whereas UML state
machines only show important changes of input values.

3.2.2. Assumptions
The list of assumptions is not written at the beginning
of the project. It is started at the beginning of design and
finished at the end of testing.

• Bizarre sequences such as “ceie” will go unde-
tected.

• Professor Lucien Duckstein will not use the spell-
ing checker.

• The system should ignore numbers, blank spaces,
and punctuation.

• The system will not distinguish between upper
and lower case letters.

• The Author will not press the reset button unless
the error signal is on.

• The human reset input port has priority over the
character stream input port.

3.2.3. Define the States
Concurrency and hierarchies will not be used. The
following seven states were determined during thought-
ful reasoning with much iteration.

Start,  /* This is where we start. */
C Received,  /* This means the letter c (upper or

lower case) was read from the document. */
C Then I,  /* This means the letter c was read and

immediately after there was an i. */
C Then I Then E, /* This means a c was read, then

an i and immediately after an e was read.*/

C Then E,  /* This means the letter c was read and
immediately after there was an e. */

E Received,  /* This means the letter e (upper or
lower case) was read from the document. */

E Then I.  /* This means the letter e was read and
immediately after there was an i. */

3.3. UML/SysML State Machine Diagram

The UML/SysML state machine (sm) diagram in Fig-
ure 8 nicely describes the system states. This diagram
must be accompanied by text such as that given above
describing the inputs, outputs and states.

3.3.1. Construction Hints
When creating a state machine model, it usually helps
to start with the main success scenario. In this case,
success is paradoxically detecting errors. So our two
main success scenarios are detecting the sequences ei
and cie. So first, we constructed the states Start, E
Received, and E Then I and their associated transitions.
Then we constructed the branch with the states Start, C
Received, C Then I, and C Then I Then E. After this,
we added all other possible transitions. While doing this
we discovered the need for another state, C Then E. As
a final step, we ensured that all states have all of the
necessary transition out of them.

In this state machine diagram, it looks like there is
only one input port. This results from the assumption
that the human would not press the reset button unless
the error signal was on; i.e., the input humanReset (HR)
would only be activated from the error states: C Then I
Then E and E Then I. Without this assumption each
arrow would have to have two inputs specified; e.g., the
arrow from Start to C Received would be labeled “(c,
HR
___

)”, where HR
___

  means Not HR and there would have
to be humanReset arrows from states C Received, C
Then I, C Then E, and E Received back to Start.

A weakness of the above model is that it does not
consider blank spaces or punctuation. Therefore, it
would flag this sentence as an error.

Over the last 30 years, we have evaluated thousands
of solutions to this problem. They all have strengths and
weaknesses. Here is a higher-level solution suggested
by a reviewer. “I would define states called ‘start’,
‘scan’ and ‘error processing’. A scan state would tran-
sition to error processing if an error is detected, and
certain actions would be performed. The completion of
the error processing actions would result in a transition
back to the scan state. A reset would take you back to
the start state from either the scan or error processing
state. There are many sophisticated features of a state
machine that could be applied if desired.”
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3.4. Other UML and SysML Diagrams

Would any other UML diagrams be useful in describing
this system? An activity diagram could be used to
describe the algorithm. A sequence diagram would have
three objects at the top: the Author, the Document, and
the Spelling Checker. The Spelling Checker would go
through the document letter by letter and would occa-
sionally send a message to the Author. This does not
sound useful, nor do timelines, class diagrams, or de-
ployment diagrams. The SysML extensions to the UML
would classify Input Port 1 as a flow port because the
characters {a-z, A-Z} flow through this port, Input Port
2 (the human reset) as a standard port, and the Output
Port as a standard port.

Our design process starts with the use cases: The
requirements and everything else follows. Therefore,
the dependencies in Figure 9 show that, for example,
the requirement Find Violations refines the use case
Check Spelling. If, instead, the customer gave us all of
the requirements and then we wrote the use cases, then
the arrow’s direction would show that the use case
refines the requirements.

3.5. Wymorian Notation

Here is one possible Wymorian solution. Because this
is problem 3-11 of Chapman, Bahill, and Wymore
[1992], let us name it Z11.

Z11 = (SZ11, IZ11, OZ11, NZ11, RZ11), where
SZ11 = {Start, C Received, C Then I, E Received, C

Then E, C Then I Then E, E Then I}, /* There is
one state variable that can take on one of 7 values.
*/

IZ11 = I1Z11  I2Z11, /* There are two input ports.
*/
I1Z11 = ALPHABET = {a-z, A-Z}, /* This port

accepts lowercase and uppercase letters, and
there is no difference between uppercase and
lowercase letters. Numbers, spaces and punc-
tuation will be ignored. We will label the in-
puts “c” for the character c, “e” for the
character e, “i” for the character i, and “other”
for any other character. We are using lower-
case letters for the inputs and uppercase letters

Figure 8. State machine (sm) diagram for the spelling checker.
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in the state names. DC means we don’t care
about the value.*/

I2Z11 = {humanReset, HR
___

}, /* Either the human
presses the reset button or he does not (HR

___
). */ 

/* There is one output port, the error signal. */
OZ11 = {OK, error},
/* Each entry in the next state function is of the form

 ((present state, (input1, input2)), next state).*/
NZ11 = {((Start, (c, HR

___
)), C Received),

((Start, (e, HR
___

)), E Received),
((Start, (i, HR

___
)), Start),

((Start, (other, HR
___

)), Start),
((Start, (DC, humanReset)), Start),
((C Received, (c, HR

___
)), C Received),

((C Received, (e, HR
___

)), C Then E),
((C Received, (i, HR

___
)), C Then I), 

((C Received, (other, HR
___

)), Start),
((C Received, (DC, humanReset)), Start),
((C Then I, (c, HR

___
)), C Received),

((C Then I, (e,HR
___

 )), C Then I Then E),
((C Then I, (i, HR

___
)), Start),

((C Then I, (other, HR
___

)), Start),
((C Then I, (DC, humanReset)), Start),
((C Then I Then E, (c, HR

___
)), C Then I Then E),

((C Then I Then E, (e, HR
___

)), C Then I Then E),
((C Then I Then E, (i, HR

___
)), C Then I Then E),

((C Then I Then E, (other, HR
___

)), C Then I Then
E),

((C Then I Then E, (DC, humanReset)), Start),
((C Then E, (c, HR

___
)), C Received),

((C Then E, (e, HR
___

)), E Received),
((C Then E, (i, HR

___
)), Start),

((C Then E, (other, HR
___

)), Start),
((C Then E, (DC, humanReset)), Start),
((E Received, (c, HR

___
)), C Received),

((E Received, (e, HR
___

)), E Received),
((E Received, (i, HR

___
)), E Then I),

((E Received, (other, HR
___

)), Start)},
((E Received, (DC, humanReset)), Start),
((E Then I, (c, HR

___
)), E Then I),

((E Then I, (e, HR
___

)), E Then I),
((E Then I, (i, HR

___
)), E Then I), 

((E Then I, (other, HR
___

)), E Then I),
((E Then I, (DC, humanReset)), Start)},

/* Each entry in the readout function is of the form
(present state, output).*/
RZ11 = {(Start, OK), 
(C Received, OK),
(C Then I, OK),
(C Then I Then E, error),
(C Then E, OK),
(E Received, OK),
(E Then I, error)}.

Notice that in Wymorian modeling a system must have
both an input port and an output port.

3.5.1. Alternative Wymorian Solution
It is often convenient to manipulate the values of the
inputs, states, next states, and outputs. When this is
done, we will use p1 and p2 for particular values of the
first and second inputs, x for a particular value of the
state, y for a value of the next state, and q for a value of
the output. Using this notation, we can write the follow-
ing NZ11, which is more eloquent than the NZ11 above.

NZ11 = {((x, p), y): x ∈ SZ11; p  I1Z11; y∈ SZ11;
{if p2 = humanReset, then y = Start}
∪  {((Start, (p1, HR

___
)), y):

  if p1 ∉ {c, e}, then y = Start,
  else if p1 = c, then y = C Received,
  else y = E Received}

∪  {((C Received, (p1, HR
___

), y):
  if p1 = c, then y = C Received,
  else if p1 = i, then y = C Then I,
  else if p1 = e, then y = C Then E,
  else y = Start}

∪  {((C Then I, (p1, HR
___

), y):
  if p1 = c, then y = C Received,
  else if p1 = e, then y = C Then I Then E,
  else y = Start}

∪ {etc.}.

where ∪  represents the union of sets.

3.6. Testing the Spelling Checker

The easiest way to test the system might be to build one
and run it on a list of words that you know are correct,
such as the dictionary of a computer spell program, and
also on a list of known incorrect words. For a paper and
pencil test of your paper and pencil state machine, you
could use the following words.

Correct: field, percent, believe, tiniest, piece, de-
cide, receive

Incorrect: handkercheif, yeild
Exceptions that proof the rule: their, height, being,

sufficiently, weird

These exceptions should also be flagged as errors.
Do we have enough words? Do we have the right

words? Have we exercised every arrow on the state
diagram? Have we exercised some paths many times?
Can you suggest a more systematic way of testing this
system?

We could use a dozen words from the dictionary that
contain the several correct variations of i’s, e’s, and c’s
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Figure 9. Requirements diagram for the Spelling Checker.

Figure 10. Activity diagram (act) for the batter in a baseball game.
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and make sure that they were accepted as correct. Then
transpose all of the ie’s and ei’s and make sure that they
were then flagged as incorrect.

If we actually built our system, we could use other
techniques to help validate it. For example, if we built
our spelling checker and tested it on 100,000 words, we
could record the number of times each state was en-
tered. If we found a state that was never entered, we
might suggest that it was a mistake. Likewise, if we
found a state that was entered 100,000 times, we might
suggest that it was either a start-state or a mistake. States
that are entered for all or no test trajectories are always
suspicious.

We conclude this problem with the following anony-
mous poem.

My Spelling Checker
I have a spelling checker,
It came with my PC.
It plainly marques four my revue,
Miss steaks eye can knot sea.
I’ve run this poem threw it,
I’m sure your pleased too no;
Its letter perfect in it’s weigh,
My check her tolled me sew.

4. STATE-EQUATION VERSUS
STATE-MACHINE SYSTEMS

4.1. Comparison

Section 2 of this paper presented state equation models.
Section 3 presented state-machine models. Table II
gives a general comparison. This table is not rigorous
or mathematical; instead, it is informal and heuristic.

Next, we want to show a system that is modeled best
with a combination of state equations and state ma-
chines. However, to illustrate different modeling possi-

bilities, we will model the exact same thing with both
an activity diagram and a state machine diagram.

4.2. An Equivocal Problem Domain

4.2.1. The Activity Diagram
Now we want to discuss a model for the batter in a game
of baseball. For the batter, the pitch can be divided into
thirds. During the first third of the pitch, the batter
gathers sensory information. During the second third,
he or she must compute where and when the ball will
make contact with the bat and then decide whether to
swing, duck, or take the pitch. During the final third of
the pitch, the batter is swinging the bat and can do
almost nothing to alter its trajectory. The activity dia-
gram of Figure 10 is very useful for describing the
batter’s actions during the pitch. Computing where and
when has been modeled with equations [Bahill and
Karnavas, 1993] and the swing of the bat has also been
modeled with equations [Watts and Bahill, 2000].
Therefore, SysML block definition and parametric dia-
grams could be used to describe these equations. These
would be the only actions in this diagram that are
described this way. We do not have equations that
describe wait for the pitch or gather sensory informa-
tion.

In this activity diagram for the batter, the hourglass
shape is a Timing signal. In the Enterprise Architecture
(EA) tool, this is a specialization of the Accept signal.

It seems that a UML sequence diagram and a use
case would also be useful in describing the behavior of
the batter. The SysML block definition and parametric
diagrams would be good for describing the dynamics
of the batter.

The activity diagram has evolved. In 1967, Jim Long
developed a technique for representing system logic
that incorporated functions, inputs, outputs, and control
in a single hierarchical set of diagrams [Long, 2002].

                Table II. Comparison of State-Equation Systems and State-Machine Systems
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This developed into the extended functional flow block
diagram, which, with the addition of the colored Petri-
net token concept, was the basis for the SysML activity
diagram [Bock, 2006].

A good model is a simplified representation of one
aspect of a real system: models are successful because
they do not consider all the complexity of the real
system. As with all successful models, the example of
Figure 10 only models one aspect of the batter’s behav-
ior. The actual batter is doing many other tasks in
parallel [Bahill and LaRitz, 1984; McHugh and Bahill,
1985; Bahill and Karnavas, 1992, 1993; Watts and
Bahill, 2000; Bahill and Baldwin, 2003, 2004, 2007;
Bahill, Baldwin, and Venkateswaran, 2005; Bahill,
Botta, and Daniels, 2006; Baldwin, Bahill, and Nathan,
2007]. Including many tasks in the same model is
detrimental to understanding [Mellor et al., 2004].

4.2.2. The State Machine Diagram
Now we want to discuss another model for the batter in
a game of baseball. For the batter, the pitch can be
divided into thirds. During the first third of the pitch,
the batter gathers sensory information. In this state, the

batter must block out all distractions and concentrate on
the ball. During the second third, he or she must com-
pute where and when the ball will make contact with the
bat and then decide whether to swing, duck or take the
pitch. During the final third of the pitch, the batter is
swinging the bat and can do almost nothing to alter its
trajectory. The state machine diagram of Figure 11 is
very useful for describing the batter’s behavior during
the pitch. Computing where and when the ball will cross
the plate has been modeled with equations [Bahill and
Karnavas, 1993] and the swing of the bat has also been
modeled with equations [Watts and Bahill, 2000].
SysML block definition and parametric diagrams could
be used to describe these equations. These would be the
only states in this diagram that are described this way.
We do not have equations that describe waiting for the
pitch or gathering sensory information.

It seems that a UML activity diagram, sequence
diagram and a use case would also be useful in describ-
ing the behavior of the batter. The SysML block defini-
tion and parametric diagrams would be good for
describing the dynamics of the batter.

Figure 11. State machine diagram (sm) for the batter in a baseball game.
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4.2.3. Which is the Best Model, the Activity or the State
Machine Diagram?
Maybe we could answer this question by explaining if
waiting for the pitch, gathering sensory information,
computing where and when, and swinging the bat are
states or actions. But there is no clear answer to this
dilemma. If we were to expand the model upward to
include learning how to swing the bat and how to
compute where and when the ball will cross the plate,
then we might want to use the state machine diagram.
However, if we were to expand the model downward to
include how the batter predicts time to contact and how
he uses the spin on the ball to predict the spin-induced
deflection of the ball, then we might want to use the
activity diagram. What about the transitions? Transi-
tions between states are triggered by events. Pitch Is
Released certainly sounds like an event, but First Third
Of Pitch Is Over does not. The final thing that might
influence our choice is that the batter is not likely to
make decisions in parallel; therefore, the activity dia-
gram loses its forte. In conclusion, in many cases it will
not be clear whether an activity diagram or a state
machine diagram would be best. Creating rules for
making such a decision is clearly outside the scope of
this paper.

5. MIXED MODELS

For some systems, it might be necessary to use several
modeling methods. To understand neurological sys-
tems, we make models at different levels of abstraction;
for example, we model neurons, neural networks and
the resulting behavior. The Hodgkin-Huxley equations
for the voltage potential across a neural membrane use
differential equations, whereas most models for artifi-
cial neural networks use difference equations; and,
then, models of the behavior of neurological networks
usually use state machines. Combining all three of these
levels in the same model is difficult, and few people try.
So we do not find such mixed models for the brain.

However, in designing complex systems, such as an
air traffic control system or a communications network,
it might be necessary to use all of these methods to-
gether. The design might start with the use cases that
model the required system behavior and capture the
requirements. Then by thinking about concepts in the
problem domain, we identify the classes. Sequence
diagrams then show the interactions between these
classes, and they help us to find the operations (func-
tions) of the classes. Block definition diagrams show
system structure as components along with their prop-
erties, constraints, parameters, and relationships. State
machine diagrams describe event-based behavior in a
part of the life cycle of a class or a block. State-equa-

tions are used to describe the dynamics of the system.
Parametric diagrams show how the parameters from
each of the equations can be bound together to create a
complex network of equations. Requirements diagrams
show the requirements and their relationships to each
other, to use cases and to test cases. So, although we
described each of these methods separately in this pa-
per, in the design of complex systems, it may be neces-
sary to combine many of these methods in the same
model or design.

6. CONCLUSIONS

Model-based System Engineering is a relatively new
concept in system design. It requires good consistent
rigorous simulatable models. A good model is a simpli-
fied representation of one aspect of a real system:
Models are successful because they do not simultane-
ously consider all the complexity of the real system.
Simple models are easier to understand and solve than
models that are more complex. Each problem domain
requires an appropriate modeling method. This paper
presented state-equation and state-machine problem
domains. Most importantly, all of the examples were at
the same level of abstraction. It presented continuous
system and discrete system problem domains. It used
the following methods for modeling systems: the state-
space approach of Linear Systems Theory, set-theoretic
notation, block diagrams, use cases, UML diagrams,
and SysML diagrams. The main conclusion of this
paper is that Model-based System Engineering requires
correct models that are appropriate to the particular
problem domain. The systems engineer must first care-
fully study the problem in order to understand which
modeling method will be most suitable. One method
will not work for all problems. For some problems, two
methods may work equally well, but usually there is a
best method. The method must be chosen for the par-
ticular problem.
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