
From Operations Research and Artificial Intel-
ligence: The Integration of Problem-Solving
Strategies, (Eds) D.E. Brown and CC. White,
Kluwer Academic Publishers, Boston, pp. 373-
385, 1990,

Validator, A Tool for Verifying and Validating
Personal Computer Based Expert Systems

Musa Jafar
and

A. Terry Bahill
Systems and Industrial Engineering

University of Arizona
Tucson, AZ 85721

musa@tucson.sie.arizona.edu
terry@tucson.sie.arizona,edu

(602) 621-6561

ABSTRACT

The most difficult tasks in expert system design are verification, vali-
dation and testing. Traditional techniques for these tasks require the
knowledge engineer to woifc through the knowledge base and the human
expert to run many test cases on the expert system. This consumes a great
deal of time and does not guarantee finding idl mistakes. On the other
hand, brute force enumeration of all inputs is an impossible technique for
most systems. Therefore, we have developed a general purpose tool to
help verify and validate knowledge bases with litfle human intervention.
Our tool, named Validator, has four main components: (1) a Syntactic
Error Checker, (2) a Debugger, (3) a Rules and Facts Validation Module,
and (4) a Chaining Thread Tracer. It was designed for knowledge bases
that use the M.11 expert system shell; however, the principles should gen-
eralize to any rule-based, backchaining shells, i.e. MYCIN derived shells.

1 Contrary to popular belief in the AI community, M.I is still sold, sup-
ported and updated by Cimflex Teknowledge Inc.



374

INTRODUCTION

There me many steps in the process of making an expert system:
identifying an appropriate problem domain, learning about the problem
domain and the structure of the problem, specifying the input-output per-
foimance criteria, selecting a good expert, selecting an expert system shell
(or perhaps selecting a language and a quantitative technique for dealing
with uncertainty), extracting the knowledge from the expert, encoding this
knowledge in the knowledge base, verifying the knowledge base, validating
the system, testing the system, updating and maintaining the system, and
finally, at the end of its life cycle, retiring and replacing the system
(Lehner and Adelman, 1989). This paper discusses verification and valida-
tion.

Validation means building the right system: that is writing
specifications and checking preformance to make sure that the system does
what it is supposed to do, Verification means building the system right:
that is ensuring that it correctly implements the specifications. Testing
means running test cases on the system to see if it emulates human input-
output behavior. In a typical expert system verification is done first, then
validation, and finally testing.

Verification is the process of assuring completeness, consistency and
correctness of the syntax of a knowledge base. There are many subtasks in
verification, they must be performed in the correct order. Hrst we proof
read the knowledge base. Validator aids the proof reading process by
displaying lists of all possible premises, all possible conclusions, all possi-
ble facts, all possible legal values for each object, and all possible goal
statements. Next we run a spelling checker on it. Then we look for low
level syntactic mistakes (most shells will do this function), Then we look
for more subtle syntactic mistakes and finally we run our Debugger,

After verification is complete we can do validation. Validation is the
process of assuring the compliance of system performance with the
specified system requirements and needs. In other words, validation checks
the semantics of the system. However, verification and validation of a sys-
tem does not mean that the system is adequate. Verified and validated sys-
tems can still exhibit unsatisfactory functional performance due to poor
hardware/software design, poor system-system and human-system inter-
faces, poor explanation facilities or incomplete and unclear requirements
specifications.



Validator 375

After a system is verified and validated, the human expert should run
a few dozen test cases through the expert system to test it It is important
to do verification and validation before the testing, to minimize squander-
ing the expert's time finding simple mistakes.

It seems that more mistakes would be detected if many experts tested
the system. It is often possible to get an expert to devote a substantial
amount of time to a project; being interviewed, verifying and validating the
knowledge base, and running test cases. However, we have found that it is
difficult to get other experts to devote time to testing the final product for
the following reasons: their time is expensive, there are few of them in any
geographical area, they might disagree on the criteria used to draw conclu-
sions or even the conclusions themselves, finally, they do not have the per-
sonal commitment to the project to compel them to donate copious
amounts of time. Therefore, it is difficult to get multiple experts to
exhaustively test an expert system. So, it is important to maximize the
efficiency of utilizing the domain experts.

Therefore, we have built a general purpose tool to help verify and
validate knowledge bases without extensive intervention by human experts
during the development stages of an expert system. We tried to make this
tool generic so that it can woik on any rule-based knowledge base no
matter which expert system shell is used. The first two components of the
system, the Syntactic Enor Checker and the Debugger are a part of
verification. While the last two components, The Rules and Facts Valida-
tion Module and The Chaining Thread Tracer are a part of validation.

There are other programs for verification and validation of expert sys-
tem knowledge bases: Teiresias for the MYCIN system (Davis, 1976), a
program for ONCOQN (Suwa, Scott and Shorfliffe, 1982), Check for pro-
grams written with Lockheed's LES shell (Nguyen, Perkins, Laffey and
Pecora, 1987), ARC for production systems written with ART (Nguyen,
1987), and EVA for knowledge bases using ART and LISP (Stachowitz,
Combs and Chang, 1987; Stachowitz, Chang, Stock and Combs, 1987), A
sixth similar tool is ESC, a decision-table-based processor for checking
completeness and consistency in rule-based expert systems (Cragun, 1987).
In contrast to these programs, our system, Validator, is specifically
designed to run on personal computer.



376

VALIDATOR

The Syntactic Error Checker
The first component of Validator is the Syntactic Error Checker,

Syntactic eirois are common in expert systems knowledge bases; many of
these are misspellings or typographical errors. The expert systems submit-
ted by graduate and undergraduate students as class projects for our Expert
Systems course in the Fall of 1987 had an average of 12 spelling errors per
knowledge base. The Syntactic Error Checker also checks for syntax that,
although legal, produces unspecified behavior of the system such as (1) the
use of is known or a negation in the conclusion of a rule, e.g.

then type(air-conditioner) is known,
then not(type(air-conditioner) = central);

(2) negations in the right hand sides of premises, e.g. type(air-conditioner)
= notfcentrai), where the knowledge engineer probably wanted
not(type(air-condMoner) - central), and (3) instantiating objects to known,
unknown, found or sought such as type(air-conditioner) = known, where
the knowledge engineer probably wanted to use the metafact is, e.g.
type(air-conditioner) is known. This component also checks each user
defined object, attribute and value to make sure that it is not a reserved
word such as or, and, mod, add, is, or off.

Providing legal values for an object ameliorates typing errors in
response to a question. If no legal values were provided, the system would
take any user's response as an answer. So typographical errors might
escape detection, even if they were detected, it is hard for a user to recover
without restarting the whole system. Providing legal values also allows the
user to abbreviate his response, for example, he can type y instead of yes
as an answer. Another type of syntactic enor occurs when an illegal value
is written into a knowledge base. Most shells check user responses to
questions to see if they match legal values specified by the knowledge
engineer. However, they do not check the rules to ensure that only legal
values have been used. Legal values are associated with questions, not
with rules or terms. In figure 1, rule 4 shows an example of a rule using
an illegal value. Premise 2 of rules 3 and 5 will similarly be flagged,
because no legal values were provided for marking of animal. Figure 1
also shows an unused legal value, the value claws for the object extremities



Validator 377

of animal was never used in the rule base. In this section, we have shown
examples of 7 of the 10 syntactic eirors that Validator can detect More
examples aie given in Jafar (1989), and Bahill (1990).

The Debugger

It has been estimated that testing and debugging comprised 80 percent
of the cost of the NASA Apollo project (Youidon, 1975), 44 percent of the
cost of the Saturn 1 project, and 50 percent of the cost of the Naval Tacti-
cal Data System (Boehm, 1970). Manual debugging of a knowledge base
is expensive and time consuming, it is also difficult, error prone and does
not guarantee the finding of all bugs. Debugging means removing com-
piler specific mistakes that cause the system to not compile or to fail at run
time. In the following rule, the variable X will be instantiated whenever
the conclusion of the rule falls in the search path of a goal. However, the
knowledge engineer mistakenly typed a Y instead of an X in the third
premise. If this rule is encountered during a consultation the computer will
halt, because the variable Y can not be instantiated,

if air-conditioner « air-conditioner-X
and type(mr-conditioner-X) = central
and not(maintained(air-conditioner-Y))
then maintain(air-conditioner-X).

Validator also checks for unclosed comments. Shells and compilers
can detect an unclosed comment if it is the last comment in the knowledge
base, but if the unclosed comment is followed by another comment, the
unclosed comment will probably escape detection. An unclosed comment
warning is issued whenever the Debugger encounters a second beginning
of a comment string /* without closing the first one. This type of error is
typographical. It usually forces the inference engine to ignore the part of
the knowledge base that lies between the two comments,

Debugging also includes the actions of a knowledge engineer running
the system and watching for aberrant behavior, such as unexpected ques-
tions being asked. Interactive debugging removes many inconsistencies
that are virtually impossible to detect manually by a knowledge engineer.



378

The Rules and Facts Validation Module
When verification is complete and aU the syntactic eirois are removed

from the knowledge basef then validation can begin. Validation means
ensuring that the system does what it was supposed to do, Rules that can
never fire are typical of mistakes that can be detected by our Rules and
Facts Validation Module. For example Rule 6 of figure 1 shows such a
rule that can never fire. This module also checks rules and facts for vali-
dity. For example the next rule will always fail because of the declared
fact.

fact: prob-caids = no.

rule: if found-tag = yes
and prob-caids = yes
then lost-tag = yes.

The object prob-cards will never be instantiated to the value yes, because it
was set to the value no by a fact The above example is from the Caipet
Advisor, one of the student generated systems.

The Chaining Thread Tracer
The fourth and last component of Validator is the Chaining Thread

Tracer. It was designed for backchaining shells, but was later enlarged to
handle forward chaining constructs (Jafar, 1989). It checks the validity of
each rule by tracing it's premises and conclusions to see if they are prop-
erly interconnected. We call this component a Chaining Thread Tracer,
because it traces connectivity of the teims through the backchaining sys-
tem.

Backward chaining systems start their search with a goal as the root
of an inverted tree and rules as branches. For example, the goal identity of
animal of figure 1 brings us to the conclusion of rule 3. From here the
teim subtype of animal links the first premise of iule 3 to the conclusion of
rule 2. Next the term type ofammal links the premise of rule 2 to the con-
clusion of rule 1. The conclusion of mle 1 is then linked to the premise of
rule 1, coat of animal = hair. There is a question that can provide a value
for this tenn, coat of animal, so this chain of linking is good.



Validator 379

To detect logical errors in backchaining systems, Validator checked
every premise of every rule to make sure that it led to a valid end, A
piemise has a valid end if it appears in the conclusion of another rule or a
question is provided for it by the knowledge engineer, For example, in
figure 1 the fiist premise of rule 2 is a valid end, since it appears as a con-
clusion in rule 1, the second piemise of rule 2 is a valid end also, since a
question was provided for it. We also checked the conclusion part of
every rule for valid ends. A rule's conclusion is considered to be a valid
end if it is either a goal statement or it appears as a premise in another
rule. For example, in figure 1 the conclusion of rule 1 appears as a prem-
ise in rule 2, in turn, the conclusion of rule 2 appeals as a premise of rale
3, the conclusion of rule 3 is a goal. Hence rales 1, 2, and 3 all lead to
valid ends. An added complexity in the conclusion validation checking
that we have to deal with is caused by the fact that, conclusions of rales
can be linked with two types of premises. A rule with a conclusion of the
fonn then animal = mammal, has to be linked with the premise if animal
= memmal and also with ifmt(ammal = ANY), where ANY can take any
value other than mammal, since both premises are going to be in the search
tree of a goal statement

Figure 1 shows a typical knowledge base. The fiist three rales am
correct. If you have a zebra in mind, it will correctly identify this animal
The rest of the rales illustrate various mistakes that might result when a
knowledge base is expanded. Rule 6 is extraneous, it will never be
reached during inferencing. Rule 5 shows a mistake that the Chaining
Thread Checker will detect There is no way to get a value for the object
feed of animal The object has no question and it does not appear in the
conclusion of any other rale. Therefore, it wiU be flagged as a potential
eiror.



380

infix of,
goal = identity of animal.

rulel: if coat of animal = hair
then type of animal = mammal.

rule2: if type of animal = mammal and
extremities of animal = hooves
then subtype of animal = ungulate.

nileS: if subtype of animal = ungulate and
marking of animal = black-stripes
then identity of animal = zebra.

mle4: if coat of animal = scales
then identity of animal = fish.

ruleS: if feed of animal = meat and
marking of animal = black-stripes
then identity of animal = tiger.

nde6: if coat of animal = feaiheis and
animal-swims
then habitat of animal = antarctic.

question(coat of animal)=(*What is the coat of animal?5).
legalvals(coat of animal)=[hairf feathers],
question(extremities of animal) =
('What is type of the extremities of the animal?*).
legalvals(extFemities of animal) = [hooves, claws].
question(maridng of animal) =
('What is type of the marking of the animal?').

Figure 1. A small knowledge base with typical enors. The infix operator
is just a convenient way of saving space and improving readability. It
allows us to say "coat of animal" instead of "coat-of-animal".



Validator 381

Results of Testing Validator

Over a period of three years, 50 student generated expert systems
were used in the development of Validator. Another 14 new expert sys-
tems, which were created as final projects by students in our Fall 1988
Senior/Graduate student Expert Systems course, were then used to test it
Each of these programs took an average of 100 hours to create and an
average of 50 Kbytes of disk space. Table 1 summarizes some of the
potential errors detected by Validator in these systems. Rule 4 of figure 1
is an example of a rule using an illegal value. Figure 1 also shows an
unused legal value claws for the object extremities of animal. Rule 6 in
figure 1 is an example of a rule that can never fire. On the next page we
show an example of a rule (mle-26) that can never succeed.

Table 1. The number of certain types of poten-
tial errors detected by Validator in 14 student
generated expert system knowledge bases.

System
Name

Veterinarian
Automech
Carpet
CompSel
Diet
Legal Drug
HAA
MacExpert
NAPSX
O-ring
Software
SoundFilm
Volcanic
Wire

Rules Unused
using legal
illegal values
values

0 9
0 0
2 29
1 10
1 4
5 19
0 7
0 2
2 36
0 60
0 3
0 72
2 10
0 3

Use of
reserved
words

0
0
0
0
0
0
1
3
0
0
0
0
0
3

Unused
rules

0
0
0
1
2
0
2
0
1
0
1
0
0
0

Validator sometimes flagged items that were not mistakes, but rather
were handled by the knowledge engineer outside the expert system, For
example O-ring and SoundFilm had external data collection programs that



382

caused Validator to think that there were errors where such errors probably
did not exist. After testing Validator with these 14 class projects, we
tested it with five more advanced expert systems, The results of these tests
are shown in Table 2.

Table 2. Number of potential mistakes
detected by Validator in five more advanced
expert systems.

System
Name

Advice
Helper
Stutter
Fund-Eye
Wine

Rules
using
illegal
values

1
2
7
0
0

Unused
legal
values

1
1
5
2
2

Use of
reserved
words

0
0
0
1
0

Unused
rules

3
0
6
0
1

The fitst three systems, Advice, Stutter and Helper, were master's
theses projects in the Department of Systems and Industrial Engineering at
the University of Arizona, Advice was designed to recommend a study
plan for new graduate students* Helper was designed to aid students using
the computer laboratory. Stutter was designed to help with the diagnoses
and prognosis of children who may have begun to stutter. The fourth sys-
tem, Fund-Eye, is a retinal disease diagnostic system. The fifth system,
Wine, is a demonstration program provided by Teknowledge (the developer
of M.1). The following set of rules, taken from the Wine Advisor, shows
a rule that can never succeed.



Validator 383

rule-12: if has-sauce = yes
and sauce = sweet
then best-sweetness = sweet cf 90
and best-sweetness = medium cf 40.

rule-26: if best-sweetness = dry
then recommended-sweetoess = dry.

rule-27: if best-sweetness = medium
then recommended-sweetness = medium.

rale-28: if best-sweetness = sweet
then recommended-sweetness = sweet.

From rule-12, the object best-sweetness will be instantiated either to the
value sweet with certainty factor 90 or to the value medium with certainty
factor 40. For rule-26 to succeed, the object best-sweetness would have to
be instantiated to the value dry. But this can not happen, because the con-
clusion of rule-12 is the only place in the knowledge base where best-
sweetness gets a value. Therefore rule-26 can never succeed.

Once again we note that Validator flags potential mistakes. It is up
to the knowledge engineer to decide if it is an actual mistake or not. For
example in the above example from the Wine Advisor it is obvious that the
knowledge engineer wanted to include rule-26 for completeness, although it
would never fire. These tables show data for only 5 out of the 17 types of
potential errors that Validator currently detects. In previous sections we
showed examples of another 8 types of potential errors that it detects,

Undetected Errors
We could continue enlarging Validator, but it would never be able to

detect all possible errors. For example, the following constructs were
meant to allow the user to change his mind about his last answer, and
backup to correct it:

whencached(X=Y) = [(not(Y=oops)) and temp=X].
whencached(X=Y) = [(Y=oops) and (do(ieset X), do(neset
temp), temp)].



384

However, what resulted was circular reasoning; it put the system into an
infinite loop. We did not enlaige Validator to detect this particular error.

SUMMARY

Ideally we want to build expert systems that pass exhaustive tests and
are accepted by all experts. This goal is not reachable. We wiU never be
able to guarantee that a system works exactly as intended or that it fully
meets its requirements specifications. It is almost impossible to generate
test cases that exhaust all rules. So some rules are going to escape the
verification, validation and testing. Tables 1 and 2 show that Validator
guarantees that each rule is checked for validity and consistency. It also
guarantees that the rule will fire whenever enough evidence is gathered to
satisfy its premises. We developed verification and validation tools to find
out why a system is not working right and to increase the confidence in the
level of perfomance of a system.

ACKNOWLEDGEMENT
Validator can be purchased from the authors. Research of this paper

was partially supported by Grant Nr. AFOSR-88-QG76 from the Air Force
Office of Scientific Research.

REFERENCES

Bahffl A.T. (1990) Verification and Validation of Personal Computer
Based Eypert Systems. Prentice-Hall Inc., Englewood Qiffs,
New Jersey.

Boehm B.W. (1970) Some information processing implications of Air
Force space missions: 1970-1980. Memorandum RM-6213-
PR, RAND Corp, Santa Monica.

Crapn B J. (1987) A decision-table-based processor for checking com-
pleteness and consistency in rule-based expert systems. Int. J.
Man-Machine Studies 26, 633-648,



Validator 385

Davis R. (1976) Applications of Meta-Level Knowledge to the Construc-
tion, Maintenance and Use of Large Knowledge Bases, Ph.D.
dissertation, Department of Computer Science, Stanfonl
University.

Jafar MJ. (1989) A Tool for Interactive Verification and Validation of Rule
Based Expert Systems, PhuD. dissertation, Department of Sys-
tems and Industrial Engineering, University of Arizona.

Lehner P.E. and Adelman L. (1989) (Eds.) Special issue on perspectives
in knowledge engineering. IEEE Trans. Syst. Man Cybern,
SMC-19, 433-662.

Nguyen TYA. (1987) Verifying consistency of production systems. In Proc,
of IEEE Third Conf. on AI Applications pp. 4-7. IEEE, New
York,

Nguyen T.A., Peridns W.A., Laffey TJ. and Pecora D. (1987) Knowledge
base verificatioa AI Magazine 8(2), 69-75.

Stachowitz R.A., Chang C.L., Stock T.S. and Combs J.B, (1987) Building
validation tools for knowledge-based systems. In Proc. of First
Annual Workshop on Space Operations Automation and Robot-
ics pp. 209-216. Houston, Texas.

Stachowitz R.A., Combs IB. and Chang C.L. (1987) Validation of
knowledge-based systems. In Second AIAA/NASA/USAF Sym-
posium on Automation, Robotics and Advanced Computing for
the National Space Program, pp. 1-9. American Institute of
Aeronautics and Astronautics, New Yoik.

Suwa M., Scott A.C. and Shorfliffe E.H. (1982) An approach to verifying
completeness and consistency in a rule base. AI Magazine
3(4), 16-21.

Yourdon E. (1975) Techniques of Program Structure and Design.
Prentice-Hall Inc., Englewood Cliffs, New Jersey.


