
BY YUE KANG AND A. TERRY BAHILL

a TOOL for
EXPERT-SYSTEM

Test cases
can find
run-time

errors
in the

system
every

time a
rule is

added or
modified

46

he most difficult part of expert-
system design is testing. Brute-
force enumeration of all inputs is
impossible for most systems, so

the traditional testing method has a human
expert run many test cases on the expert
system. This method is time-consuming and
fa l l ib le . Furthermore, the knowledge engi-
neer never knows when enough test cases
have been run. Our run-time tool helps the
knowledge engineer know exactly when to
quit.

More mistakes could be corrected if many
experts tested the system. It is often possible
to find an expert who will devote lots of
time for interviewing, debugging the knowl-
edge base, and running test cases. It is much
harder to find other experts with the time
to test the final product: their time is expen-
sive; there are few of them in any geo-
graphical area; and they don't have the per-
sonal commitment to the project. Because
experts have so many time constraints,
there should be tools to help make judicious
use of it.

Evaluating an expert system by using test
cases is certainly not original. P.G. Politakis1

has shown how statistics gathered while run-
ning test cases can be used by the developer
to modify the rules and improve the expert
system.

The technique described here comes into
play at run-time. Each rule-firing is record-
ed. Rules that never succeed and rules that
succeed for all test cases are probably mis-
takes, and the human expert is notified.
"Succeed" means all the premises are true
and the expression in the conclusion is as-
signed the appropriate value.

RUNNING TEST CASES
It appears we are back to square one be-
cause we need to bring in the expert to run
test cases. However, only one test case is
necessary; the expert does not have to
reanswer 100 questions every time the
knowledge engineer corrects a spelling er-
ror. To create test cases, start the system
and ask the expert to pull the file or visual-
ize a particular patient. The expert should
run a consultation and answer all the ques-
tions. At the end of the consultation, after
the expert system gives its advice (but be-
fore you exit or restart), save the intermedi-

AI EXPERT • FEBRUARY 1990



DETECTING
ERRORS

ate knowledge. (For M.I the command is
savecache.) Eliminate the values derived by
the inference engine with a text editor, leav-
ing only the human answers to questions.
(M.I tags these "because you said so." Un-
fortunately, this tag doesn't work if the ex-
pert answers "unknown" to a question; the
knowledge engineer sti l l has some work to
do.)

To create a second test case, ask your ex-
pert to concentrate on another patient (or
malfunctioning circuit, for example) and
produce another set of answers. Save this set
under a different name. Convenient names
may be easel, case2, case3, and so on. In this
manner the expert can produce many test
cases that can be used for subsequent testing
during the project's lifecycle. Every time a
rule is added or modified these test cases
can be automatically played through the sys-
tem to look for run-time errors. If you did
not add new questions to the knowledge
base, the advice should be produced imme-
diately. If you added new questions, they
will be asked, and you'll get your advice and
can save the new test case. If the modifica-
tions require more knowledge from the ex-

pert, it may be possible to glean this infor-
mation from a telephone call. The test cases
could be readily updated without demand-
ing a lot of the experts time and you could
test the system at your leisure.

Using real test cases provided by the ex-
pert is only one method of exercising a
knowledge base. Test cases may also be in-
vented by the knowledge engineer and pro-
vided by the user; those created by the
knowledge engineer are often more effi-
cient, because more rules can be exercised
by fewer test cases. The expert, the knowl-
edge engineer, and the user are like three
blind men describing an elephant: each un-
derstands a different aspect of the system,
so their test cases will exercise different por-
tions of the knowledge base. It may be wise
to use test cases from all three sources.

Rules never succeed if either of two
classes of mistakes are made: failure due to
false premises and failure due to single-val-
ue cutoff. The problems and techniques dis-
cussed are universal and should apply to any
rule-based expert system (we've tried them
on M.I , VP-Expert and Personal Consultant
Plus systems). 47

AI EXPERT • FEBRUARY 1990



Validator

48

Validator is a program that interactively verifies and vali-
dates rule-based expert-system knowledge bases. It checks
the syntax and semantics for potential errors and brings
them to the attention of the knowledge engineer. Validator
does not attempt to fix errors; that task is left to the knowl-
edge engineer. The system has six modules: a preprocessor,
syntax analyzer, syntactic error checker, debugger, chaining
thread tracer, and knowledge-base completeness module.

Validator was tested on 67 expert systems selected from
MA projects, potential commercial systems, class projects
for graduate courses in knowledge engineering, and com-
mercial demonstration systems. The potential mistakes
flagged by Validator fell into nine categories: illegal use of
reserved words; rules that could never fire (both backward
and forward rules); unused facts; unused questions; unused
legal values; repeated questions; multiple methods (includ-
ing expressions that appear in questions and facts, questions
and conclusions, and facts and conclusions); rules using il-
legal values (including mismatches between any of the sets of
legal values, utilized values, concluded values, and assigned
values); and incorrect instantiations. Validator was written
and is maintained by Musa Jafar and Terry Bahill, at BICS,
1622 W. Montenegro, Tucson, Ariz. 85704.

FAILURE DUE TO FALSE PREMISES
Consider this type of if-then production rule:
if premise = \es then conclusion = yes. If the
premise cannot be satisfied in any consulta-
tion, then the rule will fail. For example, in
if a> 1 then c = 0, if the designer thought
that a would sometimes be larger than one
(but in the real world a was always less than
one), then the premise could never be satis-
fied and the rule would never succeed.

If a premise has many conditions, they
may contradict each other, so the premise is
always false (such as if humidity = 37c and
heavy-rain = yes then conclusion.) The contra-
dictory conditions could even be indirect
and spread out in other rules. For example:

goal = c.
rule-1: if heavy-rain = yes and b = yes then c = yes.
rule-2: if humidity = 3% then b = yes.

rule-1 cannot succeed. We can generalize
this idea to:

rule-1: if heavy-rain = yes and b1 = yes then c = yes.
rule-2: if ... b2 = yes and ... then b1 = yes.

rule-k: if ... bk = yes and ... then bk-1 = yes.

rule-k+1: if humidity = 3% then bk = yes.

Since hi depends on bk, rule-1 can't succeed.
If a rule has one premise that will be false

for all valid combinations of values, the rule
will never succeed and is probably a mis-
take. Notice that this type of error-checking
depends on knowledge and therefore can be
used only at run-time.

FAILURE DUE TO CUTOFF
When seeking a value for a single-valued ex-
pression, most backward-chaining expert
systems stop after finding a value with com-
plete certainty. If a system always stops be-
fore a certain rule, that rule will never suc-
ceed. Consider this knowledge base:

goal = c.
rule-1: if a1 = yes then c = 1 cf 100.

rule-k: if ak = yes then c = k cf 100.
rule-k+1: if b = yes then c = k+1 cf X.

Assume r is single-valued. If one of al, a2, ...
ak is always 100% yes, then the system will
always stop seeking a value for c before rule-
k+1 can succeed. Therefore, rule-k+1 will
never succeed. Consider this set of rules:

rule-1: if a = yes then c = 1 cf 100.
rule-2: if a = no then c = 2 cf 100.
rule-3: if b = yes then c = 3 cf X.

rule-3 will never succeed. After the infer-
ence engine has found a value with 100%
certainty, it won't seek further values. (This
example presumes the user is not allowed to
answer "unknown" when a value for a is
queried.) These errors cannot be found by
syntax checking because they are semantic;
they can be found only during run-time in-
vestigations. Validator (see sidebar) scans
the knowledge base by flagging single-
valued terms with different values attribut-
ed to them in different rules as potential
errors.

In addition to these types of errors, our
run-time tool detected rules that could nev-
er succeed due to other types of errors. Va-
lidator had already detected many of these
mistakes, but it produces some false posi-
tives, so knowledge engineers sometimes ig-
nore the warnings.

Rules that succeed for every test case are
probably mistakes. If a rule is always true
then it might be simpler to replace it with a
fact. Of course, some control rules always
succeed, and some rules will be designed for
rare situations not exercised by the test
cases at hand. Again, this technique is only
advisory; the expert must make the final de-
cision about the rule's correctness.

AI EXPERT • FEBRUARY 1990



To detect which rules succeed at run-
time, we add additional terms to the knowl-
edge base. For example, this original knowl-
edge base:

rule-1: if prenise-1 = yes then conclusion-1.

rule-k: if premise-k = yes then conclusion-k.

must be edited to become this transformed
knowledge base:

rule-1: if premise-1 = yes
then conclusion-1 and r-1 = yes.

rule-k: if premise-k = yes
then conclusion-k and r-k = yes.

We use the terms r-i to record which rules
succeeded (i is an index that goes from one
to k, where k is the number of rules in the
knowledge base). When the system invokes
a rule, if the premises are true (meaning the
rule succeeded), r-i is assigned a value of yes.
If rule i has succeeded during the consulta-
tion, the value of r-i will be yes. If rule i has
not succeeded during the consultation, the
value of r-i will not be yes.

This technique works for both forward-
and backward-chaining shells, but it does re-
quire the shell to allow multiple terms in
the rule conclusions. Personal Consultant
Plus from Texas Instruments, VP-Expert
from Paperback Software, and many other
shells allow this technique. However, to
make the technique work for M. I , an addi-
tional clause must be added as the last prem-
ises of each rule, as shown in this modified
knowledge base:

rule-1: if premise-1 = yes and do(set r-1 = yes)
then conclusion-1.

rule-k: if premise-k =
then conclusion-k.

yes and do set(r-k = yes)

This example is written as if there were only
one premise, but the technique will work
with multiple premises as long as the do set(r-
k = yes) is the last one. When rule-i fires, if
the original premises are true (meaning the
rule will succeed), then r-i will be set to yes.
If the premises arc false, then the rule will
fail and r-i will not be set to yes.

None of these additions influences the
function of the rules, but they do allow de-
tection of which rules succeeded. The next
step is storing the values of the r-i, which re-
flect the status of a rule in only one consul-

tation. Since our goal is to determine which
rules have succeeded after many consulta-
tions, we must accumulate the values of r-i
from the first to the last consultation. From
the results of this accumulation we can find
the rules that never succeeded and that suc-
ceeded for every test case.

RECORDING SUCCESSFUL RULES
We wrote a C program to modify the knowl-
edge bases automatically. It added and do
set(r-i = yes) into rules kb-1 to kb-k and ap-
pended kb-k+1 to kb-k+ 3 to the original
knowledge base to record which rules suc-
ceeded. Examine this modified M.I knowl-
edge base:

goal = goal-1.
kb-1: if premise-1 = yes and do set(r-1

then conclusion-1.
yes)

kb-k: if premise-k = yes and do set(r-k = yes)
then conclusion-k.

kb-k+1: goal = goal-2.
kb-k+2: if do(log filenamel) and do(show r-X) and

do(log off) and external(cprogram1,[]) = [] and
printrule = yes and do(log filename2) and
do(uses do(set r-X=yes)) and do(log off) and
external(cprogram2,[]) = [] then goal-2=true.

kb-k+3: question(printrule) = 'Would you like to
create a file showing the rules and the number of
times they succeeded?'

To use our program we ran a consultation
with the modified knowledge base. We
saved test cases, loaded one with the load-
cache command, and restarted. The original
goal, goal-1, drove a normal consultation,

TABLE 1.
Summary of run-
time tool testing
results.

SIZE KB UNSUCCESSFUL TEST
NAME (KB) ENTRIES RULES RULES CASES

TV-FILM

BACKUP

AUTOMECH

MACEXPERT

SOFTWARE

ADVISOR

HELPER

DIET

WIREBOND

DRUGDEAL

VOLCANIC

DRUG

CHROMIE

VET

DELL

CARPET

32

8

8

11

7

84

63

14

19

26

18

40

114

33

54

56

290

50

56

85

68

307

204

118

113

206

141

120

681

235

453

390

25

20

24

16

32

64

57

33

39

81

65

82

231

105

148

106

0

1

0

1

1

2

3

11

22

34

36

36

41

67

70

70

6

8

12

15

26

30

40

8

6

7

8

13

20

6

6

20

49

AI EXPERT • FEBRUARY 1990



Example 1.
goal=intro.
rule-1: if a_banner_displayed is sought

and output is sought
and class_assignment is sought
and do(reset done)
then intro.

rule-2: if not(class)
then intro.

/*Because intro was single-valued and rule-1 always succeeded, rule-2 never
fired. Earlier we called this failure due to single valued cutoff.*/

Example 2.
goal = complete-commands.
rule-1: if help-with-commands=yes

and commands is sought
then complete-commands.

rule-2: if help-with-commands=no
then commands.

/*This is a special case of failure due to false premises. It could be
simplified to goal=c.V
rule-1a: if a=yes

and b is sought
then c=yes.

rule-2a: if a=no
then b=yes.

/*Since a cannot be yes and no at same time, rule-2a can never succeed.*/

Example 3 (simplified).
goal=c.
rule-1: if a is unknown

and b=yes
then c=yes.

rule-2: if b=W
and d=V
and computer(N,V)=X
then a=X.

fact-1: computer(yes,V)="something".
/*If b=no rule-1 fails. If b=yes, then a=something and is therefore known.
Therefore, rule-1 can never succeed. This is another example of failure due
to false premises.*/

Example 4 (simplified).
goal=c.
rule-1: if a=1

then c=yes.
rule-2: if not(b=1)

and b=X
then a=X.

rule-3: if b=1
and d=X
then a=X.

legalvals(d)=[2,3].
/*Neither rule-2 nor rule-3 could make a=1, so rule-1 will never succeed. Using
variables makes it harder to see the contradiction.*/

LISTING 1.
Examples.

50

and goal-2 caused M.I to invoke rule kb-
k + 2, which created a results file called file-
name 1. This file contained the cache entries
for all successful rules. For example, if rule-5
succeeded then r-5 = yes because... would be
in cache and put into filename 1.

Next, we ran a another consultation
(loaded another test cache) and our pro-
gram added the new statistics to the file.
The external function cprograml consolidat-
ed the new data with the data from previous
consultations. When we finished running all

the test cases, we answered "yes" to the
question "Would you like to create a file
showing the rules and the number of times
they succeeded?" Rule kb-k + 2 then caused
M.I to create a file cMed filename 2. The ex-
ternal function cprogram2 modified that file,
producing the final output file containing
the rules, the knowledge-base number of
each rule, and the number of times each
rule succeeded. (In a consultation, the new
knowledge base works the same as the old
one. The user sees no differences.)

We tested this run-time tool on 16 expert
systems. Table 1 lists their names, sizes,
number of knowledge-base entries, rules,
rules that never succeeded during our tests,
and test cases we used to exercise the expert
systems. We identified each rule that never
succeeded and determined why not. Many
rules failed because they contained mis-
takes. The four examples shown in Listing 1
summarize these mistakes.

Our most powerful verification and vali-
dation tool, Validator,23 could not detect
these mistakes because they depend on the
user's answers and can be detected only at
run-time.

The first seven expert systems listed in
Table 1 had fewer mistakes, and we could
determine the cause of failure for every rule
that never succeeded. These seven expert
systems had an average of 34 rules, ran an
average of 20 test cases for each system, and
had an average of one unsuccessful rule per
system.

For the next nine systems listed in Table
1, we could not find the cause of failure for
every unsuccessful rule. These nine systems
had an average of 99 rules, they were given
an average of 10 test cases and had an aver-
age of 43 unsuccessful rules. So for the sys-
tems we tested, as the number of test cases
approached one-half the number of rules,
the number of unsuccessful rules diminished.

The best way to test an expert system is to
let the domain expert run consultations,
first creating a test case for every 10 rules
(10 test cases for a 100-rule system) and ob-
serving which rules never succeed. Next the
expert should provide test cases that might
make these rules succeed. This procedure
could be repeated until most of the rules
have succeeded. Then the knowledge engi-
neer could try to find the reason for the re-
maining rules not succeeding.

LIMITATIONS
This technique is limited in one way be-
cause a rule that never succeeds is not neces-
sarily wrong; it is possible that the test cases
just did not exercise that rule. For example,
for Chromie (Table 1) the expert provided
many test cases, yet 41 rules never succeed-
ed. When this statistic was revealed to the
expert, she said, "Of course. That part of

AI EXPERT • FEBRUARY 1990



the knowledge base is so simple, I never
bothered to give you a test case that would
exercise it."

Even if a rule succeeds we cannot be sure
that it contributes to the final result:

rule-1: if a = yes then c = 1 cf 70.
rule-2: it b1 = yes then c = 2 cf 100.

rule-k: if bk = yes then c = k cf 100.

Assume c is single valued. If one of bl to bk
is always yes, even if rule-l succeeded, c = 1
cf 70 would be replaced by a result from an-
other rule. So rule-1 is useless.

TECHNIQUE BENEFITS
Testing expert systems is difficult, time con-
suming, and unfulfilling. We have devel-
oped a technique to make this task easier
and to give the designer more confidence in
the final product. This technique is intend-
ed to be run after all static errors have been
removed from the knowledge base. For ex-
ample, spelling errors, use of reserved
words, and rules that do not link to the rest
of the knowledge base can be detected in a
careful reading of the knowledge base or
with an interactive tool such as Validator.
After this detection is complete, our run-
time tool can reveal more potential errors
using knowledge stored from consultations
with the expert. (It detects rules that never
succeed and rules that succeed for every test
case.) Such rules are probably mistakes and
should be brought to the attention of the
knowledge engineer.

We have shown two classes of mistakes
that would cause a rule never to succeed:
the premises could always be false, or single-
valued cutoff might cause the inference en-
gine to stop seeking a value for a term be-
fore a certain rule is ever encountered. QQ

REFERENCES
1. Politakis, P.G. Empirical Analysis for Expert Systems.

Boston, Mass.: Pitman Advanced Publishing Program,
1985.

2. Jafar, M.J., and A.T. Bahill. "Validator, a tool for
verifying and validating personal computer based ex-
pert systems." In Brown, D.E., and C.C. White (eds.)
Operations Research and Artificial Intelligence: The Integra-
tion of Problem Solving Strategies. Boston, Mass.: Kluwer
Academic Publishers, 1990.

3. Jafar, M J. "Tool for Interactive Verification and
Validation of Rule Based Expert Systems." Ph.D. dis-
sertation, Dept. of Systems and Industrial Engineering,
University of Arizona, Tucson, 1989.

Yue Kang is a graduate student systems and
industrial engineering at the University of Arizona,
Tucson, and was previously a computer engineer in
Beijing. A. Terry Bahill is a professor of systems
engineering at the University of Arizona and is an
Associate Editor of IEEE Expert.

GATECH
Expert
Systems
Short Courses
leading to a
CERTIFICATE IN
KNOWLEDGE
ENGINEERING
Let Georgia Tech knowledge engineers
show you how to lead your company
to the forefront by employing expert
systems on personal computers.

This complete series is offered in
spring 1990:

1. K.E. I - Manager's Vieiv of
Expert Systems
March 19

2. Knowledge Acquisition
March 20-21

3. Lisp-at-Work: Essential Syntax
and Use
March 22

4. K.E. II - Rapid Prototyping
Practicum
March 23-24

5. Object-Oriented Programming
Systems
March 28-29

6. K.E. Ill — Project Management
March 30

For more information and course
registration call:

Education Extension-M
Georgia Institute of Technology

Atlanta, Georgia 30332-0385
1-800-325-5007

51
CIRCLE 19 ON READER SERVICE CARD

AI EXPERT • FEBRUARY 1990


