
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 12, DECEMBER 1995 1533

How the Testing Techniques for a Decision
Support System Changed Over Nine Years

A. Terry Bahill, Fellow, ZEEE, K.

Abstract-A decision support system has been under develop-
ment since 1985 to help speech clinicians diagnose small children
who have begun to stutter. This paper describes how testing of
the system evolved during these nine years. Testing included: (1)
having an expert use and evaluate it, (2) running test cases, (3)
developing a program to detect redundant rules, (4) using the
Analytic Hierarchy Process, (5) running a program that checks a
knowledge base for consistency and completeness, (6) having five
experts independently critique the system, (7) obtaining diagnoses
of stuttering from these five experts derived from reports of
children who had been evaluated for possible stuttering problems,
(8) using the system to expose missing and ambiguous information
in 30 clinical reports, and (9) analyzing the dispersion and bias
of six experts and the decision support system in diagnosing
stuttering. When using the final system, three clinicians with
widely differing backgrounds produced diagnostic opinions that
evidence little variability and were indistinguishable from those
of a panel of five experienced clinicians.

I. INTRODUCTION
Development of a decision support system to help speech

clinicians diagnose and manage preschool children at risk for
a stuttering disability began in 1985. Following eight years
of testing and modification Childhood Stuttering: A Second
OpinionTM was commercially released in 1993 as a diagnostic
decision aid. Speech-language clinicians may vary widely in
their diagnoses of stuttering in young children, but discussing
such cases with experienced clinicians greatly reduces this
variability. When using Childhood Stuttering: A Second Opin-
ion, clinicians with different training and experiences arrived at
diagnostic opinions that were indistinguishable from those of
a panel of five experienced clinicians. In effect, using Second
Opinion allows inexperienced clinicians to “discuss” cases of
incipient stuttering with a panel of experts, a process that
should increase the reliability of their diagnoses in the real
world.

Manuscript received August 1, 1993; revised April 24, 1994, and September
17, 1994. An earlier version of this paper was published in thr Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, October
17-20, 1993, Le Touquet, France, Vol. 5, pp. 12-17. This work was supported
by the National Institute of Child Health and Human Development Grant
R44 HD26209 and by Bahill Intelligent Computer Systems. The contents of
this paper are solely the responsibility of the authors and do not necessarily
represent the official views of the National Institute of Child Health and
Human Development.

A. T. Bahill is with the Department of Systems and Industrial Engineering,
University of Arizona, Tucson, AZ 85721 USA.

K. Bharathan is with Bahill Intelligent Computer Systems, Tucson, AZ

R. F. Curlee is with the Department of Speech and Hearing Sciences,

IEEE Log Number 9414488.

85704-1822 USA.

University of Arizona, Tucson, AZ 85721 USA.

Bharathan, and Richard F. Curlee

Previous papers [l], [2] have presented a history of the
system and discussed the use of knowledge engineers, shells,
techniques for extracting and representing knowledge, outputs
of the system, and methods for dealing with uncertainty. They
also described how an expert’s thought processes changed as
he became more aware of the implicit algorithms, heuristics
and strategies that he uses in manipulating his knowledge.
It was suggested that the changes described for this expert
could be generalized to other experts. This paper will discuss
a variety of testing techniques, some simple and some complex
and the changes in testing techniques that occurred over nine
years.

Publications about validating general software systems ap-
peared in the late 1980’s [3], while those relating to decision
support systems [4] began to appear in the early 1990’s. A
number of works on verification, validation and testing of
knowledge-based systems [5]-[111 have appeared since.

The term testing is used in this paper to refer to all facets
of determining whether or not the system is functioning as it
should. (Adelman [5] used evaluating in a similar manner.)
It includes both verification and validation. Verification proce-
dures involve checking to make certain that a system performs
according to its specifications; that there are no mistakes in the
coding. Validation checks consist of ensuring that a system
does what it is supposed to do; that its specifications are
correct.

There are several types of validation, and the following
discussion of them is based on the work of Adelman [5] . Face
validity refers to qualitative assessments that a system seems
to do what it is supposed to do. Such assessments are based
on the judgements of one or more experts in the domain who
have used the system. Extemal validity indicates how well
a system agrees with established ways for doing the same
task. It is usually established by comparing the output of a
system with the opinions or decisions made by an extemal
human expert. In assessing predictive validation, a system is
used to predict conditions or outcomes that are later verified.
A system that evidences high inter-expert validity should help
foster a consensus among its users. Confidence validity refers
to the confidence that users express in the system. In Turing
validity, an expert diagnoses a problem and produces some
output advice and a knowledge-based system diagnoses the
same problem and produces its output advice. Then a human
tries to differentiate between the two outputs. If they are
indistinguishable the system has passed a Turing Test [111.
This paper describes techniques that were used for evaluating
these and other validity criteria.

0018-9472/95$04.00 0 1995 IEEE

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

1534 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO 12, DECEMBER 1995

The testing techniques to be discussed are organized chrono-
logically, like a case study, instead of following traditional
Introduction, Methods, Results, Discussion format. At the
time of our system’s initial development in the mid 198O’s,
such knowledge-based systems were commonly called expert
systems, because they seemed to emulate the input-output
behavior of an expert. As people gained experience with
knowledge-based systems they realized that these systems did
not behave like experts: e.g., such systems do not know what
they do not know. For example, if a chicken were presented
to Mycin, it would not have known that its knowledge was
inappropriate for a chicken and would have proceeded in using
its knowledge to diagnose the chicken’s disease. Within a
few years, therefore, the preferred name and preferred role
for knowledge-based systems became expert advisory systems.
This change explicitly acknowledged that such systems were
supposed to give advice, just as an expert would, within a
limited domain. The term expert advisory system is used in
this paper to refer to the systems we evaluated during this
period. During the 199O’s, as people gained experience, it
became apparent that these systems were not very good at
acting like expert advisors. Rather they were best suited to help
humans solve problems. Hence their name was again changed
to reflect their role as decision support systems. Therefore
decision support system is used to refer to the systems tested
during this later period.

11. TESTING THE FIRST SYSTEM

In 1985, the first system was tested by having the expert
use it and tell us how he felt about it, what seemed right or
wrong. This method was unsatisfactory in many ways, not the
least of which was the time it required of the expert. It was not
worthwhile, for example, to have him run through the entire
system, answering all the questions, every time a minor error
was corrected in the knowledge base. As a result, a testing
technique that used test cases was developed.

111. TESTING THE SECOND SYSTEM

In 1987, a series of test cases were used to assess a
second expert advisory system named Stutter. To create a
test case the expert ran the system and answered all the
questions as they applied to a child he had evaluated for
a suspected stuttering problem. After the expert advisory
system presented its diagnostic conclusions and advice, the
intermediate knowledge was saved into a disk file. Then,
using a normal text editor, those values that were derived
by the inference engine were eliminated, leaving only the
human’s answers to the system’s questions. Subsequent files
were similarly generated and their sets of answers were saved

.under different names. Each such file became a test case,
because Stutter could use the data in a file as responses to
its questions.

In time, many test cases were accumulated and used for
testing over the life of the project. Every time a rule was added
or modified, each test case was loaded into the system and used
to look for run-time errors. If no new questions had been added
to the knowledge base, the system’s advice was immediately

available. If there were new questions, appropriate answers
were added to update each test case. These modifications often
required more knowledge from the expert but sometimes this
could be obtained through a telephone call. Thus, use of test
cases that could be updated as needed lowered the demands
on the expert’s time and usually allowed testing of the system
without further input from the domain expert.

Using real test cases provided by an expert is but one way to
exercise a knowledge base. Test cases can also be fabricated by
knowledge engineers or provided by intended end users. Those
created by a knowledge engineer are often more parsimonious
because more rules can be exercised by fewer test cases.
Typically, an expert, a knowledge engineer and an end user
are like three blind men describing an elephant: each focuses
on different aspects of the system. The test cases of each will
exercise different but overlapping portions of the knowledge
base; therefore it may be wise to always gather test cases
from all three sources.

Next a computer program was created that used these test
cases to test the expert advisory system more systematically
[12]. The firing of each rule was recorded as each test case
was run. A rule was said to succeed if all of its premises
evaluated true and the action specified in its conclusion was
performed. Rules that were never found to succeed for any
test case were flagged as probable mistakes and were brought
to the attention of the human expert. Of course, a rule that
never succeeds during such testing may not be an error. Some
rules may be intended for unusual or infrequently occurring
cases that were not exercised by the test cases that were used.
Conversely, rules that succeed for every test case may also be
mistakes. If a rule is always true it may be better to replace it
with a fact; however, there are control rules that must always
succeed. Consequently, this technique is useful in screening a
system’s rules for potential errors; but a human must decide
whether the rule in question is appropriate or not.

The best way to test an expert advisory system, in our
opinion, is to have the domain expert run the system and create
a representative sample of test cases. Next, determine which
rules never succeed and which always do. Our experience
indicates that a test case for every five rules in the knowledge
base may be sufficient (i.e., 20 test cases for a 100 rule system)
even though clearly more test cases are better and having many
more test cases than rules would be best. For those rules that
do not succeed, the expert should provide test cases that he
thinks will make them succeed until most do succeed. Then,
the knowledge engineer should try to determine the reason that
the remaining rules are not succeeding. It should also be noted
that some test cases are not real. The expert for our system
characterized some test cases as cartoons that had idealized,
exaggerated or stereotyped signs and symptoms of stuttering.
To increase the number of test cases, he took a number of ex-
isting test cases and systematically changed those answers that
should not change the system’s output and looked to see if they
did. Thus these types of test cases reflect an expert’s concep-
tualization of a domain rather than real cases from the domain.

The knowledge base of our first system was uneven in its
coverage. There were, in fact, both redundant questions and
areas of knowledge that were not covered. In retrospect, these

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

BAHILL et al.: TESTING TECHNIQUES FOR A DECISION SUPPORT SYSTEM 1535

shortcomings likely resulted from the knowledge extraction
techniques that had been used. Therefore we used the Analytic
Hierarchy Process (AHP) to elicit and organize the knowledge
of our expert [13], [14]. This process arranges the knowledge
into a hierarchy. In our case the knowledge was first divided
into rules that dealt with information obtained from an exami-
nation of a child and rules that dealt with information acquired
from a case history interview. Next, the rules pertaining to
each of these sources of information were divided into areas,
which were then divided into subareas. Eventually, knowledge
was broken down to individual questions, which were further
decomposed into their possible answers. An example of how
the tool is used will be illustrated with Question 11 from the
system called Stutter.

Please describe the within-word repetitions that were ob-
served during your examination of the child.

1) smooth, evenly paced, effortless
2) louder, or increasing in pitch
3) faster in tempo, or unevenly spaced and stressed
4) marked by interruption in voicing or airflow
5) vowels in the syllables being repeated sound like a

“schwa” vowel instead of normal vowels.
The answer has five possible alternatives, and it is necessary
to know which are the most important. So the expert has to
make comparisons of each pair. The AHP chart of Table I
shows the comparisons our expert made for this question.
For example in completing the entry for row “Part-2” and
column “PartJ”, the expert indicated that Part-2 is moderately
more important, 2.6, than is Part-5 for diagnosing stuttering.
Parentheses around numbers indicate that the item at the top
of the chart was rated more important than the item to the left.
The expert for our system said that the AHP process led him to
organize and systematically reconsider the relative importance
of the knowledge that he uses in diagnosing stuttering. He
believes that using this process helped to focus his attention
during the knowledge extraction process and enabled him
to formalize patterns of diagnostic signs and symptoms into
relevant object-attribute-value relationships. With traditional
knowledge extraction techniques, an expert often thinks about
one area for a while and then about another. With nothing
to guide the thought processes, lacunae can develop. The
analytic hierarchy process forces an expert to make exhaustive
comparisons of attributes so that every attribute is compared
to every other attribute at each level. This process helps
to prevent areas of knowledge from being omitted from a
decision support system.

Expert Choice, a software package that incorporates the
analytic hierarchy process, was used to build our system;
however, any of several other multiobjective decision analysis
techniques would likely have worked just as well [4], [15].
Expert Choice forced the expert to systematically evaluate
the relative importance of each object, attribute and value in
the knowledge base, both independently and in all possible
combinations. This process forced him to clarify, explicitly,
the significance or weight he placed on each specific element
of diagnostic information he gathers in arriving at a diagnosis.
After an AHP matrix has been filled out, Expert Choice

TABLE I
MATRIX FOR QUESTION 11

Part-2 Part-3 Part-4 Part-5 Vector
Part-1 (5.8) (7.4) (9.0) (4.2) 0.031
Part-2 (2.6) (4.2) 2.6 0.143
Part-3 (2.6) 4.2 0.265
Part-4 5.8 0.481

Scale of Relative Importance
1 Equally Important
3 Moderately more important
5 Strongly more important
7 Very Strongly more important
9 Extremely more important

computes the priority vector. This vector shows the relative im-
portance of each item in the matrix. These vectors were used in
assigning certainty factors for rules in the knowledge base [131.
Expert Choice also provides (for free as it were) a measure of
inconsistency to detect violations of numerical and transitive
consistency. If the computed inconsistency index was less than
10 percent, then the painvise comparisons were considered
consistent; i.e. the priority vector was deemed insensitive to
slight variations among the elements of the comparison matrix.
If a computed inconsistency index exceeded 10 percent, the
painvise comparisons were considered inconsistent, and the
task was repeated by the expert. The inconsistency index is
important in pointing out inter and intrasubject differences. For
example, our expert normally had inconsistency indicies much
less than 10 percent. If the inconsistency index of a particular
matrix jumped to 15 or 20 percent, we asked, “Should we give
up or redo it?’ Sometimes he would redo the comparisons;
other times he would say he was too distracted and would quit
for the day. Although this expert was usually quite consistent
providing inconsistency indicies of 1 to 3%, others have often
had inconsistency indicies greater than 10 percent. One value
of this measure is identifying inconsistencies in an expert’s
knowledge at an early stage in the knowledge acquisition
process, thereby saving substantial time in the testing phase.

IV. TESTING THE THIRD SYSTEM

The third expert advisory system, which was named Expert
Stuttering Program (ESP), was ready for testing in 1985). It was
the first to be tested with a special program, Validator, that we
wrote to help find mistakes in knowledge bases [16], [171. By
this time, of course, there were many publications about veri-
fication and validation of particular knowledge-based systems,
which Jafar and Bahill referenced [16]. Validator assesses
the consistency and completeness of a knowledge base. It
checks for syntactic errors, unused rules, unused facts, unused
questions, incorrectly used legal values, redundant constructs,
rules that use illegal values, and multiple methods for obtaining
values for expressions and systematically indicates potential
errors to the knowledge engineer.

A. Verijcation With Validator
Verification, or building the system right, ensures that a

system correctly implements specifications and determines

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

1536 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 25, NO 12, DECEMBER 1995

how well each prototype conforms to design requirements.
It guarantees product consistency at the end of each phase
(with itself and with previous prototypes) and ensures a smooth
transition from one prototype to another.

Validator checks both the syntax and semantics of a knowl-
edge base and brings potential errors to the attention of the
knowledge engineer, who has the task of fixing such errors.
Validator has four verification modules: a preprocessor, a
syntax analyzer, a syntactic error checker, and a debugger.

1) The Preprocessor: Syntactic errors can cause a production
language (which is used here to refer to AI languages as
well as expert-system shells) to misinterpret a knowledge
base and consequently to alter its syntactic structure, leading
to semantic errors. Validator’s preprocessor performs a low-
level syntax check. Detecting such errors saves knowledge
engineers and experts much time, frustration, and grief. This
type of checking is dependent on a system’s production
language and ameliorates the shortcomings of the language’s
compiler. Validator builds internal representation structures of
the knowledge base, which its other three modules analyze for
syntactic compliance.

2) The Syntax Analyzer: Many syntactic errors are caused by
misspellings, typographical errors, or ill-formed knowledge-
base structures. Therefore, Validator’s syntax analyzer creates
alphabetical listings of the expressions in the knowledge
base according to their categories: goals, rule premises, rule
conclusions, questions (with legal values), and facts (with
values). This list comprises a knowledge base dictionary that
makes it easier for a knowledge engineer to find mistakes.
For example, a knowledge engineer, forced to read an entire
knowledge base, may be hard pressed to remember if a hyphen
or an underscore is to be used to tie two words together. But
if the two constructs are adjacent in a list it is easy to see an
inconsistency.

3) The Syntactic Error Checker: People can easily detect
inconsistent expressions if they are presented in pairs rather
than in large collections, but they need to rely on machines
for detecting global and indirect inconsistencies. The syntactic
error checker looks for syntax that, while legal, produces
unspecified behavior by the production language’s compiler.
For example, “out-of-range values” (such as incorrect usage
of reserved words) usually escape detection by the complier
and the knowledge engineer. Validator detects these errors in
the contexts in which they occur.

Expressions get their values from facts, from user responses
to questions, or from the conclusions of rules. There are four
basic types of values. (1) Legal values are acceptable answers
to questions. (2) Utilized values appear in rule premises and
allow the rule premise in which they appear to be evaluated
to true. (3) Concluded values appear in rule conclusions and
are set for an expression when a rule using that expression
succeeds. (4) Assigned values are assigned to expressions with
facts or certain commands specific to the production language.

Utilized Versus Legal Values: Legal values guard against
typographical errors and help in abbreviating long answers. If
no legal values are provided, a system accepts any response as
a valid answer, so typographical errors and wrong responses
may escape detection. Even if errors are detected, effective

error-recovery procedures are time-consuming and increase the
size of the knowledge base. It should be noted that providing
legal values will not prevent a knowledge engineer from using
out-of-range values in a rule. For example, Mycin-derived
production languages do not check a knowledge base to ensure
that only legal values have been used; these languages only
check user responses to questions to see if they match the legal
values specified by the knowledge engineer. Legal values are
related to questions, not to rules or facts. Illegal values are
common in knowledge bases and often result in the failure of
rules using such values.

Unused Legal Values: The syntactic error checker searches
the premises of rules, looking for declared but unused legal
values, which it flags as potential errors. It also lists all unasked
questions. Unused legal values are common in knowledge
bases. Many result from errors, others are remnants of old
constructs that were put into the knowledge base by mistake or
were incompletely removed. Deleting such constructs reduces
the size of the knowledge base and speeds inferences during
the use of a system. If Validator searched the following
knowledge base, it would note that the legal values for coat of
animal are {hair, feathers, beads} but the utilized values are
{hair, feathers, scales}. Validator would point out that it is not
possible to get a value of beads for coat of animal and would
indicate that this is likely a mistake. It would also point out
that one legal value, scales, has never been used, and would
suggest that this may also be a mistake.

goal = identity of animal.

if coat of animal = scales
then type of animal = fish.

if coat of animal = hair
then type of animal = mammal.

if coat of animal = feathers
then type of animal = bird.

if type of animal = lizard
then identity of animal = Gila monster.

question(coat of animal)=
‘What is the coat of animal?’.

legalvalues(coat of animal)=
[hair, feathers, beads].

Utilized Versus Concluded Values: If the values used in
the premises of rules do not match the values used in the
conclusions of those rules, the rules will fail. In the above
knowledge base, the utilized values for type of animal are
{fish, mammal, bird, lizard}, whereas the concluded values
are {fish, mammal, bird}, which indicates that it would be
impossible for this system to conclude that a lizard is a type
of animal.

4) The Debugger: Debugging is a tedious, difficult, time-
consuming, and costly process of finding and correcting errors

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

BAHILL et al.: TESTING TECHNIQUES FOR A DECISION SUPPORT SYSTEM 1537

in the knowledge base. On many occasions, the presence of
errors is discovered during developmental testing but finding
them depends on the knowledge engineer’s intuition, experi-
ence, and common sense. However, computer-aided debugging
tools are more reliable because they reduce the possibility of
human errors. Validator’s debugger checks for rules that use
variables, negations, and unknowns. It regards the knowledge
base as a closed world, and assumes that all the information
about the domain is captured in the knowledge base. Thus,
all possible rules and axioms should be either implied or
implicitly modeled in the knowledge base.

Variable-Unsafe Rules: Variables can be used in both the
premises and the conclusions of rules. They act as symbolic
place holders. Each construct that uses variables is logically
equivalent to the large set of constructs that could be obtained
by replacing those variables with suitable terms. A backward-
chaining rule that has variables is variable-safe (closed) i f (1)
Its conclusion is homomorphic to a fact or a consequence in
the knowledge base; (2) Variables that appear as attributes of

expression in the rule’s premise; (3) Variables that appear as
attributes of an expression in a premise also appear as utilized
values in previous premises of the same rule or as attributes
of an expression in the conclusion; (4) Variables that appear
as concluded values of a rule also appear as utilized values in
the rule’s premise. A knowledge base is variable-safe if its set
of rules evaluate to true, no matter what values are substituted
for its variables. Variable-unsafe rules usually lead to infinite
loops that violate the closed-world assumptions.

Illegal Use of Negations: Negations can be used only in the
premises of rules. A rule that has a negation in its conclusion
violates closed-world assumptions, because a false fact is not
explicitly declared in the knowledge base, but is inferred from
not being able to conclude a given value for an expression.

Illegal Use of Unknowns: The most common origin of
unknown is the result of a user’s response to a question.
Unknown can also be concluded as a result of the unsuccessful
firing of all the rules that concern an expression. However,
like negations, unknown can be used only in the premises of
rules. A rule that concludes unknown for an expression violates
the closed-world assumption, because an unknown fact is not
explicitly declared in the knowledge base; rather, it is inferred
from not being able to conclude a value for an expression.

proceeds in two ways. The first is direct and involves a
knowledge engineer and an expert working together reviewing,
refining and analyzing each item in the knowledge base. They
check the completeness of every module. They also check the
consistency, effectiveness and efficiency of every knowledge
base item. Then they review each rule and decide whether to
split it, modify it, or delete it from the knowledge base.

The second approach requires a knowledge engineer to work
on the structure and representation of the knowledge base.
Knowledge base items are analyzed, compared for redundancy,
completeness, and correctness of usage. This approach is
structured, algorithmic, and more exhaustive than the direct
approach. It also uses heuristics that can be automated to
produce fast and effective results. Validator allowed us to
use this second approach. After all potential errors flagged
by Validator had been resolved, we continued testing this
expert advisory system using test cases and additional domain
experts.

an expression in a conclusion also appear as attributes of an v . TESTING THE FOURTH SYSTEM
The fourth version of this evolving decision support system,

Second Opinion@, was ready for field testing in 1991. It
had already undergone testing with all the techniques men-
tioned above when our knowledge engineer traveled to the
universities of four other experts and spent a day with each
running the system on real cases. The experts were generally
pleased with the performance of the system, but each offered
suggestions for changes, which were implemented. Next, the
clinical records of 30 anonymous children whose parents
suspected them of stuttering were collected and rewritten after
deleting any information that might identify the child or his
family. Each expert, at a workshop in Tucson, provided a
diagnosis for each of the 30 children after reading the rewritten
clinical reports. Next, they discussed these rewritten reports
and their diagnosis. The latter diagnoses were used to derive
a consensus diagnosis for each child and Second Opinion was
changed to match the consensus opinions. Unfortunately, the
performance of the system was not evaluated quantitatively
before its modification.

If there is a collection of input-output data that is known to
be correct (sometimes called a gold standard), then a variety of
quantitative techniques can be used to help validate a system,
many of these are described by Adelman [5] . In effect, the

B. Validation With Validator

Validation, building the right system, ensures the consis-
tency and completeness of the whole system, The validation
part of Validator has two modules: a chaining thread tracer and
a knowledge base completeness module. The chaining thread
tracer determines if rules can fire by tracing their connectivity
back to the goal. Rules that cannot fire are flagged as dead rules

rule is also flagged as dead if it is the root of a dead tree. Thus,
flagging a dead rule may uncover a whole set of dead rules.

One aspect of validation is checking the knowledge base for
completeness, that is, attempting to determine if something
is missing from the knowledge base. This checking usually

and are brought to the attention of the knowledge engineer. A

~~

expert panel’s diagnoses reflected our effort to develop such
a gold standard.

VI. TESTING THE FIFTH SYSTEM

While testing a fifth version of this decision support system,
Childhood Stuttering: A Second OpinionTM in 1992, we
discovered that its outputs differed when different experts
used it. We asked two experts to use the system based on
information each obtained from reading the 30 clinical reports.
The output of the system was the same for 10 of these reports
even though there were different answers to, on average,
one-third of the questions. This suggests that the system is
robust to differences attributable to users. The output of the
system was highly similar for another 10 reports but differed

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

1538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 12, DECEMBER 1995

significantly on the remaining 10. These findings suggested
that some differences might be attributable to the clinical
reports. For example, one report stated “Jose felt frustrated.”
Some experts understood this statement to mean that the child
was showing frustration about his disfluency, while others
understood it to reflect his fsustration with English and Spanish
word-finding difficulties. It was decided, therefore, to resolve
such ambiguities in these clinical reports before testing the
decision support system further.

First, 15 of the 30 clinical reports were carefully edited so

TABLE I1
HEURISTIC DATA SET

Diagnosbc Name of Clinical Report
Score A B C D

5 b c d
4 d dss
3 b d c dss a
2 b d dss dss a b

that any lacunae, ambiguities, and conflicting statements were
removed. Next, 10 additional clinical reports were obtained
and edited in a similar manner. These 25 edited reports were

diagnosis of each expert varied from those of every other
expert. It is computed with

then used to test the latest version of the decision support
system. It would have been better, of course, to use a few
hundred validated clinical reports, but developing these clinical
reports was expensive. In 1992 and 1993 more time was spent
acquiring and preparing these reports than in developing and
refining the rules in the system’s knowledge base.

A. New Tools reports).

Dispersion, =
3=A z=a (4pL-G) 3

where i runs over the set {a , b, c, d, dss } , k runs over the
set {u ,b ,c ,d ,dss} , j runs over the set {A ,B ,C ,D} , I = 5
(the number of evaluators) and J = 4 (the number of clinical

For the data in Table I1 the dispersions are:
In Table I1 diagnoses of four apocryphal experts and that of a

decision support system for four clinical reports are displayed.
These data are not real but were created to illustrate the “Expert” Dispersion

use of several statistical tools. Diagnoses of the experts are
denoted with lower case letters a, b, c, and d, and that of the

a 1.47
b 168
C 1 3 1
d 135 decision support system with dss. The four clinical reports are

designated by the upper case letters A, B, C, and D.
The numbers in the Diagnostic Score column represent

dss 1.06

five diagnostic opinions, which correspond to the following
descrbtions: The term bias shows inclinations of the individuals. It is

1) Little cause for concern about stuttering. There is little
reason to suspect that a stuttering problem may be
emerging in this child at this time. The types and
frequencies of disfluencies that were observed and de-
scribed are characteristic of those of nonstuttering chil-
dren.

2) Some cause for concern about stuttering. This child is
evidencing some danger signs of incipient stuttering as
well as some that are characteristic of nonstuttering
children. This pattern of equivocal findings suggests
that the child may be at risk for an emerging stuttering
problem.

3) Mild concern about stuttering. This child is evidencing
relatively consistent signs of early stuttering.

4) Moderate concern about stuttering. This child presents
speech and behavioral signs which suggest that stuttering
may not be a transient problem.

5) Severe concern about stuttering. This child evidences
speech and behavioral signs that may signal the evolu-
tion of a severe stuttering problem.

Two quantitative measures of the agreement between the
experts and the decision support system, which were originally
suggested by Lucien Duckstein, can be used to characterize the
dispersion and bias of these diagnostic data. Each diagnosis
is denoted with a capital R with a subscript identifying the
individual expert. The term dispersion shows how much the

computed with

For the data in Table I1 the biases are:

“Expert” Bias
a -1.19
b 0.38
C -0.25
d 1.00

dss 0.06

These measures can be used to help validate a decision support
system. For the data in Table I1 all the “experts” performed
less consistently than did the decision support system, because
four the experts had dispersion scores greater than that of
the decision support system. The opinions of expert “b”, for
example, were the least consistent. The data also illustrate that
experts may be biased. The diagnosis of expert “a” suggest
that he viewed each child’s fluency problem as less severe
than the other experts, while those of expert “d” were at the
other extreme. The decision support system, on the other hand,
showed little bias. These data were contrived to illustrate such
ideal behavior by a decision support system.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

BAHILL et al.: TESTING TECHNIQUES FOR A DECISION SUPPORT SYSTEM 1539

5

4.5 1
4

Panelist a Panelist b Panelist c A Panelist d

A Paneliste Examining -+-- Second
Clinicians Opinion

A A A A D A

U

0 si o n e
A 0 0

0

. A D 4 A O ~ A A

0 0 0 0 0

A A

Fig. 1.
indistinguishable from those of the experienced clinicians.

Diagnostic scores from clinicians and the decision support system for 25 clinical reports. The outputs of the decision support !system are

TABLE III
CLINICAL RESULTS

Expert Bias Dispersion
a -0.11 0.76
b 0.17 0.79
C -0.17 0.71
d 0.50 0.88
e 0.14 0.86
ec -0.42 0.85
dss -0.10 0.80

B. The Final System Test

The 25 new clinical reports were mailed to five highly
experienced stuttering clinicians who were asked to evaluate
the likelihood that each child was stuttering. Fig. 1 displays the

”O T h
4.5

4.0

j 3.5

.P

2.5

3 3.0

2.0

1.5

I .o

diagnostic scores of these five experienced clinicians, of the
examining clinicians who prepared the original reports, and of
the decision support system for of the 25 reports. Table
I11 summarizes the statistical results. The five experienced

Fig. 2. Range of diagnostic scores for 15 clinical reports before (the left side
of each polygon) and after (the right side of each polygon) their discussion
by a panel of experienced clinicians. Discussion typically reduced variability
in diagnostic scores.

clinicians are represented by the letters a, b, c, d, and e. The
examining clinicians who evaluated each child are designated
by ec, and the decision support system by dss.

Based on the data in Table 111, the performance of the
decision support system is indistinguishable from that of
experienced clinicians. Its dispersion is higher than some
clinicians’ but lower than others. Its bias is very small.
In contrast, the examining clinicians’ diagnostic scores do
stand out from the panel of clinicians, as is indicated by
the large negative bias score. This seems reasonable, because
the clinicians who conducted these evaluations had access to

data that the other clinicians lacked: they examined the actual
children. Furthermore, they likely reviewed video tapes of their
evaluation and discussed difficult cases with other clinicians
before arriving at a diagnosis and writing their clinical reports.
Therefore their diagnostic opinions may be the most valid.
The decision support system’s diagnoses were designed to fall
between those of the examining clinicians and the mean of the
panel of experienced clinicians. The low bias and dispersion
of the decision support system indicates its robustness.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

1540

4.5 5 1

I
4 1

2 3.5
3 m

2 I
1.5 f

4

&

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 12, DECEMBER 1995

= Cmlee Yamss * Student

I
ci i 5 d P P a P P d a P

1 / 6 1 I I 1 I I I / I I I j i [I I I I I I \ I I I I

Fig. 3. Diagnostic scores from the decision support system when used by three clinicians having vastly different backgrounds. The variability in scores is small.

The Kendall coefficient of concordance for our five experts
is 0.83. This suggests good agreement among the clinicians
given that their diagnostic decisions were based solely on
written clinical reports. Clinicians would never diagnose an
actual child solely on the basis of a written report. Thus, the
performance of these five clinicians after reading descriptions
of a child’s evaluation provides indirect support for their use
as experienced, expert clinicians.

When experienced clinicians have an opportunity to confer
and discuss their diagnostic opinions, differences in opinion
that they may have usually decrease. Fig. 2 shows the range
of diagnostic scores the panel of experts assigned to 1.5
clinical reports before (the left side of each polygon) and
after (the right side of each polygon) they discussed these
cases. At the time of their discussions, panel members were
shown both the mean and range of diagnostic scores for
each case. The intended purpose of these discussions was to
clarify information about a case, not to develop a consensus,
but the range of diagnostic scores was smaller after the
discussions. This reduction in range may be due to panel
members considering additional diagnostic factors during their
discussions than were considered when their initial diagnoses
were given. It may also reflect, in part, some panel members’
decisions to modify their initial diagnostic scores to more
closely approximate the panel’s mean score. One purpose
of Second Opinion is to allow an inexperienced clinician to
“discuss” findings obtained from a diagnostic evaluation with
a panel of experts and to learn the diagnostic opinions of the
panel of experts. Such “discussions” are intended to increase
the reliability of inexperienced clinicians’ diagnoses.

The output of Second Opinion is robust. Three people used
it with the same 2.5 clinical reports described above. One
was the chief scientist for our decision support systems, who
has had over 25 years of experience evaluating children with
fluency problems. The second was a doctoral candidate in
Communication Sciences and Disorders at Syracuse University
who had acquired substantial previous experience with the
decision support system The third was a master’s degree
student at the University of Arizona who had little experience
evaluating young stutterers and no previous experience with
any decision support system. Their diagnostic opinions, shown
in Fig. 3, evidence little difference. The case about which there
was the most disagreement, Couzens, led to further review
of that clinical report and the identification of ambiguities
that may have caused this discrepancy. Use of Childhood
Stuttering: A Second Opinion, appears to promote diagnostic
opinions that are indistinguishable from those of a panel of
five experienced clinicians regardless of a clinician’s training
and background. One significant finding is that the diagnosis
of three people with widely differing backgrounds evidenced
less variability when using the decision support system than
did those of five experienced clinicians rating the same clinical
reports without the decision support system.

As a penultimate test, the system was given to 30 students
in an Expert Systems class at the University of Arizona. It is
now undergoing its ultimate test as it is used by customers.
Most of the concerns of both students and customers involve
the installation procedure. No one yet has pointed out errors
or suggested improvements in its knowledge base.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

BAHILL et al.: TESTING TECHNIQUES FOR A DECISION SUPPORT SYSTEM

A number of factors are likely to affect the performance
of clinicians on tasks that have been described above. For
example, if they complete 25 evaluations at one sitting, they
may produce occasional spurious outputs. Three of the 225
data points in Figs. 1 and 3 were obtained from re-evaluations.
The original data points were statistical outliers, so the clinical
reports were returned to the clinicians with a request to repeat
their evaluation. No one was told why the request was made,
and in all three cases the revised diagnosis was markedly
different and was no longer an outlier.

This decision support system is meant to assist, not replace,
inexperienced speech-language clinicians. One thing a human
does that a computer system does not do is track a child’s
behavior over time, looking for improvement or a worsening of
signs and symptoms. In the future we intend to build a version
of this system for teaching that will include explanations and
pertinent references for each question asked. Such systems
would appear to be useful in training clinical skills as well as
in supporting the skills of inexperienced clinicians.

VII. CONCLUSION
It is difficult to detect errors in a decision support sys-

tem. Therefore, much effort was devoted to the knowledge
extraction process to insure that errors did not creep into the
knowledge base. Because all such knowledge came from and
was captured by fallible humans, it is unreasonable to expect
a knowledge base to be free of errors. Therefore, several
tools and procedures were developed to help detect errors
in a decision support system’s knowledge base. Each was
designed to work with existing tools, and each added additional
complexity to testing procedures, and, we think, credibility
to the decision support systems’ performance. Finally we
compared the output of the system to the evaluations of human
experts. When using Childhood Stuttering: A Second Opinion,
three clinicians with widely differing backgrounds in stuttering
produced diagnostic opinions that evidence little variability
and were indistinguishable from those of a panel of five
experienced clinicians.

ACKNOWLEDGMENT
The authors thank S. D. Bellaire and S. Yaruss for helping

us test our system. Our panel of experts includes: R. F.
Curlee, University of Arizona, M. R. Adams, University of
Houston, E. G . Conture, Syracuse University, H. H. Gregory,
Northwestern University, and J. C. Ingham, University of
California, Santa Barbara.

REFERENCES

A. T. Bahill, K. Bharathan and R. F. Curlee, “Knowledge extraction
changes the way an expert thinks,” in Proc. IEEE Inf. Con$ Systems,
Man, and Cybernetics, Chicago, Oct. 18-21, 1992, pp. 917-921.
A. T. Bahill, K. Bharathan and R. F. Curlee, “Making an expert
system changes the expert,” Recent Trends in Research, Education, and
Applications, M. Jamshidi, R. Lumia, J. Mullins and M. Shahinpoor,
Eds. New York ASME Press, vol. 4; also in Proc. 4th Int. Symp.
Robotics and Manufacturing, Santa Fe, NM, Nov. 11-13, 1992, pp.
71 1-716.

1541

[3] S. J. Andriole, Software Validation: Verification, Testing and Documen-
tation. Princeton, NJ: Petrocelli, 1986
A. P. Sage, Decision Support Systems Engineering. New York: Wile,
1991.
L. Adelman, Evaluating Decision Support and Expert Systems, New
York: John Wiley & Sons, 1992.
A. T. Bahill, Verifying and Validating Personal Computer-Based Expert
Systems, Englewood Cliffs: Prentice Hall, 1991.
U. G. Gupta, Validating and Verifying Knowledge-Based Systems. Los
Alamitos, CA: IEEE Computer Society Press, 1991.
M. Aye1 and J. P. Laurent, Validation, Verification and Tests of
Knowledge-Based Systems. New York Wiley, 1991.
S. Smith and A. Kandel, Verification and Validation of Rule-Based
Expert Systems. Boca Raton, FL: CRC Press, 1993.
K. Parsaye and M. Chignell, “Intelligent Database Tools and Applica-
tions: Hyperinformation Access,” Data Quality, Visualization, Automatic
Discovery. New York Wiley, 1993.
R. Agarwal, R. K. Kannan and M. Tanniru, “Formal validation of a
knowledge-based system using a variation of the Turing test,” Expert
Systems with Applications, vol. 6, pp. 181-192, 1993.
Y. Kang and A. T. Bahill, “A tool for detecting expert system errors,”
AI Expert, vol. 5, no. 2, pp. 46-51, 1990.
R. F. Moller and A. T. Bahill, “A knowledge extraction technique,”
Chapter 2 in Verifying and Validating Personal Computer-Based Expert
Systems, A. T. Bahill, ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
T. L. Saaty, The Analytic Hierarchy Process. New York McGraw-Hill,
1980.
K. Parsaye, “Acquiring & verifying knowledge automatically,” AI
Expert, vol. 3, no. 5, pp. 48-63, 1988.
M. Jafar and A. T. Bahill, “Interactive verification and validation with
validator,” Ch. 4, in Verifying and Validating Personal Computer-Based
Expert Systems. A. T. Bahill, Ed. Englewood Cliffs: Prentice Hall,
1991.
- , “Interactive verification of knowledge-based systems,” IEEE
Expert, vol. 8, no. 1, pp. 25-32, Feb. 1993.

A. Terry Bahill (S’66-M’68-SM’Sl-IF‘92) was
born in Washington, PA, on Jan. 31, 1946. He
received the B.S. in elecbical engineering from
the University of Arizona, Tucson, in 1967, the
M.S. in electrical engineering from San Jose State
University, San Jose, CA, in 1970, and the Ph.D.
in electrical engineering and computer science from
the University of California, Berkeley, in 1975.

He served as a Lieutenant in the 1J.S. Navy,
and as an Assistant and Associate Professor in
the Departments of Electrical and Biomedical

Engineering, Camegie Mellon University, Pittsburgh, PA, and Neurology
at the University of Pittsburgh. Since 1984, has been a Professor of
Systems and Industrial Engineering at the University of Arizona. His
research interests include systems engineering theory, modeling physiological
systems, eye-head-arm coordination, the science of baseball, the system design
process, validating expert systems, concurrent engineering, quality function
deployment, and total quality management. He has published over 100 papers
and has lectured in a dozen countries. His research has appeared in Scientific
American, The American Scientist, The Sporting News, The New York Times,
Sports Illustrated, Newsweek, Popular Mechanics, SciencedS, Highlights for
Children, Rolling Stone, and on the NBC Nightly News. He is the author
of Bioengineering: Biomedical, Medical, and Clinical Engineering, Prentice-
Hall, 1981, Keep Your Eye on the Ball: The Science and Folklore of Baseball
(with Bob Watts), W. H. Freeman, 1990, Verifring and Validating Personal
Computer-Based Expert Systems, Prentice-Hall, 1991, Linear Systems Theory,
(with F. Szidarovszky), CRC Press, 1992, and Engineering Modeling and
Design, (with Bill Chapman and Wayne Wymore), CRC Press, 1992.

Dr. Bahill is a member of the following IEEE societies: Systems, Man,
and Cybernetics, Engineering in Medicine and Biology, and Professional
Communications. For the Systems, Man, and Cybernetics Society he has
served three terms as vice president, six years as associate editor, as Program
Chairman for the 1985 conference in Tucson, and as Co-chairman for the 1988
conference in Beijing and Shenyang, China. He is a Registered Professional
Engineer and a member of Tau Beta Pi, Sigma Xi and Psi Chi. He is the
Editor of the CRC Press Series on Systems Engineering.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

1542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 12, DECEMBER 1995

K. Bharathan (M’93) was born in Madras, India,
on January 22, 1951. He received the B.A. (Honors)
in economics from the University of Delhi, India,
in 1973, the M.A. in economics from Jawaharlal
Nehru University, New Delhi in 1975, the M.Phi1. in
economics from the University of Madras, India, in
1979, the Ph.D. in economics from the University of
Madras in 1990, and the M.S. in systems engineer-
ing from the University of Arizona, Tucson, in 1991.

He was on the faculty of the Madras Christian
College, India, from 1976 to 1978, and thereafter

on the faculty of the Madras Institute of Development Studies until 1988. He
has been a Systems Engineer at Bahill Intelligent Computer Systems, Tucson,
AZ, since 1992. His research interests include systems engineering theory,
the design, verification and validation of expert systems, and the knowledge
extraction process.

Dr. Bharathan is a member of the IEEE Systems, Man, and Cybernetics
and Computer Societies, and the American Medical Informatics Association.

Richard F. Curlee received the B.A. in speech from Wake Forest College,
Wmston-Salem, NC, in 1961, the M.A. in communicative disorders from the
University of Southem California, Los Angeles, in 1965, and the Ph.D. in
communicative disorders from the University of Southern California in 1967.
He has been a Professor of Speech and Hearing Sciences, University of
Arizona, Tucson, since 1980.

He has served as a Speech-Language Pathology Clinician at the Children’s
Speech and Hearing Center, Van Nuys, CA, an Adjunct Assistant Professor at
the University of Southem California, Associate Secretary for Research and
Scientific Affairs for the American Speech-Language-Hearing Association,
and Associate Dean of the Graduate College at the University of Arizona.
He is also the Chief Scientist of Bahill Intelligent Computer Systems. His
research interests are in the fields of neurophysiological correlates of fluency,
disfluency and stuttering and the clinical management of speech-language
disorders, especially that of stuttering.

Dr. Curlee is an associate editor for the Journal of Fluency Disorders, and
was editor of Nature and Treatment of Stuttering, College-Hill Press, San
Diego, CA, 1984, Stuttering and Related Disorders of Fluency, New York:
Thieme Medical Publishers, Inc., 1993, and of the journal Seminars in Speech
and Hearing. He is a member of Phi Beta Kappa, Phi Kappa Phi, Sigma Xi,
and is a Fellow of American Speech and Hearing Association.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 20:59:56 UTC from IEEE Xplore. Restrictions apply.

