
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 12, DECEMBER 1995 1533 

How the Testing Techniques for a Decision 
Support System Changed Over Nine Years 

A. Terry Bahill, Fellow, ZEEE, K. 

Abstract-A decision support system has been under develop- 
ment since 1985 to help speech clinicians diagnose small children 
who have begun to stutter. This paper describes how testing of 
the system evolved during these nine years. Testing included: (1) 
having an expert use and evaluate it, (2) running test cases, (3) 
developing a program to detect redundant rules, (4) using the 
Analytic Hierarchy Process, (5) running a program that checks a 
knowledge base for consistency and completeness, (6) having five 
experts independently critique the system, (7) obtaining diagnoses 
of stuttering from these five experts derived from reports of 
children who had been evaluated for possible stuttering problems, 
(8) using the system to expose missing and ambiguous information 
in 30 clinical reports, and (9) analyzing the dispersion and bias 
of six experts and the decision support system in diagnosing 
stuttering. When using the final system, three clinicians with 
widely differing backgrounds produced diagnostic opinions that 
evidence little variability and were indistinguishable from those 
of a panel of five experienced clinicians. 

I. INTRODUCTION 
Development of a decision support system to help speech 

clinicians diagnose and manage preschool children at risk for 
a stuttering disability began in 1985. Following eight years 
of testing and modification Childhood Stuttering: A Second 
OpinionTM was commercially released in 1993 as a diagnostic 
decision aid. Speech-language clinicians may vary widely in 
their diagnoses of stuttering in young children, but discussing 
such cases with experienced clinicians greatly reduces this 
variability. When using Childhood Stuttering: A Second Opin- 
ion, clinicians with different training and experiences arrived at 
diagnostic opinions that were indistinguishable from those of 
a panel of five experienced clinicians. In effect, using Second 
Opinion allows inexperienced clinicians to “discuss” cases of 
incipient stuttering with a panel of experts, a process that 
should increase the reliability of their diagnoses in the real 
world. 
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Previous papers [l], [2] have presented a history of the 
system and discussed the use of knowledge engineers, shells, 
techniques for extracting and representing knowledge, outputs 
of the system, and methods for dealing with uncertainty. They 
also described how an expert’s thought processes changed as 
he became more aware of the implicit algorithms, heuristics 
and strategies that he uses in manipulating his knowledge. 
It was suggested that the changes described for this expert 
could be generalized to other experts. This paper will discuss 
a variety of testing techniques, some simple and some complex 
and the changes in testing techniques that occurred over nine 
years. 

Publications about validating general software systems ap- 
peared in the late 1980’s [3], while those relating to decision 
support systems [4] began to appear in the early 1990’s. A 
number of works on verification, validation and testing of 
knowledge-based systems [5]-[ 111 have appeared since. 

The term testing is used in this paper to refer to all facets 
of determining whether or not the system is functioning as it 
should. (Adelman [5] used evaluating in a similar manner.) 
It includes both verification and validation. Verification proce- 
dures involve checking to make certain that a system performs 
according to its specifications; that there are no mistakes in the 
coding. Validation checks consist of ensuring that a system 
does what it is supposed to do; that its specifications are 
correct. 

There are several types of validation, and the following 
discussion of them is based on the work of Adelman [5 ] .  Face 
validity refers to qualitative assessments that a system seems 
to do what it is supposed to do. Such assessments are based 
on the judgements of one or more experts in the domain who 
have used the system. Extemal validity indicates how well 
a system agrees with established ways for doing the same 
task. It is usually established by comparing the output of a 
system with the opinions or decisions made by an extemal 
human expert. In assessing predictive validation, a system is 
used to predict conditions or outcomes that are later verified. 
A system that evidences high inter-expert validity should help 
foster a consensus among its users. Confidence validity refers 
to the confidence that users express in the system. In Turing 
validity, an expert diagnoses a problem and produces some 
output advice and a knowledge-based system diagnoses the 
same problem and produces its output advice. Then a human 
tries to differentiate between the two outputs. If they are 
indistinguishable the system has passed a Turing Test [ 111. 
This paper describes techniques that were used for evaluating 
these and other validity criteria. 
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The testing techniques to be discussed are organized chrono- 
logically, like a case study, instead of following traditional 
Introduction, Methods, Results, Discussion format. At the 
time of our system’s initial development in the mid 198O’s, 
such knowledge-based systems were commonly called expert 
systems, because they seemed to emulate the input-output 
behavior of an expert. As people gained experience with 
knowledge-based systems they realized that these systems did 
not behave like experts: e.g., such systems do not know what 
they do not know. For example, if a chicken were presented 
to Mycin, it would not have known that its knowledge was 
inappropriate for a chicken and would have proceeded in using 
its knowledge to diagnose the chicken’s disease. Within a 
few years, therefore, the preferred name and preferred role 
for knowledge-based systems became expert advisory systems. 
This change explicitly acknowledged that such systems were 
supposed to give advice, just as an expert would, within a 
limited domain. The term expert advisory system is used in 
this paper to refer to the systems we evaluated during this 
period. During the 199O’s, as people gained experience, it 
became apparent that these systems were not very good at 
acting like expert advisors. Rather they were best suited to help 
humans solve problems. Hence their name was again changed 
to reflect their role as decision support systems. Therefore 
decision support system is used to refer to the systems tested 
during this later period. 

11. TESTING THE FIRST SYSTEM 

In 1985, the first system was tested by having the expert 
use it and tell us how he felt about it, what seemed right or 
wrong. This method was unsatisfactory in many ways, not the 
least of which was the time it required of the expert. It was not 
worthwhile, for example, to have him run through the entire 
system, answering all the questions, every time a minor error 
was corrected in the knowledge base. As a result, a testing 
technique that used test cases was developed. 

111. TESTING THE SECOND SYSTEM 

In 1987, a series of test cases were used to assess a 
second expert advisory system named Stutter. To create a 
test case the expert ran the system and answered all the 
questions as they applied to a child he had evaluated for 
a suspected stuttering problem. After the expert advisory 
system presented its diagnostic conclusions and advice, the 
intermediate knowledge was saved into a disk file. Then, 
using a normal text editor, those values that were derived 
by the inference engine were eliminated, leaving only the 
human’s answers to the system’s questions. Subsequent files 
were similarly generated and their sets of answers were saved 

.under different names. Each such file became a test case, 
because Stutter could use the data in a file as responses to 
its questions. 

In time, many test cases were accumulated and used for 
testing over the life of the project. Every time a rule was added 
or modified, each test case was loaded into the system and used 
to look for run-time errors. If no new questions had been added 
to the knowledge base, the system’s advice was immediately 

available. If there were new questions, appropriate answers 
were added to update each test case. These modifications often 
required more knowledge from the expert but sometimes this 
could be obtained through a telephone call. Thus, use of test 
cases that could be updated as needed lowered the demands 
on the expert’s time and usually allowed testing of the system 
without further input from the domain expert. 

Using real test cases provided by an expert is but one way to 
exercise a knowledge base. Test cases can also be fabricated by 
knowledge engineers or provided by intended end users. Those 
created by a knowledge engineer are often more parsimonious 
because more rules can be exercised by fewer test cases. 
Typically, an expert, a knowledge engineer and an end user 
are like three blind men describing an elephant: each focuses 
on different aspects of the system. The test cases of each will 
exercise different but overlapping portions of the knowledge 
base; therefore it may be wise to always gather test cases 
from all three sources. 

Next a computer program was created that used these test 
cases to test the expert advisory system more systematically 
[12]. The firing of each rule was recorded as each test case 
was run. A rule was said to succeed if all of its premises 
evaluated true and the action specified in its conclusion was 
performed. Rules that were never found to succeed for any 
test case were flagged as probable mistakes and were brought 
to the attention of the human expert. Of course, a rule that 
never succeeds during such testing may not be an error. Some 
rules may be intended for unusual or infrequently occurring 
cases that were not exercised by the test cases that were used. 
Conversely, rules that succeed for every test case may also be 
mistakes. If a rule is always true it may be better to replace it 
with a fact; however, there are control rules that must always 
succeed. Consequently, this technique is useful in screening a 
system’s rules for potential errors; but a human must decide 
whether the rule in question is appropriate or not. 

The best way to test an expert advisory system, in our 
opinion, is to have the domain expert run the system and create 
a representative sample of test cases. Next, determine which 
rules never succeed and which always do. Our experience 
indicates that a test case for every five rules in the knowledge 
base may be sufficient (i.e., 20 test cases for a 100 rule system) 
even though clearly more test cases are better and having many 
more test cases than rules would be best. For those rules that 
do not succeed, the expert should provide test cases that he 
thinks will make them succeed until most do succeed. Then, 
the knowledge engineer should try to determine the reason that 
the remaining rules are not succeeding. It should also be noted 
that some test cases are not real. The expert for our system 
characterized some test cases as cartoons that had idealized, 
exaggerated or stereotyped signs and symptoms of stuttering. 
To increase the number of test cases, he took a number of ex- 
isting test cases and systematically changed those answers that 
should not change the system’s output and looked to see if they 
did. Thus these types of test cases reflect an expert’s concep- 
tualization of a domain rather than real cases from the domain. 

The knowledge base of our first system was uneven in its 
coverage. There were, in fact, both redundant questions and 
areas of knowledge that were not covered. In retrospect, these 
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shortcomings likely resulted from the knowledge extraction 
techniques that had been used. Therefore we used the Analytic 
Hierarchy Process (AHP) to elicit and organize the knowledge 
of our expert [13], [14]. This process arranges the knowledge 
into a hierarchy. In our case the knowledge was first divided 
into rules that dealt with information obtained from an exami- 
nation of a child and rules that dealt with information acquired 
from a case history interview. Next, the rules pertaining to 
each of these sources of information were divided into areas, 
which were then divided into subareas. Eventually, knowledge 
was broken down to individual questions, which were further 
decomposed into their possible answers. An example of how 
the tool is used will be illustrated with Question 11 from the 
system called Stutter. 

Please describe the within-word repetitions that were ob- 
served during your examination of the child. 

1) smooth, evenly paced, effortless 
2) louder, or increasing in pitch 
3) faster in tempo, or unevenly spaced and stressed 
4) marked by interruption in voicing or airflow 
5) vowels in the syllables being repeated sound like a 

“schwa” vowel instead of normal vowels. 
The answer has five possible alternatives, and it is necessary 
to know which are the most important. So the expert has to 
make comparisons of each pair. The AHP chart of Table I 
shows the comparisons our expert made for this question. 
For example in completing the entry for row “Part-2” and 
column “PartJ”, the expert indicated that Part-2 is moderately 
more important, 2.6, than is Part-5 for diagnosing stuttering. 
Parentheses around numbers indicate that the item at the top 
of the chart was rated more important than the item to the left. 
The expert for our system said that the AHP process led him to 
organize and systematically reconsider the relative importance 
of the knowledge that he uses in diagnosing stuttering. He 
believes that using this process helped to focus his attention 
during the knowledge extraction process and enabled him 
to formalize patterns of diagnostic signs and symptoms into 
relevant object-attribute-value relationships. With traditional 
knowledge extraction techniques, an expert often thinks about 
one area for a while and then about another. With nothing 
to guide the thought processes, lacunae can develop. The 
analytic hierarchy process forces an expert to make exhaustive 
comparisons of attributes so that every attribute is compared 
to every other attribute at each level. This process helps 
to prevent areas of knowledge from being omitted from a 
decision support system. 

Expert Choice, a software package that incorporates the 
analytic hierarchy process, was used to build our system; 
however, any of several other multiobjective decision analysis 
techniques would likely have worked just as well [4], [15]. 
Expert Choice forced the expert to systematically evaluate 
the relative importance of each object, attribute and value in 
the knowledge base, both independently and in all possible 
combinations. This process forced him to clarify, explicitly, 
the significance or weight he placed on each specific element 
of diagnostic information he gathers in arriving at a diagnosis. 
After an AHP matrix has been filled out, Expert Choice 

TABLE I 
MATRIX FOR QUESTION 11 

Part-2 Part-3 Part-4 Part-5 Vector 
Part-1 (5.8) (7.4) (9.0) (4.2) 0.031 
Part-2 (2.6) (4.2) 2.6 0.143 
Part-3 (2.6) 4.2 0.265 
Part-4 5.8 0.481 

Scale of Relative Importance 
1 Equally Important 
3 Moderately more important 
5 Strongly more important 
7 Very Strongly more important 
9 Extremely more important 

computes the priority vector. This vector shows the relative im- 
portance of each item in the matrix. These vectors were used in 
assigning certainty factors for rules in the knowledge base [ 131. 
Expert Choice also provides (for free as it were) a measure of 
inconsistency to detect violations of numerical and transitive 
consistency. If the computed inconsistency index was less than 
10 percent, then the painvise comparisons were considered 
consistent; i.e. the priority vector was deemed insensitive to 
slight variations among the elements of the comparison matrix. 
If a computed inconsistency index exceeded 10 percent, the 
painvise comparisons were considered inconsistent, and the 
task was repeated by the expert. The inconsistency index is 
important in pointing out inter and intrasubject differences. For 
example, our expert normally had inconsistency indicies much 
less than 10 percent. If the inconsistency index of a particular 
matrix jumped to 15 or 20 percent, we asked, “Should we give 
up or redo it?’ Sometimes he would redo the comparisons; 
other times he would say he was too distracted and would quit 
for the day. Although this expert was usually quite consistent 
providing inconsistency indicies of 1 to 3%, others have often 
had inconsistency indicies greater than 10 percent. One value 
of this measure is identifying inconsistencies in an expert’s 
knowledge at an early stage in the knowledge acquisition 
process, thereby saving substantial time in the testing phase. 

IV. TESTING THE THIRD SYSTEM 

The third expert advisory system, which was named Expert 
Stuttering Program (ESP), was ready for testing in 1985). It was 
the first to be tested with a special program, Validator, that we 
wrote to help find mistakes in knowledge bases [16], [ 171. By 
this time, of course, there were many publications about veri- 
fication and validation of particular knowledge-based systems, 
which Jafar and Bahill referenced [16]. Validator assesses 
the consistency and completeness of a knowledge base. It 
checks for syntactic errors, unused rules, unused facts, unused 
questions, incorrectly used legal values, redundant constructs, 
rules that use illegal values, and multiple methods for obtaining 
values for expressions and systematically indicates potential 
errors to the knowledge engineer. 

A. Verijcation With Validator 
Verification, or building the system right, ensures that a 

system correctly implements specifications and determines 
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how well each prototype conforms to design requirements. 
It guarantees product consistency at the end of each phase 
(with itself and with previous prototypes) and ensures a smooth 
transition from one prototype to another. 

Validator checks both the syntax and semantics of a knowl- 
edge base and brings potential errors to the attention of the 
knowledge engineer, who has the task of fixing such errors. 
Validator has four verification modules: a preprocessor, a 
syntax analyzer, a syntactic error checker, and a debugger. 

1) The Preprocessor: Syntactic errors can cause a production 
language (which is used here to refer to AI languages as 
well as expert-system shells) to misinterpret a knowledge 
base and consequently to alter its syntactic structure, leading 
to semantic errors. Validator’s preprocessor performs a low- 
level syntax check. Detecting such errors saves knowledge 
engineers and experts much time, frustration, and grief. This 
type of checking is dependent on a system’s production 
language and ameliorates the shortcomings of the language’s 
compiler. Validator builds internal representation structures of 
the knowledge base, which its other three modules analyze for 
syntactic compliance. 

2) The Syntax Analyzer: Many syntactic errors are caused by 
misspellings, typographical errors, or ill-formed knowledge- 
base structures. Therefore, Validator’s syntax analyzer creates 
alphabetical listings of the expressions in the knowledge 
base according to their categories: goals, rule premises, rule 
conclusions, questions (with legal values), and facts (with 
values). This list comprises a knowledge base dictionary that 
makes it easier for a knowledge engineer to find mistakes. 
For example, a knowledge engineer, forced to read an entire 
knowledge base, may be hard pressed to remember if a hyphen 
or an underscore is to be used to tie two words together. But 
if the two constructs are adjacent in a list it is easy to see an 
inconsistency. 

3) The Syntactic Error Checker: People can easily detect 
inconsistent expressions if they are presented in pairs rather 
than in large collections, but they need to rely on machines 
for detecting global and indirect inconsistencies. The syntactic 
error checker looks for syntax that, while legal, produces 
unspecified behavior by the production language’s compiler. 
For example, “out-of-range values” (such as incorrect usage 
of reserved words) usually escape detection by the complier 
and the knowledge engineer. Validator detects these errors in 
the contexts in which they occur. 

Expressions get their values from facts, from user responses 
to questions, or from the conclusions of rules. There are four 
basic types of values. (1) Legal values are acceptable answers 
to questions. (2) Utilized values appear in rule premises and 
allow the rule premise in which they appear to be evaluated 
to true. (3) Concluded values appear in rule conclusions and 
are set for an expression when a rule using that expression 
succeeds. (4) Assigned values are assigned to expressions with 
facts or certain commands specific to the production language. 

Utilized Versus Legal Values: Legal values guard against 
typographical errors and help in abbreviating long answers. If 
no legal values are provided, a system accepts any response as 
a valid answer, so typographical errors and wrong responses 
may escape detection. Even if errors are detected, effective 

error-recovery procedures are time-consuming and increase the 
size of the knowledge base. It should be noted that providing 
legal values will not prevent a knowledge engineer from using 
out-of-range values in a rule. For example, Mycin-derived 
production languages do not check a knowledge base to ensure 
that only legal values have been used; these languages only 
check user responses to questions to see if they match the legal 
values specified by the knowledge engineer. Legal values are 
related to questions, not to rules or facts. Illegal values are 
common in knowledge bases and often result in the failure of 
rules using such values. 

Unused Legal Values: The syntactic error checker searches 
the premises of rules, looking for declared but unused legal 
values, which it flags as potential errors. It also lists all unasked 
questions. Unused legal values are common in knowledge 
bases. Many result from errors, others are remnants of old 
constructs that were put into the knowledge base by mistake or 
were incompletely removed. Deleting such constructs reduces 
the size of the knowledge base and speeds inferences during 
the use of a system. If Validator searched the following 
knowledge base, it would note that the legal values for coat of 
animal are {hair, feathers, beads} but the utilized values are 
{hair, feathers, scales}. Validator would point out that it is not 
possible to get a value of beads for coat of animal and would 
indicate that this is likely a mistake. It would also point out 
that one legal value, scales, has never been used, and would 
suggest that this may also be a mistake. 

goal = identity of animal. 

if coat of animal = scales 
then type of animal = fish. 

if coat of animal = hair 
then type of animal = mammal. 

if coat of animal = feathers 
then type of animal = bird. 

if type of animal = lizard 
then identity of animal = Gila monster. 

question(coat of animal)= 
‘What is the coat of animal?’. 

legalvalues(coat of animal)= 
[hair, feathers, beads]. 

Utilized Versus Concluded Values: If the values used in 
the premises of rules do not match the values used in the 
conclusions of those rules, the rules will fail. In the above 
knowledge base, the utilized values for type of animal are 
{fish, mammal, bird, lizard}, whereas the concluded values 
are {fish, mammal, bird}, which indicates that it would be 
impossible for this system to conclude that a lizard is a type 
of animal. 

4) The Debugger: Debugging is a tedious, difficult, time- 
consuming, and costly process of finding and correcting errors 
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in the knowledge base. On many occasions, the presence of 
errors is discovered during developmental testing but finding 
them depends on the knowledge engineer’s intuition, experi- 
ence, and common sense. However, computer-aided debugging 
tools are more reliable because they reduce the possibility of 
human errors. Validator’s debugger checks for rules that use 
variables, negations, and unknowns. It regards the knowledge 
base as a closed world, and assumes that all the information 
about the domain is captured in the knowledge base. Thus, 
all possible rules and axioms should be either implied or 
implicitly modeled in the knowledge base. 

Variable-Unsafe Rules: Variables can be used in both the 
premises and the conclusions of rules. They act as symbolic 
place holders. Each construct that uses variables is logically 
equivalent to the large set of constructs that could be obtained 
by replacing those variables with suitable terms. A backward- 
chaining rule that has variables is variable-safe (closed) i f  (1) 
Its conclusion is homomorphic to a fact or a consequence in 
the knowledge base; (2) Variables that appear as attributes of 

expression in the rule’s premise; (3) Variables that appear as 
attributes of an expression in a premise also appear as utilized 
values in previous premises of the same rule or as attributes 
of an expression in the conclusion; (4) Variables that appear 
as concluded values of a rule also appear as utilized values in 
the rule’s premise. A knowledge base is variable-safe if its set 
of rules evaluate to true, no matter what values are substituted 
for its variables. Variable-unsafe rules usually lead to infinite 
loops that violate the closed-world assumptions. 

Illegal Use of Negations: Negations can be used only in the 
premises of rules. A rule that has a negation in its conclusion 
violates closed-world assumptions, because a false fact is not 
explicitly declared in the knowledge base, but is inferred from 
not being able to conclude a given value for an expression. 

Illegal Use of Unknowns: The most common origin of 
unknown is the result of a user’s response to a question. 
Unknown can also be concluded as a result of the unsuccessful 
firing of all the rules that concern an expression. However, 
like negations, unknown can be used only in the premises of 
rules. A rule that concludes unknown for an expression violates 
the closed-world assumption, because an unknown fact is not 
explicitly declared in the knowledge base; rather, it is inferred 
from not being able to conclude a value for an expression. 

proceeds in two ways. The first is direct and involves a 
knowledge engineer and an expert working together reviewing, 
refining and analyzing each item in the knowledge base. They 
check the completeness of every module. They also check the 
consistency, effectiveness and efficiency of every knowledge 
base item. Then they review each rule and decide whether to 
split it, modify it, or delete it from the knowledge base. 

The second approach requires a knowledge engineer to work 
on the structure and representation of the knowledge base. 
Knowledge base items are analyzed, compared for redundancy, 
completeness, and correctness of usage. This approach is 
structured, algorithmic, and more exhaustive than the direct 
approach. It also uses heuristics that can be automated to 
produce fast and effective results. Validator allowed us to 
use this second approach. After all potential errors flagged 
by Validator had been resolved, we continued testing this 
expert advisory system using test cases and additional domain 
experts. 

an expression in a conclusion also appear as attributes of an v .  TESTING THE FOURTH SYSTEM 
The fourth version of this evolving decision support system, 

Second Opinion@, was ready for field testing in 1991. It 
had already undergone testing with all the techniques men- 
tioned above when our knowledge engineer traveled to the 
universities of four other experts and spent a day with each 
running the system on real cases. The experts were generally 
pleased with the performance of the system, but each offered 
suggestions for changes, which were implemented. Next, the 
clinical records of 30 anonymous children whose parents 
suspected them of stuttering were collected and rewritten after 
deleting any information that might identify the child or his 
family. Each expert, at a workshop in Tucson, provided a 
diagnosis for each of the 30 children after reading the rewritten 
clinical reports. Next, they discussed these rewritten reports 
and their diagnosis. The latter diagnoses were used to derive 
a consensus diagnosis for each child and Second Opinion was 
changed to match the consensus opinions. Unfortunately, the 
performance of the system was not evaluated quantitatively 
before its modification. 

If there is a collection of input-output data that is known to 
be correct (sometimes called a gold standard), then a variety of 
quantitative techniques can be used to help validate a system, 
many of these are described by Adelman [5 ] .  In effect, the 

B. Validation With Validator 

Validation, building the right system, ensures the consis- 
tency and completeness of the whole system, The validation 
part of Validator has two modules: a chaining thread tracer and 
a knowledge base completeness module. The chaining thread 
tracer determines if rules can fire by tracing their connectivity 
back to the goal. Rules that cannot fire are flagged as dead rules 

rule is also flagged as dead if it is the root of a dead tree. Thus, 
flagging a dead rule may uncover a whole set of dead rules. 

One aspect of validation is checking the knowledge base for 
completeness, that is, attempting to determine if something 
is missing from the knowledge base. This checking usually 

and are brought to the attention of the knowledge engineer. A 

~~ 

expert panel’s diagnoses reflected our effort to develop such 
a gold standard. 

VI. TESTING THE FIFTH SYSTEM 

While testing a fifth version of this decision support system, 
Childhood Stuttering: A Second OpinionTM in 1992, we 
discovered that its outputs differed when different experts 
used it. We asked two experts to use the system based on 
information each obtained from reading the 30 clinical reports. 
The output of the system was the same for 10 of these reports 
even though there were different answers to, on average, 
one-third of the questions. This suggests that the system is 
robust to differences attributable to users. The output of the 
system was highly similar for another 10 reports but differed 
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significantly on the remaining 10. These findings suggested 
that some differences might be attributable to the clinical 
reports. For example, one report stated “Jose felt frustrated.” 
Some experts understood this statement to mean that the child 
was showing frustration about his disfluency, while others 
understood it to reflect his fsustration with English and Spanish 
word-finding difficulties. It was decided, therefore, to resolve 
such ambiguities in these clinical reports before testing the 
decision support system further. 

First, 15 of the 30 clinical reports were carefully edited so 

TABLE I1 
HEURISTIC DATA SET 

Diagnosbc Name of Clinical Report 
Score A B C D 

5 b c d  
4 d dss 
3 b d  c dss a 
2 b d dss dss a b 

that any lacunae, ambiguities, and conflicting statements were 
removed. Next, 10 additional clinical reports were obtained 
and edited in a similar manner. These 25 edited reports were 

diagnosis of each expert varied from those of every other 
expert. It is computed with 

then used to test the latest version of the decision support 
system. It would have been better, of course, to use a few 
hundred validated clinical reports, but developing these clinical 
reports was expensive. In 1992 and 1993 more time was spent 
acquiring and preparing these reports than in developing and 
refining the rules in the system’s knowledge base. 

A. New Tools reports). 

Dispersion, = 
3=A z=a (4pL-G) 3 

where i runs over the set {a ,  b, c, d, dss } ,  k runs over the 
set {u ,b ,c ,d ,dss} ,  j runs over the set {A ,B ,C ,D} ,  I = 5 
(the number of evaluators) and J = 4 (the number of clinical 

For the data in Table I1 the dispersions are: 
In Table I1 diagnoses of four apocryphal experts and that of a 

decision support system for four clinical reports are displayed. 
These data are not real but were created to illustrate the “Expert” Dispersion 

use of several statistical tools. Diagnoses of the experts are 
denoted with lower case letters a, b, c, and d, and that of the 

a 1.47 
b 168 
C 1 3 1  
d 135  decision support system with dss. The four clinical reports are 

designated by the upper case letters A, B, C, and D. 
The numbers in the Diagnostic Score column represent 

dss 1.06 

five diagnostic opinions, which correspond to the following 
descrbtions: The term bias shows inclinations of the individuals. It is 

1) Little cause for concern about stuttering. There is little 
reason to suspect that a stuttering problem may be 
emerging in this child at this time. The types and 
frequencies of disfluencies that were observed and de- 
scribed are characteristic of those of nonstuttering chil- 
dren. 

2) Some cause for concern about stuttering. This child is 
evidencing some danger signs of incipient stuttering as 
well as some that are characteristic of nonstuttering 
children. This pattern of equivocal findings suggests 
that the child may be at risk for an emerging stuttering 
problem. 

3) Mild concern about stuttering. This child is evidencing 
relatively consistent signs of early stuttering. 

4) Moderate concern about stuttering. This child presents 
speech and behavioral signs which suggest that stuttering 
may not be a transient problem. 

5) Severe concern about stuttering. This child evidences 
speech and behavioral signs that may signal the evolu- 
tion of a severe stuttering problem. 

Two quantitative measures of the agreement between the 
experts and the decision support system, which were originally 
suggested by Lucien Duckstein, can be used to characterize the 
dispersion and bias of these diagnostic data. Each diagnosis 
is denoted with a capital R with a subscript identifying the 
individual expert. The term dispersion shows how much the 

computed with 

For the data in Table I1 the biases are: 

“Expert” Bias 
a -1.19 
b 0.38 
C -0.25 
d 1.00 

dss 0.06 

These measures can be used to help validate a decision support 
system. For the data in Table I1 all the “experts” performed 
less consistently than did the decision support system, because 
four the experts had dispersion scores greater than that of 
the decision support system. The opinions of expert “b”, for 
example, were the least consistent. The data also illustrate that 
experts may be biased. The diagnosis of expert “a” suggest 
that he viewed each child’s fluency problem as less severe 
than the other experts, while those of expert “d” were at the 
other extreme. The decision support system, on the other hand, 
showed little bias. These data were contrived to illustrate such 
ideal behavior by a decision support system. 
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Fig. 1. 
indistinguishable from those of the experienced clinicians. 

Diagnostic scores from clinicians and the decision support system for 25 clinical reports. The outputs of the decision support !system are 

TABLE III 
CLINICAL RESULTS 

Expert Bias Dispersion 
a -0.11 0.76 
b 0.17 0.79 
C -0.17 0.71 
d 0.50 0.88 
e 0.14 0.86 
ec -0.42 0.85 
dss -0.10 0.80 

B. The Final System Test 

The 25 new clinical reports were mailed to five highly 
experienced stuttering clinicians who were asked to evaluate 
the likelihood that each child was stuttering. Fig. 1 displays the 

”O T h 
4.5 

4.0 

j 3.5 

.P 

# 2.5 

3 3.0 

2.0 

1.5 

I .o 

diagnostic scores of these five experienced clinicians, of the 
examining clinicians who prepared the original reports, and of 
the decision support system for of the 25 reports. Table 
I11 summarizes the statistical results. The five experienced 

Fig. 2. Range of diagnostic scores for 15 clinical reports before (the left side 
of each polygon) and after (the right side of each polygon) their discussion 
by a panel of experienced clinicians. Discussion typically reduced variability 
in diagnostic scores. 

clinicians are represented by the letters a, b, c, d, and e. The 
examining clinicians who evaluated each child are designated 
by ec, and the decision support system by dss. 

Based on the data in Table 111, the performance of the 
decision support system is indistinguishable from that of 
experienced clinicians. Its dispersion is higher than some 
clinicians’ but lower than others. Its bias is very small. 
In contrast, the examining clinicians’ diagnostic scores do 
stand out from the panel of clinicians, as is indicated by 
the large negative bias score. This seems reasonable, because 
the clinicians who conducted these evaluations had access to 

data that the other clinicians lacked: they examined the actual 
children. Furthermore, they likely reviewed video tapes of their 
evaluation and discussed difficult cases with other clinicians 
before arriving at a diagnosis and writing their clinical reports. 
Therefore their diagnostic opinions may be the most valid. 
The decision support system’s diagnoses were designed to fall 
between those of the examining clinicians and the mean of the 
panel of experienced clinicians. The low bias and dispersion 
of the decision support system indicates its robustness. 
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Fig. 3. Diagnostic scores from the decision support system when used by three clinicians having vastly different backgrounds. The variability in scores is small. 

The Kendall coefficient of concordance for our five experts 
is 0.83. This suggests good agreement among the clinicians 
given that their diagnostic decisions were based solely on 
written clinical reports. Clinicians would never diagnose an 
actual child solely on the basis of a written report. Thus, the 
performance of these five clinicians after reading descriptions 
of a child’s evaluation provides indirect support for their use 
as experienced, expert clinicians. 

When experienced clinicians have an opportunity to confer 
and discuss their diagnostic opinions, differences in opinion 
that they may have usually decrease. Fig. 2 shows the range 
of diagnostic scores the panel of experts assigned to 1.5 
clinical reports before (the left side of each polygon) and 
after (the right side of each polygon) they discussed these 
cases. At the time of their discussions, panel members were 
shown both the mean and range of diagnostic scores for 
each case. The intended purpose of these discussions was to 
clarify information about a case, not to develop a consensus, 
but the range of diagnostic scores was smaller after the 
discussions. This reduction in range may be due to panel 
members considering additional diagnostic factors during their 
discussions than were considered when their initial diagnoses 
were given. It may also reflect, in part, some panel members’ 
decisions to modify their initial diagnostic scores to more 
closely approximate the panel’s mean score. One purpose 
of Second Opinion is to allow an inexperienced clinician to 
“discuss” findings obtained from a diagnostic evaluation with 
a panel of experts and to learn the diagnostic opinions of the 
panel of experts. Such “discussions” are intended to increase 
the reliability of inexperienced clinicians’ diagnoses. 

The output of Second Opinion is robust. Three people used 
it with the same 2.5 clinical reports described above. One 
was the chief scientist for our decision support systems, who 
has had over 25 years of experience evaluating children with 
fluency problems. The second was a doctoral candidate in 
Communication Sciences and Disorders at Syracuse University 
who had acquired substantial previous experience with the 
decision support system The third was a master’s degree 
student at the University of Arizona who had little experience 
evaluating young stutterers and no previous experience with 
any decision support system. Their diagnostic opinions, shown 
in Fig. 3, evidence little difference. The case about which there 
was the most disagreement, Couzens, led to further review 
of that clinical report and the identification of ambiguities 
that may have caused this discrepancy. Use of Childhood 
Stuttering: A Second Opinion, appears to promote diagnostic 
opinions that are indistinguishable from those of a panel of 
five experienced clinicians regardless of a clinician’s training 
and background. One significant finding is that the diagnosis 
of three people with widely differing backgrounds evidenced 
less variability when using the decision support system than 
did those of five experienced clinicians rating the same clinical 
reports without the decision support system. 

As a penultimate test, the system was given to 30 students 
in an Expert Systems class at the University of Arizona. It is 
now undergoing its ultimate test as it is used by customers. 
Most of the concerns of both students and customers involve 
the installation procedure. No one yet has pointed out errors 
or suggested improvements in its knowledge base. 
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A number of factors are likely to affect the performance 
of clinicians on tasks that have been described above. For 
example, if they complete 25 evaluations at one sitting, they 
may produce occasional spurious outputs. Three of the 225 
data points in Figs. 1 and 3 were obtained from re-evaluations. 
The original data points were statistical outliers, so the clinical 
reports were returned to the clinicians with a request to repeat 
their evaluation. No one was told why the request was made, 
and in all three cases the revised diagnosis was markedly 
different and was no longer an outlier. 

This decision support system is meant to assist, not replace, 
inexperienced speech-language clinicians. One thing a human 
does that a computer system does not do is track a child’s 
behavior over time, looking for improvement or a worsening of 
signs and symptoms. In the future we intend to build a version 
of this system for teaching that will include explanations and 
pertinent references for each question asked. Such systems 
would appear to be useful in training clinical skills as well as 
in supporting the skills of inexperienced clinicians. 

VII. CONCLUSION 
It is difficult to detect errors in a decision support sys- 

tem. Therefore, much effort was devoted to the knowledge 
extraction process to insure that errors did not creep into the 
knowledge base. Because all such knowledge came from and 
was captured by fallible humans, it is unreasonable to expect 
a knowledge base to be free of errors. Therefore, several 
tools and procedures were developed to help detect errors 
in a decision support system’s knowledge base. Each was 
designed to work with existing tools, and each added additional 
complexity to testing procedures, and, we think, credibility 
to the decision support systems’ performance. Finally we 
compared the output of the system to the evaluations of human 
experts. When using Childhood Stuttering: A Second Opinion, 
three clinicians with widely differing backgrounds in stuttering 
produced diagnostic opinions that evidence little variability 
and were indistinguishable from those of a panel of five 
experienced clinicians. 
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