
I n the fall of 1985, 25 students and 10 auditors
(including three faculty members) attended our new
course on expert systems-an introductory engineer-
ing course aimed at teaching useful technical skills

and applying those skills to real problems. The course had
three objectives: to share understanding, to impart tech-
niques, and to apply these in practice. We wanted our
students

(1) To understand the nature, limitations, and suitable
applications of expert systems;

(2) To effectively use expert system shells (software pack-
ages allowing rapid prototyping of expert systems, shells can
be considered special-purpose high-level languages designed
to help write if-then production rules); and

(3) To produce a small expert system.
In these objectives, the course differed markedly from

many other Al and expert system courses. Other courses
have attempted, variously, either

(1) To teach the design and programming of inference
engines;

(2) To provide an understanding of heuristic program-
ming methods;

(3) To survey Al research;
(4) To explore Al and expert system applications in spe-

cific problem domains; or
(5) To teach programming methods or languages espe-

cially suited to knowledge-based systems.
The teaching experience convinced us that students can

learn, in a one-semester course, to apply effective fundamen-
tal skills in expert systems development-skills providing a
sound basis for further growth. But we also found, from
observing student attempts at applications, that the course
needed improvement in imparting technique and in develop-
ing the understanding needed for technical application.
Consequently, we have revised the course for the fall of 1986.
We shall first present what we did, then discuss the stu-

dents' projects, and finally describe the changes needed in
light of those projects.

We used Randy Davis videotapes' for a broad Al over-
view, Forsyth's edited volume on expert systems,2 and an
expert systems textbook by Harmon and King.3 We bought
the M.l shell instructor's package from Teknowledge includ-
ing 10 copies of M.l, overhead transparencies, and lecture
notes. The package, while expensive ($5000), was
worthwhile.

Building a knowledge-based system using Pascal, Prolog,
or other general-purpose, high-level language is too big a
task for a one-semester course. And using a big knowledge-
engineering tool such as KEE or ART is too complicated for
an introductory course. We concluded that the best way to
teach expert systems in a one-semester, introductory course
would be to have students build an expert system on a PC
using an expert system shell.

0885-9000/86/1100-0059 S01.001986 IEEEWINTER 1986 59

The class discussed several recent papers comparing cur-
rently available expert system shells that run on PCs.3'6
Comparing and contrasting these PC shells, and examining
such historically famous expert systems as MYCIN,7 was an
important part of the course.

FsawII,t1'.flas@)JgRI [SrnnjUsX Itl)-SJS |I-I.-- L.

Even back in early 1985, when we were planning this
course, there were scores of commercially available expert
systems shells. We purchased three-two for the VAX, and
one for PCs.
The Rand Corporation's ROSIE,8 though several years

old, is not heavily used. It was inexpensive ($200), ran on a
VAX, and needed InterLisp (although the latest version runs
with portable standard Lisp). We abandoned ROSIE because
it was big, cumbersome, and slow.
M.1 from Teknowledge, a backward-chaining shell for

making expert systems on an IBM-compatible PC, was easy
to learn and easy to produce user-friendly systems with. M.1
has an effective system for dealing with uncertainty, many
automatic features (such as formulating its own questions
when they are not specified by the developer), good trace
capability, and its knowledge base can be written without
complicated formats. We did not buy other shells similar in
power and features, such as Personal Consultant Plus,
because we could not afford two tools from the same class.
OPS5, the expert system shell supported by DEC, is a

forward-chaining system suitable for different problems than
are the backward-chaining M.1 and ROSIE-forward
chainers work toward a goal state, while backward chainers
work from a goal state. DEC has used OPS5 in-house for
dozens of projects, although soon DEC will also support S.1
from Teknowledge. There is a textbook explaining OPS5,9
and the shell is available for PCs and the VAX for between
$75 and $3000. We found OPS5 was difficult for students to
use and it was difficult for them to make user friendly sys-
tems with.

After completing the course, we discovered Micro Expert
from McGraw Hill-costing $50.10 It could serve as the basis
for a low-budget expert systems course.

We required students, individually or in pairs, to find an
expert and (using an expert system shell) to make an expert
system. Their experts formed a motley group-professors,
physicians, siblings, roommates, parents, teachers, and user
consultants. The availability of experts was a prime factor
determining expert system topics, although our suggestions
on their one-page proposals had some effect.
Most students enjoyed their projects. Several have con-

tinued working while enrolled for independent study, which

brings up a disappointing aspect of Teknowledge's license
agreement: Students cannot take a working version of their
expert system with them. They are allowed to use M.1 only
while enrolled in a course.
From these class projects, listed in the accompanying box,

we gleaned clues about what problems are suitable for expert
systems and what problems are best left for conventional
computer programs. Some class problems were inappropri-
ate for expert systems because the implementations were
simple checklists or questionnaires-some because they
involved numerical computation rather than symbolic
manipulation. Others were inappropriate because no human
expert could solve the problem, or because the solution
could have been represented unequivocally as a decision tree
in which users were shunted up different branches depending
on what answer the system posed. For such cases, a diagram
on paper would have been as effective as the computer
system-a simple recipe for an answer.
How can one identify a task that is appropriate for an

expert system? First, there must be a human expert who per-
forms that task better than most other people. For example,
Julia Child is an expert chef; most of us do not cook as well.
Designing an expert system to add single digit numbers is
silly, because almost everyone does this well. On the other
hand, designing an expert system to predict the stock market
is doomed to failure because no human expert does this con-
sistently well (if someone does, they are just quietly salting
away their millions). Figure 1 shows the type of performance
histogram ideal for an expert system.

Second, the task's solution must be explainable in words
rather than requiring explanatory pictures-imagine
Michelangelo creating an expert system to direct the painting
of the Sistine Chapel!
The constraint that experts not draw pictures leads to a

third criterion-the telephone test: Can the problem be
solved routinely in a 20-minute (or even a one-hour) tele-
phone conversation with the expert? If so, the problem suits
a PC-based expert system. If the problem takes a human two
days to solve, however, then it's far too complicated for an
expert system. And if a human can answer in two seconds,
it's too simple.

Fourth, problems inviting one of many possible solutions
are ideal candidates for expert systems-problems such as
"What disease does the person have?"

Evaluating student projects was difficult. We could not
afford to hire experts to do our grading or to test the "expert
systems" on various realistic problems and compare their
performance with the humans whose knowledge they were
intended to capture. Furthermore, it would be unfair for two
generalist professors of Systems and Industrial Engineering
to judge student expert systems designed for use by specific-
domain authorities. Therefore, our evaluations tended to
emphasize (1) how much we could "fool" systems by plausi-
ble (but nonsensical) inputs, and (2) the difficulty we had
using systems or making sense of their queries or output. We
found a typical consultation's tree diagram greatly helped us

IEEE EXPERT60

to understand the knowledge base, and more fairly evaluate
the expert systems.

It is also helpful having an overseer expert to critique sys-
tems. We had four students, working with four different
experts, making expert systems on autism. When our pri-
mary autism expert, Linda Swisher of our Speech and Hear-
ing Department, ran one of those expert systems she
exclaimed "That lady is no expert! I mean, the rules are cor-
rect, but I can see what books she got them from." Swisher
was right. The student had interviewed a pediatric neurolo-
gist who, being too busy, volunteered the services of her
resident-a very intelligent professional but not an autism
expert. Swisher correctly noted such lack of real expertise in
two student-generated expert systems.
Our experts enjoyed participating and often told us so.

"Working through these production rules," Linda Swisher
observed, "and seeing the decision tree of a consultation
made me realize what I actually do during a consultation. If
nothing else, this experience will help me teach better in the
future. What I have been telling my students to do for the
last 15 years is not really what I do myself. " As has been
noted before, expressing a knowledge base can lead experts
to clearer understandings of their own expertise.'"
We were surprised to find the best (or what seemed to us

the best) expert systems were written not by our systems
engineering students, but rather by psychology, communica-
tions, and business majors. Moreover, our brilliant foreign
students did not produce the best expert systems; interacting
with their programs was far too difficult, leading us to con-
clude that, for making expert systems, communication skills
are at least as important as engineering analysis skills. This
conclusion complements advice given by Feigenbaum and
Davis in the AI video conference broadcast November 13,
1985: They described ideal knowledge engineers (1) as reduc-
tionists who love to wade through myriad rules, heuristics,
hunches, and intuitive notions, digesting them into a
production-rule nutshell, (2) as aggressive and not afraid to
take a risk, and (3) as engineers who enjoy poking their
noses into other people's business. For that is what knowl-
edge engineering is about, after all-to go into someone
else's domain, learn it, cast this knowledge into an expert
system, then a half a year later move off into another per-
son's domain and repeat the process.

If they'd had time to think about it, we suspect Feigen-
baum and Davis would also have mentioned the need for
communications skills that aid in understanding problems,
dealing with experts, and making systems that work.

We want to improve interviewing techniques. Half of our
students' time went into gathering knowledge from human
experts and translating that knowledge into if-then produc-
tion rules. The few students who were their own experts, or
who got their knowledge out of textbooks, were deprived of
a valuable experience.

Figure 1. Problems having a performance histogram
like this are ideal for expert system technology. An
expert system's purpose is not to replace humans, but
to increase mass productivity; systems should perform
almost as well as human experts, as the figure shows.

We will acquire an induction system such as Expert-Ease,
1st-Class, or KDS because they're different in that, instead
of requiring if-then production rules, they accept examples
and case studies and then derive production rules. However,
we're not sure it will be easier for students to generate ade-
quately general examples than to provide the rules.
Not surprisingly, students were reluctant to face dealing

with uncertain data and vague rules-expert system require-
ments. We are similarly reluctant. But expert systems must
incorporate capacities to do so if they are to deal effectively
with real problems.
To deal with imprecision and vagueness, M.l uses cer-

tainty factors. Chapters 5-7 of Forsyth's book (rated by our
students as the best chapters) helped us broaden the discus-
sion of uncertainty by including Bayesian probability updat-
ing and fuzzy sets. In future classes, we'll spend more time
dealing with imprecision, uncertainty, and their effects on
solutions. Although no dogma leads to salvation (these mat-
ters being perennial problems), appreciating them
thoroughly is, we think, prerequisite for designing good
expert systems.

After studying the 22 student-built expert systems, we
realized that students do not intuitively build good
human/computer interfaces allowing easy and effective
communication. In fact, they are not adequately aware of
the problems involved. For example, most systems require
users to enter large amounts of data. When requests for data
come in long lists of questions, each presented as a separate
frame without comment or explanation, users have no sense
of control, no idea of where the consultation is going, and
no idea of why the information is needed. When questions
jump from one context to another, users think the computer
is scatterbrained. For example, would you trust a computer
that asked you, in order, "What is your height? What is
your weight? What is the capital of Kurdistan?"
We can ameliorate these problems by (1) entering data in

related blocks with visual prompts, as when filling out a
form, (2) ordering questions so that meaningful preliminary
conclusions can be drawn and presented to users (for exam-
ple, "That rules out such and such"), and (3) removing

WINTER 1986 61

interrogative redundancy (if you ask a child's age, for
instance, you should not subsequently ask if the child is past
the age of puberty, or if the child is of preschool age). In the
future, our expert-system course will deal more fully with
such problems. But a companion course in human/machine
interaction would be better. Expert systems should be
designed so that users almost feel they are conversing with
an intelligent human.

Finally, we found our students all too willing to join in
uncritical enthusiasm for expert-system technology. We
presented problems and criticism, and emphasized negative
as well as positive points of view-but we will pursue this
approach more systematically next time. We plan to assign
and discuss such readings as articles by Parnas12 and by
Dreyfus and Dreyfus.'3

l'l.: _. * l. l

If you want users to choose menu items, then identify
those items with letters instead of numbers because M.1
treats numbers strangely; in addition, many experienced
typists enter the lowercase letter "1" instead of the numeral
''1. }

Your system will be more user friendly if your last menu
entry is "none of the above. " Although this will create more
work for knowledge engineers, it will accommodate inadver-
tent menu displays.
The consultation's beginning will probably give users

instructions that will then disappear forever. It might be nice
to provide an optional review of these instructions, perhaps

A list of the systems our students produced.

Commentary

Help a psychiatrist diagnose autis-
tic children.
Help a neurologist diagnose autistic
children.
Help a special education field
worker diagnose autistic children.
Help diagnose autistic children
based on speech behavior.
Detect disfluent (stuttering) chil-
dren and suggest prognosis.
Aid an anesthesiologist during
surgery.

Congenital chromosomal defect
diagnosis system.

Help install 4.2BSD Unix on a
VAX computer or add new devices
(this project was expanded into a
masters thesis and is a useful expert
system; if you would like to use the
system, please contact the authors).
Discover cause of failure for RS232
terminal/computer interface (writ-
ten in OPS5).
Help design a PC laboratory.
Help develop an individual invest-
ment portfolio.

Help design solar-energy home-
remodeling plans.
Aid a biomedical engineer in select-
ing BMDP statistical-analysis
programs.

Program

Rockbolt

plans

schedule

advice

major

Diplomacy

backgammon

EXSYS

bid

Commentary

Help design rockbolt support sys-
tems for coal mines.

Process planner and operations
scheduler for a machine shop.
Find the best scheduling rille for a
job shop.
Help SIE graduate students formu-
late study plans (a routine, but very
complicated problem; this expert
system used M.1, C, C_to_dBase
hooks, and dBasell).
Help incoming freshmen choose a
major (unsuitable for Ml because
it was just a question-and-answer
session).

Help a person to play the game of
Diplomacy.
Offer advice about the best move
for backgammon (unsuitable for
MAl because it primarily involved
numerical computation, not sym-
bolic manipulation).
Identifies problems where an expert
system is appropriate (unsuitable
for an expert system because there
is no human expert who does this
much better than everyone else).
Select correct bid in a bridge game
(unsuitable for M.l because it was a
simple table lookup).

62
IEEE EXPERT

Program

autism

autism2

AUTIS

ESIAC

stutter

ANES

Chromie

Cogito

diagnosis

labdes
invest

solar

STATCON

62 IEEE EXPERT

by labeling the banner knowledge base entry of your end-
user system as follows:

instructions:
configuration(banner)=
['Welcome to your M.1 advisor.
Type "list instructions." to get this message.
Type "help." to get M.l"s help message.
Remember to end all your answers with a period and a
return.
Good luck.,nll.

Ŵ s hen the semester began, we were not sure
what we would teach in this experimental
course on expert systems; however, the
course evolved nicely. We ended up using the

MIT video tapes for nine hours, and the Teknowledge M.l
instructor notes for 10 hours. Guest lectures occupied four
hours, Forsyth's book nine hours, Harmon and King's book
five hours, and other material took eight hours. Although it
seems a hodgepodge, everything fit together well and (even if
we say so ourselves) it proved satisfactory. Our students
seemed to agree-they rated the course as "very good" on
the CIEQ course evaluation questionnaires. U

Acknowledgement

Grants from Bell Communications Research and the
AT&T Foundation supported this course and related
research.

References

1. R. Davis, "Expert Systems" videotapes, MIT, Cambridge,
Mass., 1984.

2. R. Forsyth, ed.,,Expert Systems: Principles and Case Studies,
Chapman and Hall, New York, N.Y., 1984.

3. P. Harmon and D. King, Expert Systems: Artificial Intelligence
in Business, John Wiley and Sons, New York, N.Y., 1985.

4. E. Tello, "Knowledge Systems for the IBM PC," Computer
Language, July 1985, pp. 71-83, and Aug. 1985, pp. 87-102.

5. J. Goldberg, "Experts on Call," PC World, Sept. 1985,
pp.192-201.

6. Expert Systems, Vol. 2, 1985, pp. 188-265.
7. B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems,

Addison-Wesley, Reading, Mass., 1984.
8. F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, Building Expert

Systems, Addison-VWsley, Reading, Mass., 1983.
9. L. Brownston, R. Farrell, and E. Kant, Programming Expert

Systems in OPS5, Addison-Wesley, Reading, Mass., 1985.
10. B. Thompson and W. Thompson, Microexpert, McGraw-Hill,

New York, N.Y., 1985.
11. M.J. Horvath, C.E. Kass, and W.R. Ferrell, "An Example of the

Use of Fuzzy-Set Concepts in Modeling Learning Disability, "
Am. Educational Research J., Vol. 17, No. 3, 1980, pp. 309-324.

12. D.L. Parnas, "Software Aspects of Strategic Defense Systems,"
Am. Scientist, Vol. 73, No. 5, Sept.-Oct. 1985, pp. 432-449.

13. H. Dreyfus and S. Dreyfus, "Why Computers May Never Think
Like People." Technology Rev., Vol. 89, 1986, pp. 42-61.

A. Terry Babill is a professor of systems and industrial engineering
at the University of Arizona at Thcson. His research interests
include control theory, modeling physiological systems, head and
eye coordination of baseball players, expert systems, and computer
text and data processing. He is the author of Bioengineering: Bio-
medical, Medical, and Clinical Engineering (Prentice-Hall, 1981).
He received his BS from the University of Arizona and his MS from
San Jose State University in electrical engineering, and his PhD in
electrical engineering and computer science from the University of
California at Berkeley.

In addition to being on the IEEE Expert editorial board, Babill is
a member of several IEEE societies including Engineering in Medi-
cine and Biology, Automatic Controls, Professional Communica-
tions, and Systems, Man, and Cybernetics. He was vice president for
publications, and is now vice president for meetings and conferences
and an associate editor for the Systems, Man, and Cybernetics Soci-
ety. He is a member of Tau Beta Pi, Sigma Xi, and Psi Chi.

William R. Ferrel, professor of systems and industrial engineering
at the University of Arizona, teacbes courses in human factors and
in mathematical modeling of human performance. He earned his
BA with honors in English literature at Swarthmore College. He
studied mechanical engineering at MIT where he earned his SB (also
with honors), his SM, ME, and PhD. For four years during that
period he worked in machine and product design at Polaroid. From
1962 to 1969, he taught at MIT where he was ultimately associate
professor and codirector of the Man-Machine Systems Laboratory
in the Mechanical Engineering Department.

His research has covered a wide range of human performance:
driver behavior, aids for the handicapped, remote manipulation,
robotics, human information processing, subjective judgment, and
expert systems. He has more than 30 publications in such areas and,
with T.B. Sherman, is author of Man-Machine Systems: Informa-
tion, Control, and Decision Models ofHuman Performance (MIT
Press).

Ferrell is a member of the administrative committee of the IEEE
Systems, Man, and Cybernetics Society, a fellow of the Human Fac-
tors Society, a founder and currently a director of its Arizona chap-
ter, and a member of Sigma Xi.

The authors' address is the Systems and Industrial Engineering
Dept., University of Arizona, Thcson, AZ 85721.

WINTER 1986 63

