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Abstract. Humans can overcome the 150 ms time delay 
of the smooth pursuit eye movement system and track 
smoothly moving visual targets with zero-latency. Our 
target-selective adaptive control model can also over- 
come an inherent time delay and produce zero-latency 
tracking. No other model or man-made system can do 
this. Our model is physically realizable and physiologi- 
cally realistic. The technique used in our model should 
be useful for analyzing other time-delay systems, such 
as man-machine systems and robots. 

1 Introduction 

Experiments with transient target waveforms have 
shown that there is a time delay of about 150 ms in the 
human smooth pursuit eye movement system 
(Rashbass, 1961). For example, when a target starts to 
move there is a 150 ms delay before the eye starts to 
move, as shown in Fig. 1. When the target stops there 
is a 150ms delay before the eye stops (Fig. 1). 
However, when a human (or a monkey) tracks a target 
that is moving sinusoidally, the subject quickly locks 
on to the target and tracks with neither latency nor 
phase lag. It is as if the subject creates an internal 
model of the target movement and uses this model to 
help track the target. This internal model has variously 
been called a predictor (Westheimer, 1954; Stark et al., 
1962), a long term learning process (Dallos and Jones, 
1963), a percept tracker (Yasui and Young, 1975; 
Young, 1977; Steinbach, 1976; Mack et al., 1982), a 
neutral motor pattern generator (Eckmiller, 1981), and 
a target-selective adaptive controller (McDonald and 
Bahill, 1983). To help explain how the human performs 
such zero-latency tracking, we developed a model that 
does the same. This paper explains our model. The two 
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Fig. l. Typical beginning (top) and ending (bottom) of human 
tracking. The target position (dotted line) and eye position (solid 
line) are plotted as functions of time. The time axis is labeled in 
seconds. This figure shows that the latency of the smooth pursuit 
system is less than that of the saccadic system. Smooth pursuit eye 
movements began 150ms after the target began and the saccade 
occured 200ms after the beginning. Smooth pursuit velocity began 
to fall 125ms after the target stopped and the saccade occured 
250ms after the ending. Rightward movements are upward de- 
flections. The target was moving _+ 5 ~ from primary position. The 
mean squared error between the target position and the eye position 
(pmse) was 0.3 deg 2 for the top 0.4 deg 2 for the bottom record 

essential capabilities of our model are the ability to 
predict future values of target velocity, and the ability 
to compensate for system dynamics. 

The target-selective adaptive control (TSAC) mod- 
el can overcome an inherent time delay and produce 
zero-latency tracking of predictable targets. We know 
of no other physically realizable model or man-made 
system that can do this. Previous studies of the pre- 
dictive capabilities of the smooth pursuit eye move- 
ment system have been analysis only (Westheimer, 
1954; Stark etal., 1962; Dallos and Jones, 1963; 
Michael and Melvile Jones, 1966; Steinbach, 1976; 
Lanman et al., 1978; Winterson and Steinman, 1978; 
Scbalen, 1980; Eckmiller, 1981), have produced physi- 
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Fig. 2. The Target-Selective Adaptive 
Control (TSAC) model for the human eye 
movement system 

cally unrealizable models (Dallos and Jones, 1963), or 
have produced models that did not track the target 
with zero-latency (Greene and Ward, 1979 ; Yasui and 
Young, 1975). Among physiological time-delay sys- 
tems only the saccadic and smooth pursuit eye move- 
ment systems exhibit zero-latency tracking; manual 
tracking systems (McRuer, 1980; Kleinman etal., 
1980) and even the vergence eye movement system fail 
to show prediction (Rashbass, 1981). Similarly, in the 
control engineering literature we found no systems 
that could overcome time delays and track signals with 
zero-latency (McDonald and Bahill, 1983). Therefore, 
our model for this system is unique. No other models 
produce zero-latency tracking by time-delay systems. 

1.1 Relationship of Present Model to Previous Models 

The Target-Selective Adaptive Control (TSAC) model 
(Fig. 2) has the three major branches: the saccadic 
branch, the smooth pursuit branch, and the target- 
selective adaptive controller. The adaptive controller is 
the topic of this paper. The exact details of the other 
boxes in this model are unimportant for the purpose of 
this paper, which is to explain how the target-selective 
adaptive controller produces zero-latency tracking of 
predictably moving targets. Therefore, we will only 
briefly discuss these other boxes. 

First, we had to select a model for the extraocular 
plant. The sixth-order linear homeomorphic model 
(Bahill et al., 1980) that we initially used provided 
accuracy for the fine details of saccadic eye move- 
ments. However, we soon discovered that simpler 
models worked just as well for smooth pursuit eye 
movements. For these slow movements it was suf- 
ficient, and more computationally efficient, to use a 
second-order plant (Westheimer, 1954; Zuber et al., 
1968). In fact, when we compared the outputs generat- 
ed by the second-order and the sixth-order plants, we 

found no differences in either smooth pursuit or 
adaptation. 

Many models have been proposed for the saccadic 
branch including a control systems sampled-data mod- 
el (Young and Stark, 1963; Young, 1981), a neu- 
rophysiological analog (Robinson, 1975; Van 
Gisbergen et al., 1981), and a block diagram inter- 
mediate (Becker and Jurgens, 1979). However, for the 
TSAC model, we chose a simplified saccadic branch, 
because the details of saccade generation are not 
important, only the existence of saccades is important. 
The saceadic branch contains two nonlinear, but sim- 
ple, elements: the controller and the generator. The 
saccadic controller monitors the error between target 
and eye position. When the error exceeds a preset 
threshold, the controller - after a time delay of 150 ms 
- sends a command to the saccadic generator. The 
values for the error threshold and the time delay, were 
matched to our human data. Although, the error 
thresholds and time delays varied for individual sub- 
jects and different conditions, we found 0.5 ~ and 
150ms to be common. So for the model we set the 
error threshold to 0.5 ~ when the adaptive controller is 
turned off and 0.3 ~ when the adaptive controller is 
turned on. The saccadic generator converts the saccade 
command into the required extraocular plant input 
signal. The input for the second-order plant is a step. 
The input for the sixth-order linear homeomorphic 
model is a pulse-step. 

The smooth pursuit branch is similar to that 
presented by Young and Stark (1963). Once again a 
very simple model was chosen. This model was suf- 
ficient for explaining how the target-selective adaptive 
controller produces zero-latency tracking of predict- 
ably moving targets. 

The differentiator in the smooth pursuit branch of 
Fig. 2 changes position into velocity. The limiter in the 
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smooth pursuit branch prevents a response to an input 
greater than _+ 70~ which is compatible with human 
behavior (Schalen, 1980). Different values for this limit 
have been suggested. However, the exact value of this 
parameter is unimportant, because humans only attain 
zero-latency tracking of slowly moving targets. 

The control loop integrator in the smooth pursuit 
branch was suggested by two experimental results. 
First, humans can track ramps with zero steady-state 
error (Rashbass, 1961). This implies the existence of at 
least one integrator. Second, open-loop experiments 
have demonstrated that the frequency response of the 
smooth pursuit branch has a slope of -23  dB per 
decade (Wyatt and Pola, 1979). This can be approxi- 
mated with an integrator. The gain K of the smooth 
pursuit branch has been estimated from open-loop 
experiments to be between 2 and 5 (Young, 1971; 
Mack et al., 1982). Originally we used a gain of 4 and a 
pure integrator in the forward path of the pursuit 
branch. However, this combination yielded a closed- 
loop time constant of 250 ms, and our start-up tran- 
sient data (Fig. 1) indicated that this time constant 
should be smaller. Therefore, we have recently replaced 
the pure integrator (K/s in Fig. 2) with a leaky in- 
tegrator K/(z2s+ 1) with K = 2  and ~2 =0.15 s. We are 
performing experiments to find the best value for %. 

In addition to the limiter before the control loop 
integrator, a saturation element is needed after the 
control loop integrator to prevent the output from 
producing velocities greater than the human, i.e. 60~ 
A parabolic target waveform - i.e. one with constantly 
increasing velocity - demonstrates the need for such a 
saturation element. For example, in the beginning the 
eye would track the target with little error. However, 
after tracking the target for some time the eye might 
fall behind. The target velocity could be 70~ for 
example, while the eye velocity was 60~ Since the 
retinal slip would be less than the limiter value, the 
smooth pursuit velocity would continue to increase; 
this is inconsistent with observed human behavior. The 
model, therefore, has a saturation element. 

The last integrator in the smooth pursuit branch 
converts the velocity signal to the position signal that 
is required by the extraocular plant models. 

The models of Yasui and Young (1975) and Young 
(1981) added a corollary discharge pathway to give eye 
position information to the smooth pursuit system. We 
have also included a pathway providing eye position 
information. However in our model this information is 
processed by the adaptive controller before it is sent to 
the smooth pursuit branch. Several investigators have 
suggested that perceived target velocity is the stimulus 
for the smooth pursuit system. In this context R,r of 
Fig. 2 represents this perceived velocity. 

We have discussed all of the elements of the smooth 
pursuit branch of our model (Fig. 2). However, we 
emphasize that the exact details of these boxes are 
unimportant; that whole branch could be replaced by 
anyone's model. The important aspect about our 
model is the target-selective adaptive controller. It is 
this controller that allows zero-latency tracking. Such 
a controller could be added to a wide variety of other 
models or control systems. 

2 Experimental Methods 

The movements of each eye were measured with a 
standard photoelectric system (Bahill etal., 1975, 
1981; Bahill 1981). Target and eye movements were 
amplified (0-100 Hz bandwidth), passed through a 12 
bit analog to digital converter sampling at 1000 Hz, 
and stored on a disk in the computer. The linear range 
for the measurement of horizontal eye movements 
extended __ 10 ~ from primary position. In- 
strumentation noise was less than ten millivolts: it 
was one thousandth of the full scale range. One minute 
of arc movements have been recorded with this equip- 
ment. Bandwidths for the data shown in this paper 
were 80 Hz and 4.4 Hz, respectively, for the eye po- 
sition and eye velocity records. 

Target waveforms were generated by an LSI-11 
microcomputer. Our most useful waveforms were si- 
nusoidal, parabolic, cubic and a pseudo-random accel- 
eration waveform. They are described in detail by 
Bahill and McDonald (1983). These waveforms drove 
a mirror galvanometer that reflected a laser beam, thus 
projecting a red dot on a curved screen 57 cm in front 
of the subject. Keeping the target at a fixed distance 
eliminated vergence eye movements. Our subjects' 
heads were restrained with a headrest and bite bar to 
eliminate vestibulo-ocular eye movements. 

3 Human Eye Tracking 

Humans can learn to track any predictable waveform 
that is smooth and periodic, provided the target does 
not exceed certain frequency, velocity and acceleration 
limits (Bahill and McDonald, 1983). For example, 
Fig. 3 shows zero-latency tracking of a cubic wave- 
form: the mean square error between target and eye 
position was 0.04 deg 2. These small mean square errors 
show not only that our subjects were tracking well, but 
also that our instrumentation system was reliable: 
these mean square errors represent the sum of human 
error, measurement nonlinearities and instrumen- 
tation noise. Note also that the eye velocity dots 
cluster around the target velocity line. This further 
indicates that the human was tracking the target with 
the appropriate waveform. 
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Fig. 3. Human zero-latency tracking of cubic target 
waveform. The top record shows eye position (solid) 
and target position (dotted); the bot tom record shows 
target velocity (solid) and eye velocity (dotted). Time 
axis is labeled in seconds. The prose was 0.04 deg a and 
the velocity mean squared error (vmse) was 1.7 deg2/s 2 

To estimate the gain K of the smooth pursuit 
branch of Fig. 2, we performed a series of "open-loop" 
experiments. In these experiments we made a target 
movement and waited for the eye to respond. When 
the eye moved, we used the measured eye position 
signal to instantaneously move the target by the same 
amount. Thus the eye movements became ineffective in 
correcting the retinal error and the feedback loop was 
in essence opened. In this mode the ratio of target 
velocity to eye velocity equals the forward-path gain, 
K, divided by the frequency, s. For sinusoidal target 
motions, the forward-path gain was between 2 and 5 
during the first 500 ms after the loop was opened. After 
this, strange things happened. Sometimes the gain rose 
as high as 20. And sometimes there was an amazing 
absence of saccades although the position error was in 
excess of 1 ~ When this occured, the eye movements 
were larger than the target movements ; sometimes the 
eye movements were symmetric about the target and 
sometimes they were offset. This off-foveal tracking 
without saccades has been shown previously in open 
loop experiments (Wyatt and Pola, 1979 ; Mack et al., 
1982; Leigh et al., 1982). There are several possible 
explanations for the strange behavior after the first half 
second. First, although the retinal error is held con- 
stant this does not get rid of the effects of the adaptive 
controller. Second, the subjects may have voluntarily 
suppressed saccades. Third, the smooth pursuit system 
is a foveal tracking system, but in these open-loop 
experiments the target was not on the fovea, therefore, 
a peripheral tracking system had to be used. Fourth, 
for large eye movements the instrumentation system 
was driven into a nonlinear region. Therefore, eye 
movement turn arounds were caused by the instru- 
mentation nonlinearity and not by the open-loop 
system. Fifth, the subjects could have noticed the 
change in target movement and volitionally changed 
their control strategy. In spite of these difficulties, we 
found enough good data to suggest that the smooth 
pursuit forward-path gain is between 2 and 5. 

How can humans attain zero-latency tracking of 
predictable waveforms in spite of the inherent 150ms 
time delay? To answer this question we constructed a 
model that could also overcome the effect of a large 
time delay and achieve zero-latency tracking of targets 
moving with predictable trajectories. 

4 T h e  T S A C  M o d e l  

The TSAC model of Fig. 2 has three branches: the 
saccadic branch that corrects position errors; the 
smooth pursuit branch that corrects velocity errors; 
and the target-selective adaptive controller that syn- 
thesizes the adaptive signal that allows the smooth 
pursuit branch to match the target velocity without a 
time delay. 

The target-selective adaptive controller performs 
three functions: identification, evaluation, and syn- 
thesis. The identification function looks at retinal 
velocity error and eye position, 0. It computes target 
amplitude, velocity, period, and the time since the last 
change in direction. When the target changes direction, 
the parameters are stored, and collection begins in the 
new direction. It only identifies targets that have 
smooth waveforms (no velocity discontinuities), and 
frequencies between 0.1 and 1 Hz. A target with fre- 
quency below 0.1 Hz is considered to be stationary. If 
the target stops for more than 50 ms, or if both position 
and velocity errors rise above their thresholds (0.3 and 
3~ then the evaluation function sets the adaptive 
signal to zero. When the target is identified, an adap- 
tive signal, rc(t), is synthesized to cause tracking with 
no time delay or velocity error. 

Zero-latency tracking can occur after only one- 
quarter cycle of target motion. This observation is 
reflected within the model as a default target identifi- 
cation. This default waveform is used by the adaptive 
controller when a smoothly moving target is present, 
but there is not yet sufficient information for identifi- 
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cation and synthesis. When the default is correct, 
tracking follows that of the best experienced subjects. 
When the default is incorrect, tracking is typical of 
inexperienced subjects. 

The various elements of the model interact. The 
adaptive controller reduces the threshold of the sac- 
cadic controller when the position error drops below 
0.3 ~ while the velocity error is less than 3~ this 
interaction is represented in Fig. 2 with a dashed line 
from the adaptive controller to the saccadic controller. 
The saccadic controller inhibits the evaluation func- 
tion of the adaptive controller during a saccade; this 
control signal pathway is shown in Fig. 2 with a 
dashed line from the saccadic controller to the adap- 
tive controller. During a saccade the saccadic con- 
troller also sends a hold command to the smooth 
pursuit control loop integrator. This command pre- 
vents the integrator from responding to the low ve- 
locity portions of a saccade; this control signal path- 
way is shown in Fig. 2, with a dashed line between the 
saccadic controller and the smooth pursuit integrator. 

4.1 The Adaptive Controller 

We have developed a general control scheme that 
allows a system to overcome a time delay and track 
predictable targets with zero latency (McDonald and 
Bahill, 1983). In this scheme, the controller must be 
able to predict future values of the target, and it must 
know the dynamics of the system. Then it can generate 
a signal, which when added to the target signal, can 
make the output equal to the input, which is zero- 
latency tracking. The smooth pursuit system is a 
velocity tracking system, so the controller must be able 
to predict future values of target velocity. For example, 
if ~(t) is the present velocity, it must produce ~(t + z) 
where �9 is the time delay of the smooth pursuit system. 
Next the controller must modify this equation to 
compensate for the dynamics of the system. For the 
model of Fig. 2 this compensation consists of taking a 
derivative and dividing by K (McDonald and Bahill, 
1983). Thus the adaptive signal becomes 

1 d 
r~(t) = ~- ~ ~(t +-0. (1) 

To further illustrate our technique for compensating 
for system dynamics we note in passing that if we 
replace the pure integrator (K/s in Fig. 2) with a leaky 
integrator (K/z2s + 1), then the A matrix is - 1/z v the b 
vector is 1/~ 2 and the adaptive signal becomes 

r~(t)= ~ ~z2~( t+z)+?s( t+z)  . 

The adaptive signal allows the smooth pursuit system 
to overcome the time delay. To synthesize this signal 

the adaptive controller must be able to both predict 
future values of the target velocity, and compute first 
derivatives. These are reasonable computations for the 
human brain. 

4.2 Two Methods of Predicting Target Velocity 

Our model uses two alternative methods for predicting 
target velocity: menu selection and extrapolation 
using a difference equation. We are currently working 
on a third technique using a Kalman filter. The first 
method has a list, or menu, of the target waveforms 
that the model has learned to track. Some of the 
equations on present menu are for sinusoidal, para- 
bolic, and cubic waveforms. These equations are de- 
rived as follows. For sinusoidal motion the target 
velocity is given by 

i's(t) = Aco cos(cot) (2) 

so the adaptive signal, derived by substituting (2) into 
(1), is 

- -  A c o  2 

r~(t)- K sinco(t+,). (3) 

The computation of rc(t ) requires estimation of the sinu- 
soidal amplitude A and frequency co, and knowledge 
of the system gain K and time delay z. If the controller 
identifies the target waveform as sinusoidal it will use 
this equation. On the other hand, if the controller 
identifies the target waveform as parabolic, then it will 
use the following parabolic equations. 

- 3 2 A  T 
~s(t)= T2 [t-T~4] for 0 < t < ~ - ,  (4) 

where A is the amplitude and T is the period of the 
target. The adaptive signal needed for zero-latency 
tracking is derived from Eqs. (1) and (4) 

- 3 2 A  T 
re(t)= KT 2 for - ~ < t < ~ - r .  (5) 

The other half of the period is of identical form but of 
opposite sign. If the controller identifies the waveform 
as cubic, then it will select the cubic equations. The 
velocity of the cubic target waveform is given by 

10.39A 
~ s ( t )  = - -  [6(t /T)  2 -  6(t/73 + 13 (6) 

T 

and the adaptive signal is 

6A [2(t+z) 1]. 
rc(t)=-lO.39~Ty[ y (7) 

The menu selection method of synthesizing the adap- 
tive signal rc selects the correct target equation from 
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the menu [Eqs. (2), (4), and (6)] and then computes the 
required adaptive signal. Novel waveforms are tracked 
poorly until a new equation is added to the menu. 

The second method of predicting target velocity 
uses a second-order difference equation. The com- 
pensation for system dynamics is again differentiation 
and division by K. Therefore, the resulting adaptive 
signal is 

re(In + 1] h) = ai'~(nh)- b~([n- 1] h) + ci'~([n- 2]h) (8) 

where 

z 2 z - h  z - h  
a= h2 K b= h2-- ~ -  c= ha ~ .  

The element z is smooth pursuit delay, h is adaptive 
sampling period (normally 5 ms), n is the index for 
discrete time, and K is the smooth pursuit forward 
path again. We performed several simulations to de- 
termine if the difference equation predictor, Eq. (8), or 
the menu selection predictor, Eqs. (3), (5), and (7), 
produced more human like results. 

Fig. 4. Position as a function of time for the TSAC model tracking a 
sinusoidal target. The top axis shows the smooth pursuit branch 
alone. The middle axis has both the smooth pursuit and the saccadic 
branches. The bottom axis includes the saccadic branch, the smooth 
pursuit, and the target-selective adaptive controller 

5 Model Results 

Each branch of the TSAC model can be turned on and 
off independently. Figure 4 shows the model (solid line) 
tracking a sinusoidal target (dotted line) with various 
branches isolated. For the top record the smooth 
pursuit branch was turned on, but the saccadic branch 
and the adaptive controller were turned off. For the 
middle record the smooth pursuit and saccadic 
branches were turned on, but the adaptive controller 
was turned off. For the bottom record all three 
subsystems were turned on. Only the bottom record 
resembles normal human tracking. 

Now that we had a model, we used it to fine tune 
the parameter values of the system. Our open-loop 
experiments suggested that the smooth pursuit 
forward-path gain (K in Fig. 2) was between 2 and 5. In 
order to narrow the range for this gain we used the 
model. Figure 5A shows the model tracking a 0.3 Hz 
parabolic target waveform with a forward-path gain of 
4. Figure 5B, in contrast, shows the end of tracking 
with a gain K of 2. The lower gain caused the smooth 
pursuit velocity to decay slower, and produced mul- 
tiple saccades at the beginning and ending of tracking. 
The gain of 4 best matches the end of tracking 
transient from human experimental data. Therefore, 
we used this value for all subsequent simulations. 

The bottom traces in Fig. 5 show the control 
signals rj. These control signal are vastly different for 
our predictor techniques. In Fig. 6 the TSAC model 
with the difference equation predictor [Eq. (8)] is 
shown tracking a 0.3 Hz parabolic target waveform. 
Although the adaptive signal rj varied widely, the 
position and velocity tracked the target well. 

To learn more about the smooth pursuit system we 
ran the model in a manner that it was not designed to 
run in. The effects of selecting the wrong waveform 
from the model's menu are shown in Fig. 7, where a 
parabolic adaptive signal, Eq. (3), was used when the 
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Fig. 5. A TSAC model with menu 
selection predictor tracking 0.3 Hz 
parabolic target waveform. Gain, K, was 
4. The top axis shows target (dotted) and 
model (solid) position. Center axis 
contains graph of target (solid) and eye 
(dotted) velocities. The bottom axis 
contains position error (solid) and the 
signal rj of Fig. 2 (dotted). The time axis 
is labeled in seconds. The pmse was 
0.09 deg 2, and vmse was 34.9 deg2/s 2 for 
the entire record including starting and 
stoping transients. B Termination of 
tracking after the gain K has been 
reduced from 4 to 2. For the entire 12 s 
simulation, the pmse was 0.15 deg 2 and 
the vmse was 57.4 degg/s 2 
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m o d e l  ve loc i ty �9  T h e  p r o s e  w a s  0 .24  d e g  2 a n d  t h e  v m s e  w a s  
24 .2  d e g 2 / s  2 

target waveform was sinusoidal. The tracking was zero 
latency, but the error was large and there were many 
saccades. Figure 8 shows a human's performance with 
a large error and many saccades. The human's velocity 
looks like the velocity of a parabolic waveform, while 
the target waveform looks sinusoidal. This human 
tracking suggests a wrong guess. Examples such as 
these were common for sinusoidal and parabolic target 
waveforms. However, we did not find such illustrative 
examples for the cubic waveform. 

6 Discussion 

6.1 Comparison of the Two Predictor Methods 

The TSAC model emulates the human; it can achieve 
zero-latency tracking of predictably moving targets. In 
this model we used two alternative methods of predict- 
ing target velocity. Both of these methods enabled the 
model to track sinusoidal, parabolic, and cubic wave- 
forms. The difference equation predictor [Eq. (8)] 
provides only an approximation to the equations of 
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Fig. 8. H u m a n  t rack ing  s inusoida l  target  waveform. 
The top  trace shows target  pos i t ion  (dotted) and  eye 
pos i t ion  (solid), the middle  trace shows target  velocity, 

and  the b o t t o m  trace shows eye velocity�9 The eye 
veloci ty  waveform does no t  ma tch  the target  veloci ty 
waveform. The pmse was 0.18 deg 2 and  the vmse was 
5.8 deg2/s 2 

Table  1. Pos i t ion  and  veloci ty mean  square  errors  for s inusoidal  
t r ack ing  by exper ienced h u m a n s  and  by the TSAC model  with the 
menu  select ion and  difference equa t ion  predic tors  

F r e -  

quency 
(Hz) 

H u m a n  Menu select ion Difference equa t ion  

pmse  vmse pmse  vmse pmse vmse 
(deg 2) (deg/s 2) (deg 2) (deg/s 2) 

0.1 0.001 0.03 0.021 0,04 
0.2 0.03 1.8 0.001 0.12 0.008 0.14 
0.3 0.06 2.9 0.002 0.32 0.019 8.17 
0.4 0,03 1.1 0.001 0.63 0.24 89.0 
0.5 0.077 1.07 0.67 355.0 
0.6 0,08 2.0 0.009 1,76 1.18 510.4 

0.7 0,19 16.8 0.015 2.59 2.42 1261.0 
0.8 0.018 3.88 6.36 2906.0 
0.9 0.086 16.40 11.0 3942.0 
1.0 0.030 6.90 12.0 4967.0 

the menu selection predictor [-Eqs. (3), (5), and (7)], 
which explains why its tracking was less accurate. The 
relative accuracy of the two methods in tracking a 
sinusoid is reflected in Table 1. At low frequencies, 
both predictors perform better than the human. 
Between 0.6 and 1 Hz, the human does better than the 
difference equation method, but not as well as the 
menu selection method. At higher frequencies, the 
menu selection predictor performs much better than 
the difference equation predictor. Because of its smal- 
ler velocity errors, we feel the menu selection predictor 
is more human like. We have run several other experi- 
ments to help select between the two predictors. 

We favor the menu selection predictor over the 
difference equation predictor, because the menu selec- 
tion predictor, like the human, can learn new target 
waveforms. Specifically, when we want it to learn a 

new waveform we add a new equation to its menu. The 
difference equation predictor was designed to track 
sinusoids and parabolic waveforms; it cannot learn 
new waveforms. (However, we are developing a differ- 
ence equation predictor with adaptive coefficients that 
may be able to learn new waveforms.) Because the 
menu selection predictor can learn new waveforms, we 
believe that the human data are best modeled with a 
menu selection predictor. 

Another method of comparing these two predictors 
involves experiments with animals. Research with 
monkeys suggests certain areas of the brain contain 
cells that respond to eye velocity (Eckmiller, 1981; 
Eckmiller and Mackeben, 1980). With sinusoidal tar- 
get waveforms, it is difficult to differentiate between 
velocity cells, position cells with a time delay, and 
control signals such as r c of Figs. 5 and 6. However, 
with our novel target waveforms, cells representing 
position, velocity, acceleration, or control signals could 
be differentiated. Such a study is being planned. Our 
target waveforms will be taught to a monkey, then 
recordings will be taken from the brain. Of course 
measuring signals such as Use of Fig. 2 would not help 
validate either the menu selection predictor or the 
difference equation predictor because both produce 
similar signals. However, measuring signals such as rj 
or r c of Fig. 2 would help to differentiate between these 
two predictors, because these signals are different as 
shown in Figs. 5 and 6. When the eye is tracking with 
no velocity error, r s is equal to the output of the 
adaptive controller, r c. If cells could be found with 
firing patterns similar to rs in Fig. 5, then lesions of these 
cells should abolish zero-latency tracking of predict- 
able waveforms. Then if human patients were found 
without the capability of zero-latency tracking, sugges- 
tions could be made about possible lesion sites. (In 
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conjunction Dr. B. Todd Troost we have recorded one 
patient with spinal-cerebellar degeneration that ap- 
peared to lack the capability for zero-latency tracking.) 

6.2 Limitations of the Model 

The smooth pursuit branch of our model only corrects 
for velocity errors. Under certain conditions static 
position errors can also cause slow eye movements 
(Wyatt and Pola, 1981; Kowler and Steinman, 1979). 
We investigated two ways of enlarging our model to 
accommodate this behavior: (1) changing the smooth 
pursuit branch into a position plus derivative (PD) 
controller, and (2) adding a low-gain, position-in 
position-out, pathway around the smooth pursuit 
branch. Only the later modification was successful. It is 
included in the box labeled other inputs. 

Human open-loop tracking behavior varies from 
day to day and from subject. The model's 
behavior does not. When we first opened the loop on 
the model we found a saccade every 200 ms. This is not 
characteristic of the human so we turned off the 
saccadic system. Then we found that the model be- 
havior approximated one of the human patterns de- 
scribed earlier. The eye position trace looked like the 
target position trace, except that it was larger, there 
was a phase lag, and there was a large time varying 
position offset. The phase lag of our model was larger 
than the phase lag of our humans, so we know that our 
simple model is not yet a perfect match to the human. 
Matching the human open-loop behavior will be the 
toughest challenge for future models of the smooth 
pursuit system. 

7 Conclusions 

What does this modeling teach us about the physiolog- 
ical system? We know that humans can overcome the 
150 ms time delay of the smooth pursuit eye movement 
system, and track smoothly moving visual targets with 
zero-latency. To do the same, the model had to be able 
to predict target velocity and compensate for system 
dynamics. Therefore, we think that humans have the 
ability to predict, and they have internal models of 
their system dynamics. Because the human learns new 
waveforms, we think the human uses a menu selection 
algorithm to make the predictions. 
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