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ABSTRACT:  This  heuristic paper  presents 
several simple  techniques for analyzing the 
stability of time-delay  systems. It explains 
the Smith predictor control  scheme for 
time-delay  systems  and  shows how errors 
in modeling the plant  parameters can 
cause  instability. Then an  adaptive  con- 
troller is added  to the Smith predictor 
system; this pedagogical example offers  a 
complete  derivation of a simple adaptive 
control  system.  Finally,  a new control 
scheme is discussed that allows  zero- 
latency tracking of predictable  targets  by  a 
time-delay  system. 

Introduction 
If a time delay  is  introduced  into  a  well 

tuned system, the gain must be reduced to 
maintain stability [l]. The Smith  predictor 
control  scheme  can help overcome this 
limitation  and allow larger gains [2], but it 
is critical that  the  model  parameters ex- 
actly  match the  plant parameters [3-51. An 
adaptive  control system [6] can be added to 
the  Smith  predictor to change the  model 
parameters, so that they continually  match 
the  changing plant parameters [3]. This 
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new  system has  good  performance charac- 
teristics, but  it tracks input  signals  with  a 
time  delay. In some circumstances  it  is 
possible  to design  time-delay  systems  that 
track  predictable  targets with no  latency 

The examples of this paper  treat time- 
delay  systems, the Smith  predictor,  and an 
adaptive  control  system.  The  examples are 
complete  and the derivations  are  explicit; 
no  steps  are  omitted. Many  research  papers 
discuss adaptive  control systems, but most 
of them  are  too complicated for the novice 
to  understand; few  textbooks  have  incor- 
porated  simple  examples of adaptive  con- 
trol  systems.  One purpose of this  paper is 
to  fill  this  gap.  This  paper  shows  some 
simple  techniques that can  be used to  gain 
insight  about time-delay systems, explains 
the  Smith  predictor  control  scheme, and 
presents a complete, but simple, example 
of an  adaptive  control  system. 

Why  are  time-delay sysrems more com- 
plicated? 

Time delays  occur frequently in chemi- 
cal,  biological,  mechanical,  and electronic 
systems.  They  are  associated with travel 
times  (as of fluids in  a chemical  process, 
hormones in the  blood stream, shock 
waves in the earth,  or  electromagnetic 
radiation in space), or with computation 
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times  (such as those  required for making  a 
chemical composition analysis,  cortical 
processing of a  visual image, analyzing  a 
TV picture by a robot,  or  evaluating  the 
output of  a digital control  algorithm) [I], 
[3],  [7-lo].  Most elementary  control the- 
ory textbooks slight  time-delay systems, 
because they are more difficult to analyze 
and  design. For example, in time-delay 
systems  initial  conditions must be specified 
for the whole interval from -0 to 0, where 0 
is the time  delay.  For simplicity, in this 
paper I only  discuss  steady-state  behavior, 
or equivalently I assume the initial condi- 
tions are zero. 

A unity-feedback,  closed-loop  control 
system with KGH = K/(Ts+ 1) has a trans- 
fer function of 

Y(S) K -- - 
R(s) 7 s  -I- 1 f K 

This is stable for - 1 < K. If a  time delay of 
the form  e-@ is introduced in the forward 
path, stability is no  longer  guaranteed. The 
transfer function of such  a  system  is 

Y(S> Ke-Se -- 
R(s) -(TS f 1 f KeCSe) 

(1) 

The stability limits are not obvious. The 
exponential in the numerator  does not 
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bother us, therefore,  it will be left undis- 
turbed. The exponential in the denominator 
will be approximated by an algebraic ex- 
pression.  The following four approxima; 
tion  techniques have  been suggested. 

1. By a  mathematician, the Taylor 
series expansion: 

(2) 

2. By  a  process  control  engineer, the 
Pade approximation: 

3.  By  a digital control  engineer,  the z- 
transform equivalent: 

,-so - - n h  - 2  

where h  is the system sampling period,  n 
is  an integer, and nh = 8.  

4. And by a  classical  control engineer: 

1 ,-se = 
(1 + s0/n)" 

where  n is a large number. 

The first technique implies that the orig- 
inal  system has an infinite number of poles 
that  can be reduced by using an approxima- 
tion. If 8 is  small so that se << 1 for 
frequencies of interest, then we can derive a 
single pole solution, by using e-@ = 1 - st?, 
in equation (1). The  transfer function be- 
comes 

W S )  Ke-Se -- 
R(s) (7 - K0)s -E (K -I- I )  

- 

By the Routh-Hurwitz  criterion this transfer 
function is stable if all  the  denominator 
coefficients  are  positive. This implies - 1 < 
K < 710. The following two-pole solution 
can  be derived by substituting the first three 
terms of ( 2 )  into (1): 

Y(s) 2KePse -- 
R(s) KO's' f 2(7- K0)s + 2(K 1)  

- 

All denominator  coefficients will be posi- 
tive and the  system will be stable if 

0 < K < r/8. 

Using  the Pade approximation in equation 
(1) produces  a third transfer  function. 

Fig. 1. Block  diagram  for  a  typical  time-delay  system. 

l L  

Fig. 2. System  performance  could  be  improved  if  the fictitious variable 
B could be fed  back  instead  of  the  output Y. 

Y(S)  - K(2 - so) -- 
R(s) 0rs2+(2r+0-K8)s+2(K+  1)  

All denominator  coefficients will be posi- 
tive and  the system will be stable if - 1 < K 
< 1 + 2718. These  three approximations 
yield  different stability limits.  This should 
be expected because they are approxima- 
tions. For the sake of comparison, we can 
use the Nyquist criterion [ 111 to derive 
stability  constraints for equation (1 ). These 
constraints  depend  on  the relationship of 8 
to 7: 

for 8 < < r stability requires 

- 1  < K < v' 1 + (1.57~/e)';  

for 8 = r stability  requires 

- 1  < K < V' I + (2r/eI2;  

and  for 8 > > r stability  requires 

- 1  < K < + (nT /e )2 .  

The  Taylor series approximations err  on the 
safe  side. The Pad$: approximation could 
indicate  stability for some unstable systems. 

The introduction of a time delay makes it 
more  difficult to access the stability of a 
system. The approximation methods shown 
here are not? in general,  good methods for 
assessing  the stability of a  system.  Some- 
times they yield bizzare  results,  as shown 
on p. 33 of [3]. However, they do allow us 
to make the following generalization. Large 
gains  can only be used in timedelay sys- 
tems if the plant time delay, 8 :  is  small 
compared  to the plant time constant, r .  

The  Smith  Predictor 

If a  time delay were introduced into an 
optimally tuned system,  the gain would 
have to be reduced to maintain stability. 
The  Smith predictor algorithm [2]  avoids 
this  reduction of gain and consequent poorer 
performance. 

The following development of the Smith 
predictor algorithm is based on Despande 
and  Ash [ I ] .  The block diagram for con- 
ventional control of a time-delay system is 
shown in Fig. 1. For  simplicity, I will use 
the  shorthand notation of Marshall [3]: R 
represents the system  input, R(s); C repre- 
sents the  controller, C(s); L represents po- 
tential load disturbances,  L(s); G, repre- 
sents plant dynamics, G,(s); T, represents 
the  plant  time delay, T,(s); and Y, repre- 
sents the plant output, Y,(s). For a  simple 
first-order plant with a pure time delay 
G, = Kp/(rps + 1) and T, = e -S*P. 

As shown in Fig. 1, the process can be 
conceptually split into delay free system 
dynamics and a pure time delay. I f  the 
ficticious  variable B could be measured, we 
could connect  it to the controller,  as shown 
in Fig. 2. This would move the time delay 
outside the control  loop.  The signal Y, 
would be the same  as the signal B after  a 
delay of 8,. Since  there would be no delay 
in the feedback  signal, the response of the 
system would be improved. Of course, this 
cannot be done in a physical system, be- 
cause the time delay is probably distrib- 
uted-not  lumped-and there is no a priori 
reason to place  the  time delay after the plant 
dynamics rather than before it. 
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To improve  the  design let us model the 
plant as shown  in Fig. 3. G ,  represents the 
model of  the plant dynamics, T, represents 
the  model of the plant time  delay, and E 
represents the error between the output of 
the model and the output of the plant. For 
the  previous  example of a f i t  order pcg;s 
G ,  = K,/ (T ,s  + 1) and T, = e 
Although  the  fictitious variable B is una- 
vailable, B, can be used as the feedback 
signal, as shown in Fig. 3. This arrange- 
ment  controls  the model well, but not the 
overall system.  The  control of the system 
output, Y,, is open loop: it will not ac- 
commodate  either load disturbances or inac- 
curate models. To compensate for these 
errors a  second  feedback loop is imple- 
mented  using E, as shown  in Fig. 4. This is 
the Smith  predictor  control strategy. The 
controller C is a conventionru PI (Propor- 
tional plus Integral), PD (Proportional plus 
Derivative),  or PID (Proportional plus In- 
tegral plus  Derivative)  controller, which can 
be tuned  more closely because the effect of 
the time  delay in the feedback loop has been 
minimized. 

Sometimes the Smith predictor is  drawn 
as shown in Fig. 5, which is equivalent to 
Fig. 4. The closed-loop  transfer function of 
this  system, for L = 0, is 

Yp(s) CGPTP -- - 
R(s) 1 + CG, -CG, T, + CG,Tp 

(4) 

If G ,  = G ,  and T, = T, this reduces to 

Yp(s)  CGpTp - 
R(s) 1 + CG, 

(5) 

The effects of the  time delay have been 
removed  from the denominator of the trans- 
fer function, and the system performance 
has been  improved.  However,  it tracks in- 
put variations with a time delay. 

Assuming perfect model matching, the 
transfer function between load disturbance 
and system  output  becomes 

- GpTp [ 1 + GmC(1- T,)] - ( 6 )  
1 +CG, 

Once again there is no time  delay in the 
denominator.  However,  the system  tracks 
disturbances with  a time  delay.  The system 
has  poor  dynamic response  unless  load 
disturbances  are restricted to frequencies 
below 2/0, Hz, where 0, is  the magnitude 
of the plant  time  delay  in seconds.  For 

l L  

I I 

Fig. 3. Preliminary  form of the  Smith  predictor. 

I L  

I I i 
I I I 

Fig. 4. The complete  Smith  predictor  control  scheme. 
_ _ _ _ ~  ~ 

simplicity, we will  not consider load  dis- 
turbances again in this paper. 

~~ 

Stability of the  Smith 
Predictor  Control  System 

The  dashed box  labeled G,, in Fig. 5, 
calIed  the  Smith predictor controller, is a 
stable  closed-loop  feedback control  system 
with a transfer  function of 

” 

The  condition  for instability is CG,- 

CG,T, = -1, or 

Clearly  the magnitude  of  the  righthand 
side  is  never  one.  Therefore,  the  controller 
G,, is  stable.  However, when this con- 
troller  is used in a closed-loop  system, the 
result may  be  unstable. 

What  happens if the  model does not 
match  the plant exactly? Following the 
development of Marshall [3], let us  set 
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G , = G p + A G p = G + A G  

T, = , - ~ ( O ~ + A B , )  = e-sepe-sAep 

= T,ATp = TAT 

This  simplified notation gets rid of the 
subscripts  and allows us to redraw Fig. 5 as 
Fig. 6. 

Suppose that  the  model of the plant 
dynamics is  in error, so that AG is non 
zero, but the  model  of  the  plant time delay 
is  correct, so that T, = T, and AT = 1. 
The  magnitude of  the time delay  affects the 
controller via the AG term in Fig. 6. This 
is  a  positive feedback loop  of  T AG. 
Therefore,  errors in estimating  the  plant 
gain  or  time constants  could  cause  instabil- 
ities. 

If  there is an  error in modeling  only the 
time  delay so that AG = 0, then the  inner 
positive  feedback loop of Fig. 6 becomes 
zero.  We  are  left with a  simple  closed-loop 
feedback  control system with feedback of 
(1 -AT). The  time  delay in this feedback 
loop  could  cause instability. 

Alternatively, we can  study  the transfer 
function,  equation  (4), to see the  effects of 
a mismatch between  model and plant pa- 
rameters.  Let us use  a  simple plant, G ,  = 

G, = l/(s + I) ,  a PD controller, C = 
4(0.5s + I ) ,  a  plant time delay of 1 sec, 
and a model  time delay of 0.1 sec. 

(2s + 4)Tp - - 
3s 4- 5 4- (2s + 4)(Tp - Tm) 

Using  the  Pade approximation for the ex- 
ponentials yields 

T - T  = ,-s - e -o* l s  
P m  

-36s - - 
s2 + 22s 4- 40 

This  produces 

Y,(s) 2Tp(s3 -I- 24s2 + 84s f 80) __- - 
R(s) 3s3 - S’ -I- 86s 4- 200 

The  negative  coefficient in the denomina- 
tor  shows that  this is unstable. The Pad; 
approximation was used  here for peda- 
gogical  reasons. It is not a  good  general 
technique  for analyzing  stability  of  Smith 
predictor  systems.  Its  use indicates  stabil- 
ity for many  unstable systems.  The tech- 
niques of Ioannides,  Rogers and  Latham 
[4] or  Palmor  [5]  are much  more compre- 
hensive.  For  example, if we use  the  Pade 
approximation on equation  (4), with G ,  = 

I/(s + l ) ,  G, = 1/(3s + l) ,  C = 4(0.5s + 
I ) ,  and  plant and  model  time  constants  of 1 
sec,  we  get 

‘ I  l?G 

1- AT 

Fig. 6. A rearrangement  of  the  Smith  predictor illustrating effects of 
model  and  plant  mismatches.  Based on [3]. 

Y,(s) (6s’ + 14s 4- 4)Tp 

R(s) s2 + 18s 4- 5 
-- - 

This  transfer function appears  to be stable 
by use of the Pad$: approximation  and the 
Routh-Hurwitz  criterion, although it has 
been shown to  be unstable by the tech- 
niques of [4],  [5]. 

An  Adaptive  Smith 
Predictor  Control  System 

If is often  advantageous to change the 
controller to compensate for  changes in 
plant  parameters caused by age,  wear, 
temperature,  fatigue,  disease, ocean  cur- 
rents,  etc.  Let us try to do this for the 
Smith  predictor of Fig.  4. Let  us  presume 
that  the plant time delay changes, and 
design a system  that will  automatically 
change the  model time  delay. 

The  easiest way to  do this would be to 
apply a step input  and  measure  the output. 
From  this  we could compute the  plant time 
delay.  Normally we cannot do this  because 
applying a step input to an operating plant 
would  disturb the process we wanted to 
control  (this would become annoying if we 
did it every  second).  Therefore, we desire 
a generalized on-line  method of adapting 
the  model  time  delay. 

There  are many different types  of  adapt- 
ive  control  schemes [ 121. One  easily un- 
derstood  scheme is  the  model  reference 
adaptive  control  scheme discussed by 
Landau [ 6 ] .  In one form  of  this  scheme  the 
controlled  system, which is composed  of  a 
time-varying plant  with  adjustable param- 
eters,  is  in parallel with a  well  defined 
model.  The  parameters of  the  controlled 
system  are varied to make the controlled 
system  behave like  the  parallel  model [ 131, 
[ 141. This description is close  enough to 

that of the Smith predictor to make  this 
type of adaptive  control  applicable. 

TWO major  items must be  chosen before 
an adaptive  controller can be designed:  a 
performance criterion  and  a  method  of 
function  minimization. Typical  perform- 
ance  criteria  are minimization of time, 
energy, monetary  cost: error,  or square 
error.  Typical function  minimization  tech- 
niques  include  gradient,  conjugate  gra- 
dient,  and  Fletcher-Powell. 

The adaptive control scheme 
Combining  examples by Landau [6] and 

Marshall (31, let us minimize the square 
error between the model  output and plant 
output, e = (y, - y,), using the gradient 
method of minimization. 

The  performance function is 

J = 0.5 e2  dt. 1 
Let  the magnitude of the  plant time delay 
be  represented by 0 ,  and assume its initial 
value, e,,, has been changed by a small 
amount  called AO,. In the  model  reference 
approach we would now change-gains in 
the  controlled  system  to minimize the per- 
formance  function.  However,  for  our 
Smith  predictor we wish to modify the 
model  time  delay so that  it  tracks the plant 
time  delay thus minimizing  the  performance 
function.  The gradient  method  tells us 
AO, = -kVJ.  The gain  k must be 
selected  for  each  application. With only 
one  parameter the gradient  is simply  the 
partial  derivative. 

The  mathematics  become complicated if 
we allow both O P  and 8, to change  con- 
tinuously.  Therefore, although 8,  changes 
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continuously,  we  will change 8, only  at 
discrete  intervals.  We will let the identi- 
fication  and control phases  alternate. First 
we  identify changes in 6,. 

aJ 
Ad, = -k - 

The  rate  at which  plant time delay char,ges 
is 

d 

dt 
= -AO, 

Using  Equation (9) 

If the  adaptation is slow. - 'e can inter- 
change  the  order of differentiation 

a dJ  
,g =-k- - P ae, dt 

ae dt  
= - k -  - 0.5 e2  dt 

-k ae2 
e,=- - 

2 ae, 
By the chain rule 

Finally, 

Now,  we  can compute  the desired  change 
in the  model  time delay as 

AO, = AO, = 6, dt  / 
=-k e- d t  I a:: 

But  now  how  do  we  get  aelae,?  To a  first 
approximation y, is not a  function of e,. 
(For  each specific  application  this  should 
be  verified by simulation  as  was  done by 
Marshall [3] .) Therefore, 

Substituting  (12)  into  (11) we get 

AO, = -k e - dt I ;;: 
We  are pleased with this  result  because 
the 6y,/dB,, called a sensitivity  func- 
tion,  can  easily be computed. From equa- 
tion (4) we  have 

For  simplicity  the  transfer  function has 
been  labeled M(s), and  the  complex  fre- 
quency  argument, s ,  will now be  omitted. 
Now,  we  calculate  the  partial  derivative 

5_ a YP 
ae P 
- (-sCG,Tp)( 1 4- CG,  -cG,T,)R - 

( 1 + CG, + CG,T, - CG, T, l2 
Using (14) twice  yields 

Figure 7 shows  one method for producing 
dy,/dO,. It has  been assumed  that  the 
Laplace transform  of  ay,(t)/a8, is equal 
to au,(s)/ae,. 

The  pure  derivative  function  shown in 
this  figure  would not be  physically real- 
izable  with  analog  components.  How- 
ever,  with a digital  computer it could  be' 
approximated  over any given  frequency 
range. The boxes  labeled G, and T, in the 
lower  Smith predictor are supposed to 
contain  the  plant  values, but they  are not 
available.  Therefore,  we  will  have  to  use 
G ,  and T, and  update  them  as  often as 
possible. 

Computing  the  gain k 

NOW,  we  still have to  evaluate the con- 
stant  k in (13).  From  equations ( 1 1 )  and 
(13)  we  have 

The  error,  e,  is a function of the  plant 
time  delay. For a small  change  in the time 
delay, AO,, using  the  definition of the 
differential  and  assuming  the  initial value 
of  this  error  is  zero (so that A e = e), we 
get 

Substituting  this  and  (12)  into  (15)  yields 

ae, ae, 

A 0 can  be  removed  from  the  integral  and 

I 

I I 1 

Fig. 7. Method of generating  the sensitivity function ay,lae,. Based 
on 131. 
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then  both  sides  can be divided by kA0,  to 
yield 

If the ay,/&3, is known,  the usual case, 
then  this constant could  be precomputed. 
Otherwise, it  would have  to  be  calculated 
on line.  This now gives  the  complete 
algorithm  for  changing  the  model  time 
delay. 

Fig. 8 shows  this  implementation. 
Marshall [3] has simulated  the  system 

of  Fig. 8 (which  encompasses  the  system 
of  Fig. 7) on  both  a  hybrid  computer  and 
on a  digital  computer. It was  stable  and 
had  satisfactory  dynamics when the initial 
model  time  delay  was  wrong by as much 
as 808.  The  system  adjusted its model 
time  delay  to  within  10% c f  the  correct 
value in one  time  delay  period,  and  settled 
at  the  correct  value  in  two  periods. 

For  most  linear  systems  there  is  a  max- 
imum  value of gain  that will ensure  sta- 
bility. If a  time  delay is introduced  into 
such  a  system,  then  the  gain must be 
reduced.  Use  of  a  Smith  predictor  con- 
troller  will  allow the gain  to  be  restored  to 
its  original  value.  However, the system 
still  tracks  targets  with  a  time  delay.  Re- 
cently  many  embellishments  for  time- 
delay  systems  have  been  reported.  There 
are  ways of dealing  with  nonlinear  time- 
delay  systems  [15];  there  are ways  of 
applying  optimal  control  techniques  to the 
Smith  predictor  scheme [3], [16];  and 
there  are  ways  of  making  certain  systems 
track  targets  with  zero-latency [ 7 ] ,  [8]. I 
will  discuss  only  the  last of these tech- 
niques. 

Zero-latency  Tracking  In 
Time-delay  Systems 

In some  tracking  systems  the  target 
position  can  be  predicted, and it is  pos- 
sible  to  produce  zero-latency  tracking. To 
do  this  one  does not simply  predict  the 
future  target  position  and  feed  this  into 
the  time-delay  system.  Instead,  one  com- 
putes  an  adaptation  signal  that  depends on 
the  target  movement,  as  well as on the 
time  delay  and  dynamics of the  plant. 
This  adaptation  signal  is  applied  to  the 
time-delay  system,  and it allows  zero- 
latency  tracking [7], 181. 

Figure  9  shows  this  scheme  applied to a 
simple  state-variable  feedback  control 
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Fig. 8. An adaptive  controller on a Smith  predictor. Based on [3]. 
I 
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rig. 9. The  target-selective  adaptive  control  scheme. 

system  with  a  time  delay in the  forward 
path.  The  system  input,  ri(t). is composed 
of  two  parts;  the  reference  source,  rs(t), 
and  the  adaptive  signal,  r,(t).  When  rs(t) 
is not  a  known  target  waveform, r,(t)  is 
turned  off;  ri(t)  then  equals  r,(t) and  the 
closed-loop  transfer  function  becomes 

V S )  - 

hT(sI - A)-l  bKe-S' 

1 + kT(sI--A)-' bKe-Se 
- - (18) 

The e-'* term in the  numerator  is  a  pure 
time  delay  that  remains in spite of the 
feedback.  The e-" term in  the denomin- 
ator  produces  the  phase  lag  that  reduces 
the  allowable  gain.  The  other  symbols 
represent Y(s) (the  scalar  output), Ri(s) 
(the  scalar  system  input), I (the  n x n 
identity  matrix), A (the n x n system 
matrix), K (the  scalar  gain), kT (the 1 x n 
feedback  control  vector), hT (the 1 x n 
output  coefficient  vector),  and b (the n x 
1  input  coefficient  vector).  Superscript T 

indicates  the  vector  transpose  operation. 
The  dimensions of the  vectors and ma- 
trices  are  such  that  the  numerator  and  the 
denominator  of (1 8) are  scalars.  The  feed- 
back  vector kT and  the  gain  K must be 
selected  to  achieve  stability. 

For  zero-latency  tracking  the  output 
must  be  identically  equal to the  reference 
input:  y(t) = rs(t).  Applying  the  require- , 

ment Y(s) = R,(s) to  equation  (18)  pro- 
duces: 

hT(sI - A)- ' bKe-,' 
%=[ 1 + kT(sI - A)- ' bKe-,' 1 

(R, + R,) (19) 

Solving  for  R,  yields: 

e'' 

Ra = [ hT(sI - A)-'bK 

+ kT(d - A)- ' b 

hT(sI - A)-'b - 1 1  Rs 
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If the  time  delay 0, the  gain K,  the  matrix 
A, and  the  vectors b ,  kT,  and hT are 
known,  and if r,(t)  can  be  estimated,  then 
ra(t)  can  be  computed.  The  output  can  be 
made  equal  to  the  input,  compensating  for 
both  the  time  delay  and  the plant dynam- 
ics.  This  control  scheme has only  been 
studied  for  single-input  single-output  sys- 
tems  with  scalar  K  and  only  one  time 
delay. 

One  reason  for  studying  such  zero- 
latency  tracking is that  the  human  eye 
movement  control  system  seems  to use 
target-selective  adaptive  control.  The 
human  oculomotor  system has a  150  msec 
time  delay.  When  a  target  starts moving 
there  is  a  150  msec  delay  before the eye 
starts  moving.  When  the  target  stops,  the 
eye  continues  to  follow  the  predicted  tar- 
get  for  about 150  msec.  However,  a  hu- 
man  can  track  a  predictable  target,  such 
as  the  one shown  in Fig. 10, ‘without 
latency  or  phase  lag.  The  top  trace  shows 
the target position (dotted) and  the  eye 
position  (solid),  and  the  bottom  trace 
shows target velocity (solid) and  eye 
velocity  (dotted).  The  target  moved f5 
degrees.  The  time  axis  is  labeled  in  sec- 
onds. The  target  position  waveform  was 
that  of  a  repeated  cubic  segment.  A model 
was  built  to  help  explain how the  human 
could  overcome  such  a  time  delay  and 
track with  no latency.  The model per- 
formed  as well as  the  human [7], [8]. The 
model  required  knowledge  about  plant 
dynamics,  plant  time  delay,  target  ampli- 
tude,  target  frequency  and  target  wave- 
form. 

Conclusion 
To maintain  stability  of  a  control  sys- 

tem  after  a  time  delay is introduced,  the 
gain  must  be  reduced.  The  Smith  pre- 
dictor  algorithm  allows  larger  gains. 
However, it requires  an  exact  matching of 
model  and  plant  parameters. An adaptive 
control  loop  added  to  the  Smith  predictor 
can  automatically  adjust  model  param- 
eters  to  match  the  time  varying  plant 
parameters.  The  resulting  system still 
tracks  targets  with  a  time  delay. In certain 
circumstances  controllers  can be designed 
to  track  targets with  no latency in spite of 
plant  time  delays. 
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