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Sensitivity Analysis of Linear Homeomorphic Model
for Human Movement

A. TERRY BAHILL, MEMBER, IEEE, JOSE R. LATIMER,
AND B. TODD TROOST

Abstract—Sensitivity functions were calculated as functions of tune to
help validate a linear sixth-order model for neuromuscular movements. For
comparing parameters, relative sensitivity functions should be used. When
the object of interest is a function of time,-such as a system step response,
semirelative sensitivity functions are best Semirelative sensitivity func-
tions were calculated for the 18 parameters of our model. The three most
important parameters in the model were those describing the input con-
troller signals. Because the sensitivity functions were functions of time, it
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Fig. 1. Linear homeomorphic model for hxunan eye movements. (See text for explanation.)
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could be seen when each parameter had its greatest effect This guided
studies of individual parameters.

INTRODUCTION
Sensitivity analyses are an important method of validating

economic models [1], societal models [2], engineering models [3],
and physiological models [4], [5]. They show which parameters
of the model have the most effect on the model behavior, and
they allow a simplified treatment of unimportant parameters. If
the sensitivity coefficients are calculated as functions of time,
then it can be seen when each parameter has the greatest effect
on the output function of interest. Sensitivity analyses results
can be used to select numerical values for the parameters. The
values of the parameters will be chosen to match the physiologi-
cal data at the times when they have the most effect upon the
output. Sensitivity analyses can also be used to suggest future
experiments to elucidate the behavior of biological systems.

This correspondence describes a sensitivity analysis of a linear
sixth-order model for human movement developed by Bahill et
al. [6]. The parameter values were selected to match human eye
movement values, but the form of the model should be applica-
ble to all neuromuscular systems.

THE LINEAR HOMEOMORPHJC MODEL
Fig. 1 is a complete description of the model. It shows

parameter definitions, parameter values, controller signals, a
model schematic, and the state equations. Saccadic eye move-
ment control signals have two components: the pulse that moves
the eye rapidly from one point to the next, and the step that
holds the eye in the new position [7]. The pulse is composed of a
high-frequency burst of motoneuronal firing for the agonist
(AG) and a concomitant pulse of inhibition, a pause in
motoneuronal firing, for the antagonist (ANT). Three model
parameters are associated with the pulse: agonist pulsewidth
(PW), agonist pulse height (PH), and antagonist pulse height
(^ANT-puise)- The step is composed of step changes in the steady
state motoneuron firing rates: a step increase for the agonist and
a step decrease for the antagonist. Two model parameters de-
scribe the step levels (NAG.slfp and NANT.sttsp). The idealized pulse
step controller signals are modified by first-order activation and
deactivation time constants (the four T 's) to produce the muscle
active state tensions (FAG and -?ANT)- The active state tensions
are modified by the dashpots (BAG and ^ANT)* representing the
muscle force-velocity relationships, the springs (A"LT), repre-
senting the muscle length-tension diagrams, and the springs
(ATSE), representing the muscle series elasticities, to produce the
muscle forces which are applied to the globe. The globe and
surrounding tissues are modeled by the inertia (7), a viscous
element (Bp) and a passive elasticity (Kp). The passive elastici-
ties of each muscle are also incorporated into Kp. When no
specific subscript is given, for example in the numerical values
for the series elasticities, then the agonist and antagonist values
are identical. The nominal values for the model parameters were
selected to minimize the mean squared error between the model
and 16 typical human saccadic eye movements similar to that
shown in Fig. 2.

This model is homeomorphic. That is, there is a one for one
correspondence between the elements of the model and elements
or effects in the physiological system. For example, there is a
specific physiological experiment that shows muscle can be
lengthened instantaneously by a quick jerk. The series elasticity
models the result of this experiment. Homeomorphism also
requires that the state equations be written with physical varia-
bles. The state variables for the model are

x\~9\n of eye,
x2 =#2 position of agonist node, shown in Fig. 1,
x3=ff? position of antagonist node, shown in Fig. 1,
*4 = #1 eye velocity,

Fig. 2. Human (top) and model (bottom) 10 deg saccadic eye movements
showing from top to bottom, as functions of time, eye position, eye
velocity, and eye acceleration low-pass filtered, respectively, at 300, 80, and
60 Hz. Calibration bar represents 10 deg, 500 deg/s, and 30,000 deg/s2.
Mean-squared error between human and model saccades is 30 X 10"6 deg2.

agonist active state tension,
antagonist active state tension.

THE SENSITIVITY ANALYSIS
The absolute sensitivity function, S=8y/d/3> where y is the

output and /? is the parameter of interest, is useful for computing
parameter induced output errors [3], but is not useful for com-
paring effects of different parameters. For this comparison we
want a relative sensitivity function such as

c =
yQ

where ft0 and y0 are the values of ft and y at the nominal
operating point. However, for a 10 deg saccadic eye movement
the nominal output value y0 varies from 0-10 deg, and division
by zero is not possible. Furthermore, the relative sensitivity
function gives undue weight to the beginning of the saccade
when y0 is small. Therefore, the semirelative sensitivity function
was used:

~ 8\nft~ 8 f t ° -

We have used the semirelative sensitivity function rather than
the absolute sensitivity function, because relative and semirela-
tive sensitivity functions do not change their values with changes
in units. For example, when the semirelative sensitivity of eye
position with respect to pulse height is calculated, its maximum
value is 7.1 deg, whereas when the absolute sensitivity of eye
position with respect to pulse height is calculated, its maximum
value is 0.0431 deg/g if the pulse height is given in units of gram
tension and is 4.39 deg/N if the pulse height is given with units
of newtons. For small parameter changes in our linear system,
the semirelative sensitivity function became
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Fig. 3. Nominal (solid line labeled &„) and perturbed (dotted line labeled ffp) 10 deg saccadic eye movements and semirelative
sensitivity functions for parameters describing input controller signals. Perturbed saccade shown here is that produced by
increasing NAG.slep by 5 percent. Pulsewidth (PW) and pulse height (PH) primarily affect dynamic saccade and behavior
immediately following; steady state neural firing levels A^G-step an(* ^ANT-step primarily affect static behavior of eye. Effect of
•^ANT-puise is too small to be seen on this scale. Its sensitivity function looks like noise on abscissa. Semirelative sensitivity functions
have same units and are plotted to same scale as eye movements. Record length is 490 ms.

Fig. 4. Semirelative sensitivity functions for other 13 parameters of model.
Functions for J, TANT_AC. TAG-DE. and TANT-DE overlap each other and are
not distinct on this scale.

To perform the sensitivity analysis, a 10 deg saccade was
simulated (solid line labeled On in Fig. 3). Then one parameter
was changed by a set amount A/J, +5 percent for these figures,
and the model was run again, producing the perturbed saccade
(dotted line labeled Bp in Fig. 3). Each millisecond the difference
between the nominal and perturbed saccades (Aj) was calcu-
lated and divided by the change .in the parameter value (A/?).
This ratio was then multiplied by the nominal parameter value

(j8o)- For the fixed parameter change of + 5 percent, the sensitiv-
ity function could be written as S=20A>'. The sensitivity func-
tions calculated for each of the 18 parameters in the model are
shown in Figs. 3 and 4.

The model was most sensitive to the input control signals for
the agonist muscle, ^AG.step, PH, and PW. The control signals
for the antagonist, ^NT-step and -^ANT-puise were not as *m~
portant.

In contrast, the model behavior had very little dependence on
many other parameters. For instance, the sensitivity of the
output to variations of the inertia J was almost zero. This then
was the justification for modeling the inertia of the eyeball as a
globe of ice rather than as a series of concentric shells connected
with viscoelastic elements.

Some of the parameters affected the dynamic properties of the
saccade, and some parameters affected primarily the steady state
or static behavior, the behavior after the completion of the
dynamic saccade. Five of the sensitivity functions of this study
were monotonic, such as the sensitivity to NAG.stt;p. Most sensi-
tivity functions were monophasic: the sensitivity for the inertia /
was the only biphasic function. The sensitivity of #ANT-SE was

the only function with a relative minimum, as well as different
absolute minimum.

Table I compares the maximum values of the 18 sensitivity
functions. The first column is a rank ordering of the maximum
values of the semirelative sensitivity functions of all 18 parame-
ters of the linear model; the second column is a rank ordering of
the sensitivity functions according to their maximum values
during and near the end of the saccade (dynamic effects); and
the third column is a rank ordering of the sensitivity functions
according to their maximum values after the movement was
completed and the eye came to rest at the end of the record
(static effects).

The following are some of the conclusions that were derived
from the sensitivity analysis. When the subscripts AG and ANT
are omitted, both elements are indicated.

1) The series elasticities KSE are the only parameters that have
important effects on both static and dynamic properties.

2) The parameters JVstep, A"LT, and Kp affect the steady state of
and have little affect on either the overshoot or the rise

time.
3) The sensitivity functions for the time constants are very

small. Although TANT.DE had its greatest effect during the initial
portion of the saccade, it cannot be said to control the rise time.
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TABLE I
RANK ORDERING OF SEMIRELATTVE SENSITIVITY FUNCTIONS OF

18 PARAMETERS OF LINEAR HOMEOMORPHIC MODEL
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The series elasticities have much greater effects on the rise time.
4) The sensitivity functions for the other three time constants

and for the three dashpots had shapes that were similar to each
other and that peaked near the end of the saccade. This means
that trade-offs could be made between these six parameters
without affecting the precision of the model.

5) Pulse height (PH) and pulsewidth (PW) primarily affect the
output near the end of the saccade and immediately following
the saccade. Variations in both of these parameters produce slow
drifts after the saccades. These drifts are called glissades. How-
ever, the shapes of these two sensitivity functions differ. The
pulse height function rises gradually, starting at the beginning of
the saccade, whereas the pulsewidth sensitivity function is zero
until near the end of the saccade, where it abruptly rises to its
peak, as shown in Fig. 3. This means that increasing either
parameter would produce a larger saccade with a glissade at-
tached to the end. However, increasing the pulse height would
also increase the peak velocity of the saccade, whereas increas-
ing the pulsewidth would not affect the peak velocity, because
the peak velocity occurs in the middle of the saccade, while this
sensitivity function is still zero. Physiological data have shown
that saccades with this type of glissade appended have normal or
even lower than normal peak velocities [8], Therefore, the sensi-
tivity analysis explains why glissades are caused by pulsewidth
errors and not pulse height errors.

DISCUSSION

Glissades, the slow drifting movements sometimes appended
to saccades, occur in fatigued normals and in patients with
neurological diseases such as myasthenia gravis and multiple
sclerosis [9]. Understanding the generation of glissades may help

to explain the effects of these disorders on the human ocular
motor systems. Early studies of glissades [7], [10], [11] found no
differences between model glissades generated by pulsewidth
and pulse height errors. They therefore suggested that glissades
could be created by either pulsewidth or pulse height errors.
Later model simulations showed that the saccadic peak velocities
were different depending upon whether there were pulsewidth or
pulse height errors. Subsequent examination of human eye
movements showed that "Glissadic overshoots are due to
pulsewidth errors" [8]. At this time there was no explanation of
why this should be true. Our present sensitivity analysis explains
why pulsewidth and not pulse height errors should be responsi-
ble for glissadic overshoots, and it also extends the conclusion to
include glissadic undershoots. Our sensitivity analysis explains
why this is so by showing that eye position is sensitive to
pulsewidth variations only near the end of the saccade, after the
point of peak velocity. So, pulsewidth changes affect the size of
the saccade, but not its peak velocity. On the other hand, eye
position is sensitive to pulse height variations throughout the
saccade. Therefore, pulse height changes do affect the peak
velocity.

Once a model has been constructed, it is natural to ask, "Is it
a good model?" Answering this question is assessing the validity
of the model. We used five methods to validate our model. First,
the position and velocity records of the model qualitatively
matched those of humans. Second, the peak velocity magnitude
duration (main sequence) parameters of the model matched
those of 3000 human saccades over a range of 1-40 deg. Third,
the average mean squared error between the model and 16
consecutive human saccades was 52 X10 ~6 deg2. This compares
with an average mean squared error of 45 X10 ~6 deg2 between
the simultaneous saccades of the left and right eyes [6]. Fourth,
we used the model to simulate novel eye movements that were
not used in developing the model, and then we made specific
predictions about the neural signals responsible for these move-
ments. These simulations led to the prediction that glissadic
overshoots and glissadic undershoots are due to pulsewidth
errors and not to pulse height errors, or a combination of pulse
height and pulsewidth errors. Fifth, the sensitivity analysis ex-
plained why pulsewidth and not pulse height errors are responsi-
ble for glissades. Furthermore, it helped to validate this linear
model by showing which parameters were most important and
when they had their maximum effect on the output.

Because our sensitivity functions were functions of time, it
was easy to see what part of the movement should be studied in
order to see the effects of any particular parameter. For exam-
ple, the time constant TANT.DE had its greatest effect on the
output early in the saccade, so to study this parameter we
studied the beginning of the saccade. If the study had involved
visual inspection of the waveforms, then we would have used the
model's output to derive some other function, such as the
acceleration, that would have highlighted this region. Then in
order to study the effects of TANT.DE we would have looked at
the peak positive acceleration. A similar study of derived param-
eters has been performed on another eye movement model [5].
This type of analysis adds no new information, because only the
eye position is recorded, and these other functions are derived
from them. However, it does make it easier for a human to
visualize the effects.

For the most part, the rank ordering of our sensitivity func-
tions is similar to the results of Hsu et al. [4] and Lehman and
Stark [5]. The only exception is the sensitivity to BAG, In our
analysis it ranks tenth. In these other studies it ranked second
and third. Human physiological data are not available for this
parameter. However, it does not play an important role in our
model.

This model is neither the simplest nor the most complicated
possible model for a sixth-order system. In general, a sixth-order
system can be described with a characteristic polynominal con-
taining only seven coefficients, or with a six by six A matrix with
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36 coefficients. Our linear model contains 18 parameters. We do
not wish to condense the model, because each element of the
model corresponds to a real element or an effect in the physio-
logical system: the model is homeomorphic. Homeomorphism
makes it possible to use the model to explain which human
parameters might have been changed by pathology, fatigue, or
drugs to produce certain abnormal human eye movements [9].

SUMMARY
1) Semirelative sensitivity functions should be used when

comparing the effects on the step response of the system caused
by variations of the different parameters.

2) This sensitivity analysis explains why both glissadic over-
shoots and undershoots are caused by pulsewidth not pulse
height errors.

3) Elements such as the inertia of the globe that have small
sensitivity functions can be modeled simply,

4) Elements of this model that are not derived directly from
human data, such as the dashpots representing the force-velocity
relationships, do not have a great effect on the model.

5) A sensitivity analysis is a powerful tool for studying and
validating models.
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