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Sensitivity Analyses of Continuous and Discrete
Systems in the Time and Frequency Domains

William J. Karnavas, Paul J. Sanchez, and A. Terry Bahill, Fellow, IEEE

Abstract—The technique of sensitivity analysis is old and well
known, but few modern papers include them. Perhaps this is
because of the subtle tricks and customizations that have to be
done to reap their benefits. The paper shows how to overcome
some of the difficulties of performing senmsitivity amalyses. It
draws examples from a broad. range of fields: physics, systems
theory, physiology, expert systems, bioengineering, control the-
ory, simulation, queneing theory, and system design. The paper
generalizes the important points that can be extracted from
literature covering diverse fields and long time spans.

I. INTRODUCTION

SENSITIVITY analysis shows how a model changes
with variations in its parameters. The results of a sen-
sitivity analysis can be used to 1) validate a model, 2)
warn of strange or unmrealistic model behavior, 3) suggest
new experiments or guide future data collection efforts, 4)
point out important assumptions of the model, 5) suggest
the accuracy to which the parameters must be calculated, 6)
guide the formulation of the structure of the model, 7) adjust
numerical values for the parameters, and 8) allocate resources.
The sensitivity analysis tells which parameters are the most
important and most likely to affect predictions of the model.
Following a sensitivity analysis, values of critical parameters
can be refined while parameters that have little effect can
be simplified or ignored. If the senmsitivity coefficients are
calculated as functions of time, it can be seen when each
parameter has the greatest effect on the output function of
interest. This can be usedto adjust numerical values for the
parameters. The values of the parameters should be chosen to
match the physical data at the times when they have the most
effect on the output. ‘
Sensitivity functions can be used to set system design
specifications. In the manufacturing environment they can be
used to allocate resources to critical parts allowing casual
treatment of less sensitive parts. In one modeling study the
author expended great time computing an optimal control input
to minimize a complex performance criterion. A subsequent
sensitivity analysis showed that the computed control signal
was meaningless, because normal environmental variations in
one of the model parameters swamped the effects of variations
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in the control signal: Systems engineers selecting the best
design among several feasible designs do sensitivity analyses
to ensure that the decision about the best design is not
extremely sensitive to any particular performance requirement.

The earliest sensitivity analyses that we have found are
the genetics studies on the pea reported by Gregor Mendel
in 1865 (see [1]) and the statistics studies on the Irish hops
crops by Gosset writing under the pseudonym Student (see
[2]). Since then sensitivity analyses have been used to validate
social models [3], engineering models [4], physiological mod-
els [5]H7], numerical computations [8], expert systems [9],
[10], and discrete event simulations, where the techniques are
called response surface methodology [11], frequency domain
experiments [12]-{14], and perturbation amalysis [15], [16].
When changes in the parameters cause discontinuous changes
in system properties the sensitivity analysis is called that of
singular perturbations: Kokotovic and Kahalil [17] include
over 60 papers on singular perturbations spanning the 1960’s,
70’s, and 80’s. .

Three levels of sensitivity analysis have evolved in the
literature. At the first level a sensitivity analysis was preformed
and the results were shown. For example the authors took a
data-set or a model and carried out a regression analysis or
another sensitivity analysis and reported the results [18], [19].
But this type of paper is becoming unusual in engineering
journals. The development of models is central to engineering
and so the sensitivity analysis of models is appropriate when
accompanying model development. For example the authors
developed a mathematical model of system and did a sensi-
tivity analysis by plotting pole-zero trajectories produced by
parameter changes and tuned the system performance based
on the plots [7], [20], [21]. In another example of the first
level, the authors developed a mathematical model, reported
the senmsitivity analysis and used the sensitivity analysis to
determine the values of parameters that had little experimental
basis [6], [22]. ’

By the second level, a sensitivity analysis of a system or
model was no longer of interest, but sophisticated techniques
for calculating sensitivities were regularly published. A typical
example from electrical engineering shows an improved sensi-
tivity calculation leading to faster solution for switching-mode
circuit simulations [23]. In the field of control engineering
the efficient calculation of parameter semsitivities of high
order linear dynamic systems has been a continuing area
of publication with each paper extending the techniques to
broader classes of linear dynamic systems. In a good example
of this progression, the first paper [24] lays the groundwork
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“for determining the sensitivity function of all parameters of a
system of linear dynamic equations by running the original
system and a perturbed second system of equal size. The
technique is then extended to systems with muitiple inputs
and nonzero initial conditions [25]. Following papers carry
out further simplifications in the system requirements and the
transformations necessary [26], [27]. Of general interest is a
method for determining the sensitivity of the variance of a
general mathematical model to the variance of its parameters
[28]. Finally, very detailed and sophisticated methods of
calculating sensitivities in models with real and imaginary
parameters have been presented [29], [30]. ,

At the third level of sensitivity analysis the techniques
that use sensitivities or minimize sensitivities to reach some
other goal are emphasized. The authors expect the readers to
be familiar with sensitivity analyses. For example sensitivity
functions have been used in the design of adaptive controllers
[31], [32]. And sensitivity analyses have been used as tools
in robust quality engineeting as championed by Taguchi:
his methods have been well explained in English and both
the positive and negative aspects of the methods have been
reviewed [33], [34]. Taguchi’s method follows a fairly simple
progression: select a quality measure, choose an objective
value for this quality measure and then try to minimize
the variability of the objective. This is accomplished by
running factorial experiments on the system to determine the
sensitivity of the product design and manufacturing design.
The dollar value of the variability reduction is a quadratic
function of variation from the objective: this is the primary
difference with traditional quality control practices that only
worry about variability beyond a threshold. A value is given
to the variability reduction, or increase in quality, and is used
to decide which improvements are worthwhile.

There are many common ways to do sensitivity analyses.
A traditional root-locus plot graphically displays the results of
a sensitivity analysis: it shows the movement of the system’s
closed-loop poles as a function of the system’s gain. Spread
sheets, like Lotus 1-2-3, are convenient for doing sensitivity
analyses of systems that are not described by equations. A
partial derivative can be a sensitivity function. In a system
described by analytic functions, for example, calculating par-
tial derivatives constitutes a sensitivity analysis. This paper
explores many techniques for doing sensitivity analyses. The
examples in this paper come from a wide variety of fields.
The reader may skip unfamiliar examples without loss of
continuity. ' ‘

There are two classes of sensitivity functions: analytic and
empirical. Analytic sensitivity functions are used when the
system under study is relatively simple, well defined, and
mathematically well behaved (e.g., continuous derivatives).
These generally take the form of partial derivatives. They are
convenient because once derived, they can often be used in
a broad range of similar systems and are easily adjusted for
changes in other parameters. They also have an advantage in
that the sensitivity of a system to a given parameter is given
as a function of all the other parameters, including time or
frequency (depending on the model of the system), and can
be plotted as functions of these variables.
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Empirical sensitivity functions are often just point eval-
uations of a system’s sensitivity to a given parameter(s)
when other parameters are at known, fixed values. Empirical
sensitivity functions can be functions estimated from the point
sensitivity evaluations over a range of a parameter(s). They
are generally determined by observing the changes in output
of a computer simulation as model parameters are varied from
run to run. Their advantage is that they are often simpler (or
feasible) than their analytic counterparts or can be determined
for an unmodeled, physical system. If the physical system is
all that is available, the system output is monitored as the
parameters are changed from their nominal values.

II. ANALYTIC SENSITIVITY FUNCTIONS

This section will explain three different analytic sensitivity
functions. They are all based on finding the partial derivative of
a mathematical system model with respect to some parameter.
A short example is then given for each functional form of
sensitivity function.

A. The Absolute Sensitivity Function

The absolute-sensitivity of the function F' to variations in
the parameter o is given by

gF = 9F
*  Oayop

where NOP means the partial derivative is evaluated at the
normal operating point (NOP) where all the parameters have
their nominal values. In this paper the function F' may also
be a function of other parameters such as time, frequency,
or temperature. Absolute-sensitivity functions are useful for
calculating output errors due to parameter variations and for
assessing the times at which a parameter has its greatest or
least effect. They are also an important part of adaptive control
systems (this use of sensitivity functions is illustrated in [31],
[35] but is not addressed in the present paper because of its
complexity). The absolute-sensitivities of the optimal solution
of a linear programming (LP) problem to its constraints (some
of its parameters) are given by the values of the dual variables
associated with each constraint. These values are referred to as
the marginal value or shadow price of each constraint and are
interpreted as the increase in the optimal solution obtainable
by each additional unit added to the constraint [36].

The following two examples show the use of absolute-
sensitivity functions. The first shows how to use an absolute-
sensitivity function to calculate output errors due to parameter
variations. And the second shows how to use an absolute-
sensitivity function to see when a parameter has its greatest
effect. '

Example 1: A pendulum clock (based on [4]).

The period of oscillation of a pendulum clock is given
by P = 27r\/l/_g where [ is the length of the pendulum
and g is the gravitational acceleration, 9.8 m/s?. From this
equation it can be seen that a one meter pendulum will have
the typical 2-s period. Assume that a clock keeps good time
at the nominal operating point, i.e., at temperature Ty where
the length is [o. However, if the temperature increases so that
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T = Ty + AT then the length becomes [ = lo(1 + kAT)
where § = 2 x 107°/°C for a brass rod. Let us use the
absolute-sensitivity function of P with respect to T, .5’113 , to
calculate how many seconds per day the clock will lose if
the temperature rises by 10°C. First calculate the sensitivity

function, then evaluate it at the nominal operating point, and -

finally multiply it by the change in the parameter value to get
the change in the output value:

Séi’ _ 827n/l/gJ 7 Ik
NOP

oT _ﬁ\/zo(HkAT)JNOP

at the nominal operating point AT = 0 so
SE = kn\/lo/g = 2 x 1075 5/°C.
Tilerefore, vthe change in the period
AP = SEAT = knn/l,/gAT = 2 x 10™s.

So the number of seconds lost per day will be 2 x 104
s/period (0.5 period/s) (60 s/min) (60 min/hr) (24 hi/day) =
8.64 seconds per day.

Example 2: A single-pole system with a time-delay. Next we
will show an example of using an absolute-sensitivity function
to determine when a parameter has its greatest effect. For this
example we will use the transfer function

_Y(s) Ke%
T R(s)  Tms+1
and find when the parameter K has its greatest effect on the
step response of the system. The step response of the system is

Ke™ 9%
s(rs+1)

M(s)

Yan(s) =

and the absolute-sensitivity function of the step response with
respect to K is

v, e-—eos
Sgr(s) = m,

which transforms into

S¥r(t)=1- e"(t‘e")/f", for t > 6.

This tells us that the parameter K has its greatest effect when
the response reaches steady state, which is what our intuition
also tells us. '

B. The Relative Sensitivity Function

If we want to compare the effects of different parameters
we should use relative-sensitivity functions. The relative-
sensitivity of the function F' to the parameter « evaluated at
the nominal operating point is given by

<F _ %changeinF _-OF/F _OF ap
@7 %changeina  daja  da

Nop Fo -

where NOP and the subscripts 0 mean that all functions and
parameters assume their nominal operating point values [37].
Relative-sensitivity functions are formed by multiplying the
partial derivative (the absolute-sensitivity function) by the
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Fig. 1. Relative-sensitivity functions as a function of frequency for the trans-

fer function M(s) = 32¢~1-99/(2s 4 1)2.

nominal value of the parameter and dividing by the nominal
value of the function. Relative-sensitivity functions are ideal
for comparing parameters, because they are dimensionless,
normalized functions. In the field of economics the lack of
dimensions of the relative-sensitivity function is exploited to
allow easy comparison of parameters’ changes on model out-
puts even though the parameters may describe widely varying
aspects of the model and have different units. Economists refer
to the relative sensitivity function ?ﬁ as the elasticity of B
with respect to A, and denote it as Ep, A [38].

Example 3: A double-pole system with a time-delay (based
on [39]). Let us now show how to use relative-sensitivity func--
tions to compare parameters. Consider the transfer function

Ke—es
C(rs+1)%

Which of the parameters is most important? To answer this
question let us compute the relative-sensitivity functions:

M(s)

=M Ko

Sx =S¥ =1
K K- NOP MO

=M M 90

Se = Sg _— = _360

Inop Mo

—=M To —2sTo

5" =8M — = .
T T i NOPMO 98+ 1

The magnitudes of these three relative-sensitivity functions are
plotted in Fig. 1 using their nominal values of 32, 1, and 2 for
Ko, 6, and 7o, respectively (from a crayfish model in [39]).
By looking at these plots we can see that

 for low frequencies, e.g., w < 0.3, K has largest mag-

nitude, '

« for midrange frequencies, e.g, w =~ 1,7 has largest

magnitude,

* and for high frequencies, e.g., w > 2,0 has largest

magnitude. ‘

Now, of course, this was a simple example. And for this
example, most people would intuitively say that the gain is
the most important parameter for low frequencies (i.e., steady
state) and the time-delay is the most important parameter for
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high frequencies. But it was still nice that this sensitivity
analysis gave us a quantitative justification for our intuition.
Example 4: An expert system (from [10]). Most sensitivity
functions are functions of time or frequency. But this is not
mandatory. For example, let us compute the relative-sensitivity
functions for an expert system that uses Mycin style certainty
factors [9]. Assume we have a rule of the following form.
if

premisel = true (CFy)

and
premise2 = true (CFy)
or
or premise3 = true (CF3)
then

conclusion = true, CFy.

In a Mycin style system the certainty of the rule involves the
minimum of the certainties of the AND clauses. Therefore,
only one of CF; and CF5 can have an effect on the final
certainty CFy. That is, if CF; < CF, then Sap = 0.

Whereas if CF; > CFj then Sgpr = 0. And if CFy = CF,
then §g§f = SggFr. Therefore, for simplicity, we will

assume that CF; < CF, and that changes are small enough
so that this inequality is not violated. The final certainty factor
becomes

CHCF,
100

CFr = 100 107

The relative-sensitivity functions are

( - OF10F4) CF;CF,

?g? — -1 _ OF30F4] OF4J CFlo
L | 104 | 100 | yop CFr,
Sor, =0
=¢Fe _ [, C’F10F4] C’F4J CFs,
F 7|7 104 | 100 | nop CFR,
S,-C’Fp _ -OF1 CF,?, _ 2CF10F30F4J CF40
F 7 100 T 100 - 104 nop CFry

It is now time to plug in some numbers and see what we can
learn. Assume CFy = CF3 = CFy, = 80 and CF; = 79.9.
Then from the previous equation the nominal value of the
final certainty becomes

CFg, =87

and

Ser =026

—CFp
SC’Fg = 0

Soar =0.26

—=C
o =053,
This means that changes in CF} are twice as important as
changes in either CF; or CF3. And that increases in CF, will
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have no affect on the final certainty. In general this is strange:
changing the value of a particular certainty factor may produce
no effect on the output for reasons that are unrelated to that
particular certainty factor.

Certainty factors are usually assigned by the domain expert
based on gut level feelings. Often experts say this is difficult
and frustrating. After the certainty factors are all assigned, the
knowledge engineer often tweaks the certainty factors looking
for changes in output certainty. Note that this technique, in
general, will not work. For example, if there is a rule with
many conjunctive premises (AND clauses), the certainty factor
of only one of them will affect the certainty of the output.

What if the certainty factors are not all equal? What is the
effect of their magnitude on their semsitivities? Let CF, =
50,CFy = 60,CF3 = 70, CF, = 80, and CFp, = 74. The
sensitivities become

Som =024
Scr =0

Som =0.46
Sea = 0.70.

This means that the premises with bigger certainty factors are
more important, e.g., changing the certainty of premises 1
would have about half the effect of changing the certainty
of premise 3.

In summary, the certainty factor assigned by the knowledge
engineer to the conclusion of a rule, is more important than
the certainty factors derived for the premises during the
consultation. Clauses with larger certainty factors are more
important than clauses with smaller certainty factors. The
final certainty, the output of the system, is often completely
insensitive t0 many premises. '

C. Limitations of the Relative Sensitivity Function

The relative-sensitivity function is limited in usefulness in
analytic studies since it has different meanings in the time
and frequency domains. This is the result of the relative-
sensitivity function being the product of two functions (the
partial derivative and the original function), and the Laplace
transform of a product is not the product of the Laplace
transforms, e.g., L{z () xy(t)] # Lx(t)x Ly(t). Therefore, the
frequency domain relative-sensitivity function is often difficult
to compute in the time domain (requiring convolutions) and a
similar problem arises in computing the time domain relative-
sensitivity function in the frequency domain. One way to
overcome this difficulty is to define two different relative-
sensitivity functions; one for the time domain and omne for
the frequency domain.

The time-domain relative-sensitivity function of f(¢) for the
parameter « is defined to be

0 SO/ _ 01| e

 Bafa  8a [yopf(t)

where NOP and the subscripts 0 mean that all functions
and parameters assume their nominal operating point values.
The frequency-domain relative-sensitivity function (sometimes
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called the Bode Sensitivity Function [4]) of F(s) for the
parameter « is defined to be

OF(s)/F(s) _ BF(S)J o
da/a da | yop F(s)o

where NOP and the subscripts 0 mean that all functions and
parameters assume their nominal operating point values.

These two relative-sensitivity functions produce different
results. For example, consider a simple closed-loop system
with unity feedback and G = K/s. The closed-loop transfer
function is

§F) =

Y(s) K
R(s) s+K°

The time-domain step response of the system is

M(s) =

Ysr(t) = 1= ™!

where the subscript sr stands for step response. The time-
domain relative-sensitivity function of the step response with
respect to the gain K is

Ky _ Kgie_Kot
1—e Kot 1 — =Kot

SKST = te—Kt_l NOP
For most systems the time-domain behavior is the most
important. Usually we only use the frequency domain to help
understand the time domain behavior. However, let us now
calculate the frequency-domain relative-sensitivity function of
the step response Y, (s) with respect to the gain K. First,

K
Yor(s) = SR
Then
8§ (3) = ——rr
K s+ Ky

To make it obvious that this is different from the time-domain
relative-sensitivity function of the step response of the system,
let us take the inverse Laplace transform of this function to get

S’I};"(t) =6- K()e_KOt

where 6 represents the unit impulse. As can be seen from Fig. 2
this is not the same at the time-domain relative-sensitivity
function of the step response of the system. This difference
between the time and frequency domain functions is one of
the reasons for using the semirelative-sensitivity function.

D. The Semirelative Sensitivity Function

We have used the absolute-sensitivity function to see when
a parameter had its greatest effect on the step response of a
system, and we have used the relative-sensitivity function to
see which parameter had the greatest effect on the transfer
function. Now suppose we wish to compare parameters, but
we want to look at the step response and not the transfer
function. What happens if we try to use the relative-sensitivity
function to compare parameters effects on the step response?
We get into trouble. For a step response the nominal out-
put value yo varies from 0 to 1 and division by zero is
frowned upon. Furthermore, the relative-sensitivity function

_yﬂ
S¢
0.8 - B
0.6 - i
0.4 i
0.2 - B
OO 1 1 1 |
0 1 2 3 4 5
Time (sec)
(2
0 T T T T
Se
0.5 | B
0.0 -
_0.5 - —
_‘lo 1 1 1 1
0 1 2 3 4 5
Time (sec)

Fig. 2. Time-domain relative-sensitivity function with respect to the gain A
for the step response of a closed-loop negative-feedback control system with
K = H =1and G = 1/s (a), and the inverse Laplace transform of the
frequency-domain relative-sensitivity function with respect to the gain K for
the step response of the same system (b).

gives undue weight to the beginning of the response when yp is
small. Therefore, let us investigate the use of the semirelative-
sensitivity function, which is defined as

5'5 = Z—FJ (7))
@ InoP

where NOP and the subscript 0 mean that all functions and
parameters assume their nominal operating point values.

As can be seen by the definition, semirelative-sensitivity
functions will have the same shape as absolute-sensitivity
functions. They are just multiplied by the constant parameter
values. But this scaling allows comparisons to be made of the
effects of the various parameters.

Example 2 (revisited): A single-pole system with a time-
delay. Let us use the same example we used for the absolute-
sensitivity function. Namely

Y(s)

Ke 9
Me) = Ry = st 1)

The step response becomes

Ke—es

Yor(s) = s(rs ¥ 1)

Now calculating the absolute-sensitivity function we get

vy, e——eos )

Sy = —-7.
s(ros + 1)

Therefore the semirelative-sensitivity function becomes

KOC_GOS

GYer _ QYer _
Sk = 9K J Ko = s(mos + 1)

NOP
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Fig. 3. Semirelative-sensitivity functions with respect to X, 8, and 7 for
M(s) = 32¢e7°/(2s + 1).

which is the same as the step response given previously. This
transforms to

§¥r () = Ko(1 — e~ ¢=%)/0)  for¢ > .
Second:
o T8 + 1)
which transforms to
557 (t) = —Kooe™ =%/ for t > 6.
Finally,
¥ — —Komoe™%?
T (Tos + 1)2
which transforms to
Syen(t) = —Komo(t — fg)e™ %)/ for ¢ > o.

These three semirelative-sensitivity functions are plotted in
Fig. 3 using the nominal values previous used, namely 32, 1,
and 2 for Ky, 6o, and 79, tespectively. This sensitivity analysis
gives us a wealth of information. It says that if our model
does not match the physical response early in the rise, then
we should adjust the time-delay of the model; because in
the beginning the time-delay has its greatest effect, but the
sensitivity functions of the gain and the time constant are still
zero. If we wish to affect the steady state behavior of the
model, then we should change the gain, because the effects of
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the time-delay and the time constant will have decayed to zero.
It also tells us that the time constant will have its greatest effect
right in the middle of the movement. Sometimes a sensitivity
analysis like this will show parameters that have their peaks
at the same time, these parameters can be treated as a group
with tradeoffs between their individual values.

Once again the results of the sensitivity analysis agree with
our intuitions: the time-delay has its greatest effect in the
beginning of the movement, the time constant has its greatest
effect in the middle of the movement, and the gain has its
greatest effect at the end of the movement.

IIl. EMPIRICAL SENSITIVITY FUNCTIONS

For many models, calculating analytical sensitivity functions
is difficult or impossible, so the sensitivity functions are
derived empirically from models. This procedure is called
simulation, and usually takes the form of “running” a math-
ematical model of a system on a computer. Various methods
are deployed to vary parameters across or during runs of the
simulation, so that the outpui(s) of the system will yield useful
information about how the parameters affect the system output
or performance. In the Direct Observation approach (employed
in factorial type experiments), in different runs of the model
each parameter is given a different value. A more sophisticated
method is Sinusoidally Varied Parameters, which attempis to
determine (or at least identify) the effects of many parameters
in a single run.

Direct Observation can be used to estimate any of the
previously defined sensitivity functions by properly choosing
the simulation and parameters varied. The absolute sensitivity
of the period of a pendulum with respect to temperature
(an extension of the first example) is calculated in the first
example of the next section while the semirelative sensitivity
of an eye movement with respect to one specific parameter
is shown in the second example of the next section. Both
simulations were performed by running the model at 1) the
nominal operating point, and 2) with slightly higher parameter
values. In this case, the sensitivity determined is valid only
near the nominal operating point. By using many parameter
values from the range of interest for the runs, an equation for -
the sensitivity over a range of the parameter may be estimated.
This defines a surface for the response of the system with
respect to its parameter(s) and is consequently referred to as
response surface methodology (RSM) [11]. One problem with
using Direct Observation in practice is that the number of
runs increases geometrically with the number of factors being
studied.

A second empirical sensitivity technique has grown out of
the complexity of determining a muliidimensional response
surface for nondeterministic systems. This method uses one or
few simulations of a stochastic system where the parameters
of interest have been sinusoidally modulated during the sim-
ulation. By the proper choice of parameters and modulation
frequencies, a qualitative measure of the effects of parameter
variations can be seen by analysis of the simulation output(s).
A simple transfer funciion and a well studied nondeterministic
system will be presented.
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A. Direct Observation of Simulations

The Direct Observation method is easy to use and evaluate.
For many systems it is the only alternative if the analytic
sensitivity functions cannot be calculated. In nondeterministic
applications where the model is small and parameter interac-
tions are not a concern, it is probably the best empirical method
of evaluating sensitivity of a system to parameter changes.

The primary objective of Direct Observation is to eliminate
the analytic evaluation of the (partial) derivatives of the
three previously defined sensitivity functions. This is done by
referring back to the derivative. By definition,

8 -

_F_ - lim Fla+h) F(a).
da  r—0 h

This derivative can be estimated by

OF F(a+h)-F(a)
da h )

If 0F/0a is fairly constant around the nominal operating
point, then this approximation is not only good, but valid over
a wide range. However, if the function F' has a nonconstant
slope around o, then A must be small. And if F has a
discontinuity, then the approximation may be terrible.

Example 1 (continued): The pendulum clock. In this case
we wish to determine the sensitivity of a pendulum clock to
temperature by Direct Observation (a simulation). As before,
we will use the semsitivity of the period with respect to
temperature S%., but this time we will approximate the partial
derivative with respect to temperature, with the difference in
period due to a small temperature change divided by the small
temperature change, so

gP — P|nop+ar — Plnop
z AT

This is a good approximation for small changes in temperature.
If the values for all parameters are substituted into the equation
for the period at the nominal temperature, the period is found
to be 2.00709 seconds. Increasing the length of the pendulum
by 2 x 10~° for a 1°C increase for a 1 meter rod, the period
becomes 2.00711 seconds. Substituting these numbers into the
previous equations yields

2.00711 — 2.00709s
1°C B

which is the same as the analytic answer. This same answer
could also have been found by experimenting with the actual
pendulum, but it would require measuring time with five
decimal places of precision. This answer does not lead the
user to know over what temperature ranges or changes it is
valid, or if it is transferable to different lengths pendulum’, etc.
Example 5: A bioengineering model (from [6]). Fig. 4
shows the results of such a senmsitivity study of the linear
homeomorphic model for human eye movements [6]. This
model was a linear sixth-order biomechanical model, with 18
parameters specifying force generators, springs, masses, and
dashpots. So many parameters were needed because the model
was homeomorphic, that is, each parameter corresponded to a
physical component, or the results of a particular physiological
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Fig. 4. Output of the linear homeomorphic model for human eye movemenis
for a 10 degree saccade as a function of time (a), the semirelative-sensitivity
function of the output with respect to the parameter Bag (b), and the
maximum value of this sensitivity function as a function of the value of

Bag (©-

experiment. The high order and large number of parameters,
made it quite difficult to compute the sensitivity functions. So
they were derived by running the model. For small parame-
ter changes in this linear system the semirelative-sensitivity
function became

S = %ag.

To perform the sensitivity analysis, a ten-degree movement
was simulated (line labeled 100% in the top graph of Fig. 4).
Then, one parameter was changed, in this case a dashpot, Bag,
and the model was run again, producing a perturbed movement
(one of the other lines in Fig. 4, each for a different value
of Bag). To compute the sensitivity function, the difference
between the nominal and perturbed movements (Ay) was
calculated for each millisecond and this difference was divided
by the change in the parameter value (Aq). This ratio was then
multiplied by the nominal parameter value (ap). The center
graph of Fig. 4 shows the sensitivity functions corresponding
to the lines in the top graph. This process was repeated for each
of the 18 parameters in the model. The bottom graph of Fig.
4 shows the maximum value of the semirelative sensitivity of
@ with respect to Bag when this parameter took on values of
10%, 50%, 100%, 150%, 200%, 250%, 300%, 350%, 400%,
450%, 500%, 550%, and 600% of its nominal value.

Although the model was linear this does not mean that the
sensitivity functions were linear. In fact for real world models,
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the peak value of any semsitivity function is seldom a linear
function of the size of the parameter perturbation. Only one of
the 18 parameters in this model showed this type of linearity.

‘Bahill et al. [6] used only one perturbation size, +5%,
justifying this with the fact that the model was linear. However
a linear system is defined as one where superposition holds
for the inputs. Superposition states if input X; gives output
Y3, and input X» gives output Yz, then combining the inputs
yields a similar combination of the outputs, or aX; + bXs
gives output aY; + bY5. It does not say that doubling a system
parameter doubles its effect on the output. Fig. 4 shows that
it does not. The sepsitivity of the output § to the parameter
B decreases with increasing B g as can be seen in the top
graph of Fig. 4 where the output curves get closer together
and in the bottom graph of Fig. 4. ‘

The peak value of the sensitivity function of the output
with respect to Bag, a dashpot, decreases in magnitude and
moves to the right in time as the perturbation gets bigger. This
makes intuitive sense. A dashpot has its greatest effect when
the velocity is the greatest, which is just about in the middle
of the movement. However, as the value of the dashpot gets
bigger the peak velocity of the movement decreases and moves
to the right. Therefore, the time when this parameter has its
greatest effect also shifts to the right. Also, with a smaller peak
velocity the effect of the dashpot is smaller and the magnitude
of the seasitivity function decreases. )

The results of this sensitivity analysis allowed the authors
to discover which parameters were important and which were
not. Consequently they devoted their modeling efforts to the
important parameters, and treated the nonimportant parameters
simply. This sensitivity analysis also showed - that several
elements had their peak sensitivities at the same point in time,
so tradeoffs could be made between these parameters without
forcing changes to be made in other parameters.

Example 4 (continued): An expert system.

The parameters of an expert system knowledge base can be
varied and the output behavior observed. When this was done
in [10] it was found that changing some atiributes changed

the output: however, changing other attributes did not change

the output. When this analysis was presented to the expert,
she noticed that one attribute had no effect on the output.
Therefore, she recommended that we delete this att_ribute from
the knowledge base. This simplified the expert system proving
that this sensitivity analysis was valuable. The problem with
this technique is that there is no good way to evaluate the
results. of s_ucli an sensitivity analysis. The analysis is ad hoc,
hit or miss.

B. Sinusoidal Variation of Parameters

Direct Observation works well with small systems, but when
the number of parameters, test values, or sets of possible
parameter interactions becomes large, the number of neces-
sary runs of the model becomes impractical. The number
of necessary runs increases combinatorially as the number
of parameters and interactions increases. For example, in a
five parameter system, trying five values per parameter would
require 25 runs for the simple case. If pairwise interactions are
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also considered, the required number of runs jumps to

25+5(;> =T5.

Compounding the problem for nondeterministic models is
the need to make multiple runs (of very long rums) to get
reasonable estimates of the output for each (set of) pa-
rameter setting(s). The computational difficulty can become
prohibitive.

To ameliorate this problem, the parameters can be modu-
lated sinusoidally during a simulation so that the sensitivity -
to many parameters and their interactions can be evaluated
simultaneously. This technique is usually called Sinusoidal
Variation of Parameters; in the simulation literature it is called
Frequency Domain Experiments [12]-{14].

In this approach two runs of the simulation are performed.
The first run has all parameters set at their nominal values. A
second run is then performed with each parameter modulated
sinusoidally throughout the simulation. The output sequences
of the simulations are then transformed into a frequency
domain representation (e.g., a power spectrum). The two
spectra are compared by taking their ratios at each frequency.
Differences that are attributable to factor modulation will
manifest as ratios that are greater than one. Differences will
be observed at the modulation frequencies and at frequencies
related to nonlinear and product effects. This analysis yields
an estimate of the importance of each parameter.

So far Sinusoidal Variation of Parameters has been used
primarily. with nondeterministic systems [12]-[14]. However,
it can be used with deterministic systems to evaluate the effecis
of parameters on the steady state response to noisy (random)
inputs and periodic inputs when the periodic input is consid-
ered in the output analysis. The output of such studies is often
used to guide the design of further simulation experiments
using Direct Observation by specifying the interactions and
maximum order of parameter effects requiring full analysis.

Example 6: A negative feedback loop around a single-pole.
We created a simulation of the simple first order element
G(s) = K/s + A in a negative feedback gain H. The
simulation was carried out by numerical solution of the
differential equation (in the time domain) of the total system

Y(s) K

using Runge—Kutta integration techniques. For all simulations
we used an input signal of a one-hertz (Hz), unit-amplitude
sinusoid, The simulation was one second long and consisted
of 2048 evenly spaced samples. This can be analyzed for
a spectrum with 1 Hz resolution from 0 to 1024 Hz. The
parameters were modulated at 5, 30, and 170 Hz. These
frequencies were chosen 1) to be away from zero, 2) to go
through several cycles during the simulation, and 3) to be
spread far enough apart so that the product terms and higher
order terms would not conflict. In this type of sensitivity study
if a parameter is modulated at w, we expect to see power
at wg. If there is a parabolic ponlinearity we also expect
to see power at 2w,. (Because of the trigonometric identity
2sin® £ = 1 — cos 2z.) Finally, if the function of interest
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Fig. 5. Ratio of power spectra from M(s) = K/(s+ A+ HK) when the
parameters A, H, and &’ were modulated sinusoidally.

is sensitive to the product of two parameters modulated at
we and wy, then we also expect power at w, £ w;. (Because
2sin zsin y = cos (z—y)—cos (z+y).) These product terms
are often called interactions. One final consideration was that
we wanted integer frequenciés so that an FFT would yield
sharp frequency peaks without the use of windowing functions,
which tend to blur the spectrum.

The simulation was run twice. The first run was with three
parameters, A, K, and H, set to their nominal values of 0.1, 1,
and 50, respectively, without modulation: this was the baseline
run. In the second run, the signal run, the parameters were
modulated according to the following equations.:

A =0.1(1 + 0.5sin (5 x 2xt))
K =1(1 4+ 0.5sin (170 x 2xt))
H = 50(1 + 0.5sin (30 x 27t)).

The power spectrum of the output sequence of each run
was estimated by the squared magnitude of an FFT. A plot
was made by taking the ratio at each frequency of the signal
spectrum to the baseline spectrum. A plot of this spectrum
ratio is shown in Fig. 5.

Looking at this plot of the spectrum ratio, we see peaks
corresponding to the modulation frequencies plus and minus
1 Hz. The dual peaks are due to the modulation effect of the
1 Hz input sine wave on the modulation frequency of each
parameter. The peaks around 5 Hz, due to parameter A, are
small. The highest peaks appear around 30 Hz, the modulation
frequency of the parameter H. In addition to the three primary
effects around 5, 30, and 170 Hz, there are significant product
effects, because the transfer function contains the product H K.
These are the peaks around the frequencies that are the sum
and difference of the modulation frequencies of H and K,
e.g., 140 and 200 Hz. These product effects are even more
important than the direct effect of K. The plot also shows that
the parameter H has substantial second order effects. These are
the peaks at 60 Hz, which is twice the modulation frequency of
H. The second order effect of H also interacts with KX, these
are the peaks at twice the modulation frequency of H plus
and minus the modulation frequency of K, i.e., 110 and 230
Hz. The first order and product effects in the simulations show
what we expected from looking at the transfer function and the
parameter values. The higher order effects of the parameters
are a little surprising at first. However, they can be explained
by Iremembering that the inverse Laplace transform of the

simulated transfer function is
m(t) = Ke (A+KH)
(A+KH)** ]

#K[l—(A+KH)t+ 5

In this simulation the higher order terms did show significant
output.

Note that we can obtain similar information about the
sensitivities of the transfer function with respect to H, K, and
A from the semirelative-sensitivity functions given here.

av __ Ko(s+4g)  (s+0.1)

K= (s+ Ao + KoHyp)? N (s +50.1)2
su _ —KZ2H, =50

H ™ (s+ Ao+ KoHg)?2 ~ (s+50.1)2
. —KoAo =01

A T (s+ Ao+ KoHp)? ~ (s+50.1)2

First of all, just as in Fig. 5, it shows that the transfer
function is not very senmsitive to A. Next comparing the
sensitivities of the transfer function to A and X shows the
well known fact that negative feedback transfers sensitivity
from the plant (K'), which may be big, dirty, and inflexible,
to the feedback elements (H), which are precise computer
components. Looking at these sensitivity functions also shows
why the product effects are called interactions in the sinusoidal
variation of parameters literature: S depends on the value of
H and S¥ depends on the value of K. We note once again
that superposition. does not hold for a sensitivity analysis. A
10% change in both K and H will not be the same as a 10%
change in H plus a 10% change in K.

Example 7: An M/M/1 queue. The waiting time in an M/M/1
queue was analyzed with respect to the arrival and service rates
using Sinusoidal Variation of Parameters. This is a simple
stochastic simulation and has been examined thoroughly in
analytic and simulation studies and in fact it is often used as
a benchmark problem. The analytic result is well known, so
this semsitivity analysis provides us with a chance to look at
an old problem in a new light. .

We chose the waiting time in the service queue as the output
of interest. The waiting time was calculated at the end of
service for each simulated user. The end of service also served
as the indexing event for the frequency modulation of the
arrival and service rates. By indexing event it is meant that on
every departure the modulation “time” was incremented and
new values were calculated for the service and arrival rates
according to this new modulation time.

The frequencies of modulation for the arrival and service
rates were chosen to be very low so that the effects of each
parameter change would be more observable. By using low
frequencies each parameter also passed through more values
from its range than it would have at higher frequencies. Note
that a time-delay between the change of a parameter and its
observable effect is not detectable or important when carrying
out this analysis. Therefore it is not a factor in deciding
frequencies.

The frequency analysis was carried out by simulating 33 000
waiting times with the service and arrival rates at their nominal
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Fig. 6. Ratio of power spectra for two experiments on an M/M/1 queue
when its parameters were modulated sinusoidally: (a) A was modulated at the
low frequency and g at the high frequency and (b) & was modulated at the
low frequency and A at the high frequency.

values of 0.8 and 0.4, respectively. A second run of 33000
waiting times was made with

servicerate = p = 0.8 + 0.25sin (46/4096 X 2rt)
arrivalrate = A = 0.4 + 0.2sin (4/4096 x 27t)

where ¢ is the number of customers served. Since it is a
stochastic simulation, longer output sequences were needed
than for the previous transfer function example. The autocorre-
lations of the sequences were calculated, truncated, windowed
with a Tukey window, fit with a cosine transform, and the ratio
of the nominal and perturbed runs were calculated [40]. The
interesting part of this spectrum ratio is plotted in Fig. 6(a).
There are distinct peaks (labeled A and y) at the modulation
frequencies of the arrival rate and service rate. Smaller but
still distinct peaks (labeled p)) are visible at the sum and
difference of these frequencies, corresponding to interaction
(product) terms. No other peaks appear to be significant. The
fact that the peak labeled A is larger than the peak labeled p
does not mean that A is more important than 4 in this system.
Instead the relative peak sizes are the result of the queue acting
as a low pass filter. Parameters modulated at lower frequencies
have larger peaks, all else being equal. This effect is clearly
shown in Fig. 6 (bottom) where the modulation frequencies for
A and g were interchanged and as a result the relative sizes
of their spectral peaks were also interchanged. Comparison of
the top and bottom spectra of Fig. 6 enables us to state that A
and p are equally important in this queue.

The expected waiting time for an M/M/1 queue is 1/(— ),
where p is the service rate and A is the arrival rate. Note
that in our experiments z can equal )\, which would create
infinite expected waiting time. This was not a problem in our
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experiments since it happened rarely and then only for short
periods.’

In other trials applying Sinusoidal Variation of Parameters to
this problem we have found that the size of the spectral peaks
are dominated by frequency dependency and extremely low
frequencies are necessary to get distinct peaks as shown in Fig.
6. This result suggesis caution in interpreting resulis derived
from the current method for implementing this technique.
Often frequencies several orders of magnitude higher have
been used for Sinusoidal Variation of Parameters on this
and similar problems in order to maximize the separation
of response peaks in the spectrum [12]. Our experiments
with such modulation frequencies gave very poor results.
In fact the frequencies and simulation length chosen were
a tradeoff between the computation required and the visible
responses. By lowering the modulation frequencies further
and lengthening the simulation, higher order respomses can
be made significant. This makes intuitive sense. The waiting
time in a queue for a customer is governed by the number of
people in the queue ahead and the time necessary to service
the present customer. If the modulation frequencies are high,
then the conditions necessary to build or empty the queue
are present for a short time only and do not get a chance to
affect the waiting time of following customers. The queue can
be thought of as acting as a low pass filter, and in this case
perhaps a leaky integrator [41].

The Sinusoidal Variation of Parameters technique seems to
be model dependent. It works best for models that act as
bandpass filters. Therefore, before using this type of sensitivity
analysis, the input—output behavior of the system should be
plotted. The modulation frequencies are then chosen to be in
the flat region of the frequency response. If the frequency
response of a model is known to be flat in the region
of the parameter modulation frequencies, the size of the
response peaks may be useful for estimating the importance of
parameters. Models that are this well characterized generally
do not require analysis by Sinusoidal Variation of Parameters
thus limiting the use of the size of the frequency response
peaks.

IV. THE PINEWOOD DERBY

Since the 1950’s over 80 million Cub Scouts have built
five-ounce, wooden cars and raced them in Pinewood Derbies.
Generally, in derbies that we have observed 80 scouts and
parents raced cars. Eight adults were required to run the
races. And the events lasted about four hours. Pinewood
Derby events could clearly be improved and system design
methodology was the abvious tool for improvement.

Originally this system design problem was used as a class
project for a graduate course in systems engineering. Then
it was redesigned and included as a chapter in a systems
design textbook [42]. We used these designs to run actual
Pinewood Derbies in four consecutive years. Qur group has

fn our simulation this is not an actual division: it is a theoretical limit. To
understand, think what happens if the server goes to get coffee. The service
rate goes to zero, for a little while, but the line only gets longer. The system
does not explode. We do not actually see negative waiting times. This is not
a problem in our simulations.
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invested about three thousand man-hours in this project. We
used a CPU-year on an AT&T 3B2/400 computer just finding
appropriate round robin schedules. The point of this discussion
is that this is a big, real-world problem. The system was
designed, built, tested, used, and retired; then this process was
repeated in subsequent years. As a part of this system design
we did a sensitivity analysis of the tradeoff study that was
used to select the best alternatives. This tradeoff study was to
choose the best racing format. There were 89 parameters in
the tradeoff study. It was originally believed that all of these
parameters could effect the recommended alternative: quite
surprisingly our sensitivity analysis showed that only three
could.

These are some of the figures of merit that we used to
compare different design alternatives: Average Races Per Car,
Percent Happy Scouts, Number of Irate Parents, Number of
Lane Repeats, Acquisition Time and Cost, Total Event Time,
and Number of Adults needed. Alternative designs that we
considered include: single elimination tournaments, double
elimination tournaments, and round robins with three different
scoring techniques.

The recommended alternative of the tradeoff study was
determined by the Overall Performance figure of merit for
each alternative: these scores were numbers in the range 0
to 1. The Overall Performance figure of merit is composed
of two parts, the Input/Output Performance figure of merit
and the Utilization of Resources figure of merit [42]. Each of
these is also a number in the range 0 to 1. Each of these is
given a weight (derived from an expert’s Importance Value)
so that their weighted sum is again in the range 0 and 1. The
Input/Output Performance and Utilization of Resources figures
of merit are each further broken down into subcategories by
similar means. The Input/Output Performance figure of merit
consists of items like Percent Happy Scouts, Average Races
Per Car, and Number of Lane Repeats. The Utilization of
Resources figure of merit consists of items like the Acquisition
Cost and Total Event Time. Each of these figures of merit was
given an importance value by the domain experts.

Each of the figures of merit had a Standard Scoring Function
[42], [43] associated with it. In most cases these scoring
functions look like sigmoidal curves as shown in Fig. 7. They
allowed us to translate input values of the figure of merit, into
output scores that have a range of 0 to 1. These functions have
parameters that set the valid input range, the input value (the
baseline) that gives an output of 0.5, and the slope at this point.
The domain experts choose the values of these parameters.
These scoring function parameters and the importance values
of the figures of merit of the tradeoff study were examined by
the sensitivity analysis.

We wanted the sensitivity analysis to answer two questions.
First we wanted to know which parameters and figures of
merit were the most important and deserved further attention
and verification. Clearly a relative-sensitivity measure for each
parameter for each alternative would answer this question. The
second question was which parameters could be adjusted to
change the recommended alternative. This question could be
answered by a search algorithm using the sensitiyity of each
parameter. Since we had five alternatives, 89 parameters, and
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Fig. 7. Scoring function for Percent Happy Scouts figure of merit for a Pine-
wood Derby system design.

16 figures of merit, we decided against any manual solution
and wrote programs that carried out both analyses.

What did we find? First, of the 105 parameters and figures
of merit, only 50 to 60 had nonzero sensitivities for any
given alternative. The set of parameters with high sensitivities
differed for each alternative: this justified our extra work of
carrying out the sensitivity analysis of each alternative. If we
had taken one alternative as representative, we would have
missed parameters that were important in other alternatives.
By comparing the lists, we can also see that some parameters
are important to all alternatives and, therefore, deserve special
attention.

Our sensitivity analysis showed that the most important
parameters for the five racing format alternatives were 1)
the baseline for the Overall Happiness figure of merit, 2) the
baseline for the Percent Happy Scouts figure of merit, 3) the
importance value (weight) of the Overall Happiness figure of
merit, 4) the baseline for the Number of Repeat Races figure
of merit, 5) the input value given for the Percent Happy Scouts
figure of merit (note this is an input to the system: it is good
that a system is sensitive to its inputs), and 6) the input value
given for the Number of Repeat Races figure of merit. The
most important parameters concern the happiness of the scouts.
Interviews with the designers revealed that this was indeed
their primary goal. Our point is that if some obscure parameter,
which was given little thought, turned up in the most important
list, then the system would have to be redesigned.

Our second important finding was that, of the 89 parameters,
only three could be manipulated to change the recommended
alternative. To the best of our search program’s ability, no
change in the other 86 parameters would change the recom-
mended alternative. This gives a strong clue to the strengths
and weaknesses of the recommended alternative.

Let us now look at the only three parameters that could
change the recommended alternative. In the original tradeoff
study the Input/Output Performance figure of merit was given
a weight of 0.9 and the Utilization of Resources figure of
merit was given a weight of 0.1. The recommended alternative
was alternative-4, a round robin event with best time scoring.
The sensitivity analysis showed that if the weights were
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changed to 0.57 for Performance and 0.43 for Resources then
alternative-2, a double elimination tournament would win.
This is reasonable, because a double elimination tournament
requires fewer workers and less money, but it does not perform
as well. So if money is more important than the happiness
of the scouts, then the double elimination tournament is
best. Because these two weights must add up to 1.0, we
counted this as only one parameter. The other parameters that
could change the recommended alternative were related to the
Percent Happy Scouts figure of merit. The scoring function
for this figure of merit is shown in Fig. 7. With the original
baseline value of 90%, alternative-4 has a higher score than
alternative-3. However, if this baseline value is reduced to
84% (as shown in Fig. 7), then the scores of two alternatives
become the same for this figure of merit, and the recommended
alternative changes from alternative-4, the round robin with
best time scoring, to alternative-3, a round robin with mean
time scoring. Changing the slope from 0.1 to 0.26 (also shown
in Fig. 7) caused the same change.

Bahill has used the Pinewood Derby System Design in
lectures since 1989. He told audiences that changing the
weights of the figures of merit could change the recommended
alternative, but he was never able to demonstrate this. Using
trial and error he never found a weight that could change
recommendations. This sensitivity analysis showed that his
claim was true, but the instances are sparse and are not likely
to be found by trial and error. Overall, the sensitivity analysis
has enabled us to understand our Pinewood Derby System
Design much better.

Finally we would like to mention that two versions of the
program were writtten to carry out our sensitivity analyses.
The first used empirical methods to approximate derivatives
and the second used analytic derivatives. The results of both
programs were essentially the same. Small numerical differ-
ences in results were noted but they were not significant.
The empirical version required the user to define appropriate
deltas for estimating derivatives. The analytic version required
the programmer to express the derivatives of the scoring
functions. For limited use the empirical program would be
more economical while the ease of use of the analytic version
would pay off for a heavily used system.

V. DISCUSSION

Sensitivity analyses are important tools for validating mod-
els in many diverse fields. The types and methods of sensitivity
analysis presented in this paper have ranged from precise
mathematical definitions yielding exact sensitivities, to em-
pirical methods for determining qualitative sensitivities. Each
has its purpose, advantages, and drawbacks.

The precise mathematically defined sensitivity functions
yield the maximum information about the sensitivity of a
system to its inputs and parameters at the expense of requiring
a differentiable set of system equations. The equations could
be written in terms of time or frequency. The resulting
sensitivities would be functions of all other inpuis and pa-
rameters (interactions) as well as time or frequency. Relative-
sensitivity functions are difficult to compute correctly, because
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multiplication in the time domain requires convolution in the
frequency domain. Consequently, of the analytical semsitivity
functions, the semirelative-sensitivity functions are the most
useful.

When the system is not defined with a set of differentiable
equations or is perhaps not even modeled, the Direct Observa-
tion approach yields the sensitivity of the system to a particular
parameter about the nominal operating point. If experiments
are carried out over a range of nominal operating points, the
system can be approximated as a simple function of inputs and
parameters. The result is the Response Surface of the system
and the gradients with respect to inputs and parameters are the
sensitivities. The designs of the experimental procedures nec-
essary to preform such analyses can be found in Montgomery
[44]. These estimated sensitivities may suffer from lack of
accuracy and limited range of validity.

Determining the Response Surface grows in complexity
geometrically for nondeterministic systems and for systems
with many inputs, parameters, and parameter interactions.
This leads to the use of Sinusoidally Varied Parameters for
obtaining qualitative sensitivities of a system. The results of Si-
nusoidally Varied Parameters experiments are only qualitative,
but can be much simpler to obtain than the equivalent Direct
Observation results. The results of the Sinusoidally Varied
Parameters sensitivities can be used to guide the design of
Direct Observation experiments for determining more accurate
sensitivities to important parameters.

Once the sensitivities of a system to its inputs and parame-
ters are determined they can be used to guide future research
and design. If the sensitivities of a model are quantitatively
similar to the sensitivities of the physical system the validity
of the model is enhanced. Discrepancies can be used to direct
improvements of the model or further testing of the physical
system. For example, the field of chaotic systems arose from
observations that some complex, nonlinear systems, which
were well defined, exhibited extreme sensitivity to initial
conditions.

The examples in this paper were chosen to be simple in
nature but have one of two properties of interest. They either
allowed us to perform multiple types of sensitivity analysis on
the same problem or else they were well known problems that
could be examined for new information by using sensitivity
analysis. One interesting point that showed up was that the
sensitivity (a linear function) of a linear system parameter is
not necessarily linear. This can take the form of interaction
with other parameters or nonlinear direct effects. In examples
2 and 3 the time-delay, 8, had no effect on the amplitude of
the step response. So doubling or quadrupling its value had
no effect. However, the settling time of the step response did
depend on the value of the time-delay, but not in a linear
manner. The principle of superposition applies to inputs and
not parameters. In most cases the effects of changing two
parameters independently are different than changing those
same two parameters simultaneously. Some of the examples in
this paper were not textbook polished. The Sinusoidally Varied
Parameters examples demonstrate a new technique that seems
to have promise in the field of simulation, but it has some
problems that still have to be resolved.
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In general, we do not say that a model is most sensitive
to a certain parameter. Rather we must say that a particular
facet of a model is most sensitive t0 a particular parameter
at a particular frequency or point in time. For example, the
transfer functions of examples 2 and 3 were most sensitive
to the gain K at low frequencies, while their step responses
were most sensitive to the time-delay 6 at the beginning of
the movement.
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