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PARAMETRIC SENSITIVITY ANALYSIS OF A HOMEOMORPHIC MODEL
FOR SACCADIC AND VERGENCE EYE MOVEMENTS

Frederich K. HSU, A. Terry BAHILL1 and Lawrence STARK
Engineering Science and Physiological Opfics, 226 Minor Hall,
University of California, Berkeley, CA 94720, USA

A non-linear sixth order homeomorphic model, fitted with parameters based on eye movements and physiological
data, was tuned so that it provided good simulations for the shapes of the magnitude, velocity and acceleration trljec-
tones. Excellent^quantitative agreement was obtained in terms of the Main Sequence diagrams for human eye move- •

SS ilTTtnC S(rmitM;y,ana3.yf was done for ? saccade of I™ te&™ amplitude, a physiologically normal magni-
tude at which experimental data is both abundant and relatively noise free.'

Among the many useful results of this sensitivity analysis are that pulse width (P\V) and pulse height (PH) were
confirmed as the two controlling parameters for the human eye movement model. Output behavior was relatively in-
sensitive to variations of the passive elements of the plant. This analysis also pointed out that more physiological data
are needed to understand the role of the non-linear force-velocity relationship of the extraocular muscles,

Saccade Vergence Parametric sensitivity Main sequence Eye movements Reciprocal innervation

1. Introduction

Saccades are fast, dart-like, conjugate eye move-
ments used for reading, scanning and tracking. Their
function is to position the foveae of the eyes in a time
optima] manner, Vergence eye movements, on the
other hand, are slower, disjunctive movements that
are used when looking between a near and a far point.
Thus their function is to achieve binocular fixations
and so aid in fusion. To simulate the dynamical fea-
tures of these eye movements, we have expanded the
Clark-Cook-Stark [1,2] homeomorphjc sixth order
non-linear model. It takes into account the reciprocal
nature of the agonist-antagonist muscle pair which
exerts forces on the globe and incorporates many other
results of physiological experiments. There are twenty
parameters in the model, all either constants or mono- •
tonic functions of saccadic amplitude. Finally, a sen-
sitive analysis describes how each parameter affects
the behavior of the system.

1 Dr. Bahffl's new address is: Prof. A. Terry Bahill, Biotech-
nology Program, Carnegie-Mellon University, Pittsburg,
PA 15213.

2, The Reciprocal innervation model "

2.1. Model descrip tion

The human globe has three degrees of freedom and
is moved by six muscles. Horizontal eye movements
are controlled by the lateral and medial rectus muscles
[3], The reciprocal innervation model, shown in fig. 1
was constructed using ideal lumped parameter mecha-
nical elements. The density of a human eyeball is ap-
proximately that of water; assuming a rigid sphere, the
effective inertia developed by the globe on the muscles
is4,3XlO~5gm tension-sec2/deg (2.19 newtons-sec2/
meter). The orbital tissues surrounding the globe are
modelled by a viscous element, a dashpot — whose
force is velocity dependent - and an elastic element,
a spring - whose force is position dependent. Each
muscle is described by an active state tension genera-
tor, a viscous element, and both series are parallel
elastic elements. We grouped the muscle parallel elastic-
ities and the globe tissue elasticity into one spring,
because springs in parallel have additive effects.

The properties of muscles have been investigated by
many famous researchers like A.V, Hill and B. Katz
[4,5], They have all found that muscle shortening
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Fig. 1. Reciprocal Innervation Model, The top figure shows
Descartes' basic concept of reciprocal action of extiaocular
muscles: Descartes thought that muscles were like balloons;
when inflated they would be short and fat, but when deflated
they, would be tall and skinny; the pipes were to pump fluid
in and out of the muscles. The shortening of the agonist to-
gether with the lengthening of antagonist produces eye move-
ments. The bottom figure shows the ideal mechanical ele-
ments used for modelling the plant. The globe and surrounding
tissues were modelled by the effective inertia (7), a viscous
element (Bp) and a passive elasticity (Kp). Each muscle was
modelled by an active state tension generator, a non-linear
dashpot (NL-FV") representing the non-linear force-velocity
relationship, a series elasticity (.£4) and a parallel elasticity
which was combined with the passive elasticity of the globe
to form (Kp). The active state generator converts oculomoto-
neuronal firing into force through a first order activation-
deactivation process.

obeys roughly a hyperbolic relationship, the force-
velocity curve, demonstrating the non-linearity of the
viscous element (fig. 2). The force-velocity relationship
of lengthening of the antagonist muscle has a steep
slope for low velocities and saturates at some maximum
force at high velocities [5,6,7,8,9,10]. For our simul-
lations, hyperbolic relationships were used for both ago-
nist and antagonist dashpot coefficients. Series elasti-
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Fig. 2. The force-velocity relationship of active human muscles
is hyperbolic. The constants a and b of the Hill equation shift
the asymptotes away from the origin. There are, of course,
a family of hyperbolic curves for different activation states.
The forces of the shortening muscle, PAQ, and lengthening
muscle, PA T' aje functions of active state tensions FA (j, FA 7
respectively. They aie given by:

wheie

BAT= -

for muscle lengthening. These curves show the force-velocity
relationship for agonist active state tension of 87 gm and anta-
gonist active state tension of 0.79 gm - the values used in the
model for a ten degree saccade.

cities have also been studied in detail and their effects
are best demonstrated by the quick release experiments
[1 1] . We assumed that during saccades, muscles have
constant series elasticities.

The high frequency bursts of motoneuronal firing
which drive the eyes rapidly to their new positions
last about half the duration of the saccades [12, 13].
The tonic changes in motor-neuronal activity hold the
eyes in their new positions. These phasic and tonic
changes can be thought of as pulse-step envelopes of
neural activity. These pulse-steps of neural activity are
acted upon by several physiological facets to produce
the active state tensions of the muscles. Both innervation
frequency and active state tension generated at the
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muscles seem to follow first -order processes with the
activation-deactivation processes being rate limiting,

2.2, Model equations

The system equations for the model are as follows:

Where FAG is the actual force exerted by the agonist;
FAT is the actual force exerted by the antagonist;
6-j, is eye position; 02 and 03 are separated from 8± by
the series elasticities of agonist muscle and antagonist
muscle respectively, d and 6 indicates velocity and
acceleration,

The newtonian equation is:

Note: 0 in the above equations are angular positions.
The six state equations are: -fl^A

^Shfiuid be. Initial conditions

Jr

- 16 gm tension,

= 16 gm tension ,

Note: 8 in the above six equations are state variables.
To simulate saccades and vergence eye movements

from 0.1 to 50 degrees, the following parametric equa-
tions were used:

KAG

K

tension/deg = 91.9 newtons/
meter;

~ 0.86 gm tension/deg = 43.9 n/m
= 0.01 8 gm tension-sec/deg = 0,919 n-s/m

JG = 4.3 X 10~5gm tension-sec2/deg = 2.192X
10~3n-s2/m

NAG ~ see table 1
NAT = (0.5+ 16e-A9/2-5) gin tension
A^G-tonic = (16+0.8 A0) gm tension
A^j-tonic = (16-0,06 A0)gm tension
AG.act

deact

act

^^deact
PW

AG{

AT

B'AG

B

= (13-0.1
= 2ms
= 3ms
= 11 ms
= see table 1 (antagonist pulse always cir-

cumscribe agonist pulse by 3 ms on each
side)

tension- FA T t A Tg

'AT

Note:
1 gm tension ~ 9. 806 XI 0~3 newtons ,
1 degree = 1 .92 X 1 0~4 meters.

The development of the model and physiological
justification of the parameters are the subjects of other
papers in preparation,

3, Simulation method

The model was simulated on a PDP8 computer using
mixed FORTRAN II and SABR assembly code. Dis-
plays of the behavior of model and parameters were
presented graphically on a Tektronix 611 storage scope
and quantitatively on a teletype machine. Copies of

Table 1
Values of PW and PH used for simulation.

Magnitude
degrees

0.1
0.5
1
5

10
20
30
40
50

Pulse width (PW)
ms

10
10
11
15
20
31
40
54
70

Pulse height (PH)
QMS-tension

17.6
20
22
53
87

124
155 *
160
160

10°

#<
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Fig, 3. Simulation often degree saccadic and veigence eye movements. Traces show from top to bottom magnitude, velocity and
acceleration trajectories, and the active state tension with their corresponding neuronal firing patterns. Note that saccades are
driven by a high frequency oculomotoneuronal burst which settles to tonic activity. This activity resembles a pulse step envelope
for saccades. Vergence eye movements are driven by an increase in tonic level firing, the envelope of firing resembling a step in-
crease of activity. These responses agree well with physiological data both qualitatively and quantitatively.

simulations were made either by a Tetronix hard copy
unit or an X-Y plotter. A fourth order Rungo-Kutta
integration routine was used in solving the six differen-
tial equations. To determine the duration of saccades
smaller than thirty degrees, the saccade was said to be
finished when the velocity reached 5°/s; for larger
movements, 15°/s was used. Since it was a digital simu-
lation, internal parameters were varied easily and model
responses were noise free, A simulation bandwidth
of 500 Hz was used.

Throughout the process of tuning values of param-
eters, available physiological data were checked to
assure the numbers picked were within physiological
range. The behavior of the model output was compared
both qualitatively by matching shapes of magnitude,
velocity and acceleration trajectories of physiological
data and quantitatively by comparing with the Main
Sequence diagrams.

4. The Main Sequence for human eye movements

Raymond Dodge was perhaps the first to have
studied eye movements quantitatively [15], Ilia data

fit on the Main Sequence diagrams of Bahill et al. [1 6]
which summarize the fine structure of eye movement
trajectories. When the peak velocity and duration of
eye movements were plotted against their magnitudes
on a log-log scale (due to three orders of magnitude in-
volved), they were found to cluster around a straight
line with saturation at higher velocities. The greatest
upper bound of the Peak Velocity Main Sequence
shows the maximum peak velocity (PV) for various
sized eye movements of normal unfatigued humans
while the least lower bound of the Duration Main Se-
quence shows the shortest duration (DUR) for various
magnitudes of human saccadic movements. These
bounds are the most important because they summarize
the optimal performance of this "biological system. Equa-
tions that fit the two bounds are:

PV = 850 (1 - e 6) deg/sec ,

Fig. 3 shows simulations often degree saccades and
vergences. To show how well the model fits real eye
movement data, model output values were superim-
posed on the Main Sequence diagrams (fig. 4),
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Fig, 4. The Main Sequence for human eye movements. When duration and peak velocity were plotted versus saccadic magnitude,
data points for normal humans cluster together as shown. Crosses show model response for various magnitude saccades.

5. Sensitivity study •

Sensitivity analysis has been used for some years
in computer aided simulation studies and problems
in operations research. Essentially, the relative effect
of changes in various model parameters on system
performance is determined. For system design purposes,
values of critical parameters can be refined while pa-
rameters with little effect can be ignored or eliminated.
For understanding physiological systems, sensitivity
analysis provide a means of examining the overall
validity of a model by comparing inferences from
analysis to conclusions drawn from physiological data.
With a valid homeomorphic model, sensitivity analysis
can also help in diagnosis of disorders caused by disease
and suggest logical starting points for developing bio-
engineering approaches to treatment.

There is a dilemma that if a model is completely
validated, a sensitivity analysis will not be very fruit-

ful but if a model is not valid, one does not know how
much confidence can be placed in the sensitivity
study.'Miller [17] in a study of pollutants in the

-•Ottawa River showed that meaningful information
can be provided with a sensitivity study even on an
uncertain model. For the eye movement plant, not
all of the physiology of underlying processes are well
understood. Although the model accurately reproduces
available data, the sensitivity analysis provided us with
direct information concerning the importance of each
parameter and suggested new experiments for further
understanding of the system and updating the model.

A parametric sensitivity analysis was done for a
ten degree saccade because this is a normal physiological
magnitude and data are both abundant and relatively
noise free. Each parameter was varied from 20—200%
of the value used for producing a 'good* ten degree .
saccade while the other nineteen parameters were
held constant. Fig. 5 shows examples of trajectory
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Fig. 5. Trajectories of position, velocity and acceleration for the eye movement plant as pulse width (PW) — left, and pulse height
(PH) — right, are varied from 20-200% of the value used for producing a 'good' ten degree saccade. Varying pulse width had a
large effect on the magnitude of saccade but a small effect on peak velocity. The shapes of the velocity and acceleration trajectories
are drastically changed nevertheless. Varying pulse height affects all trajectories as shown.
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variations when pulse width (PW) and pulse height (PH)
were varied. Resultant trajectories were noted and both
normalized magnitude and normalized peak velocity
were plotted versus the normalized value of each pa-
rameter (figs. 6,7). The slopes of these sensitivity curves
(sensitivity coefficients) give a emasure of the relative
importance of each parameter. The steeper the slope,
the more eye movement behavioral changes are pro-
duced by standard variation of that parameter. For
instance, when the pulse width was 20 ms, the saccadic
magnitude was 10 degrees. When pulse width was
doubled to 40 ms, the saccadic magnitude was 17,3
degrees, increasing by 73%. However, doubling the
series elasticity of-agonist from 1.8 gm tension/deg to
3.6 gm tension/deg only produced an increase of 17%
in saccadic magnitude. The slope of the magnitude
sensitivity curve for pulse width was 0.54 compared
to 0.1 for series elasticity of the agonist.

Fig. 6. Sensitivity curves for the two controlling parameters
for the human eye movement plant: pulse width (PW) and
pulse height (PH). Magnitude sensitivity coefficients are 0.54
for PW and 0.519 for PH. Among the twenty internal param-
eters, the model outputs are most sensitive to these two pa-
rameters. Note thai doubling the value of pulse width has re-
latively little effect on peak velocity. Solid line: magnitude
sensitivity. Dotted line: peak velocity sensitivity.
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Fig. 7. Rank ordered sensitivity curves for sixteen of the internal parameters. The actual values of each parameter used for simulating
a ten degree saccade is given along the X-axis and normal output values along the Y-axis. Output behavior was studied while each
internal parameter was varied from 20-200% of its value used for producing a 'good' ten degree saccade. Note that the sensitivity
curves for agonist and antagonist tonic levels are not presented since they only have effect on duration (they have glissades at the
end portion of their trajectory). Solid line: magnitude sensitivity. Dotted line: peak velocity sensitivity.

7. Results and discussion of sensitivity analysis

Fig. 5 shows trajectory variations of saccadic eye
movements due to variations in PW and PH. Fig. 6 and
7 show the sensitivity curves of the internal parameters.
Table 2 summarizes the magnitude sensitivity coeffi-
cients of the twenty internal parameters.

The model is most sensitive to four parameters
(table 2) - PW, PH, AGb, Kp - all of whose sensitivity

coefficients exceeded 0.4. From the Main Sequence
diagrams, we can roughly divide the magnitude range
into three regions judging from the slopes of the curves:
the first region for saccades of smaller than one degree,
the second for saccades greater than ten degrees and
the third for saccades in between one and ten degrees.
The duration of a saccade is strongly correlated to the
duration of the high-frequency burst of oculomoto-
neuronal flri.]g (PW). We see Ihut large amplitude sac-
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Table 2
Sensitivity coefficients: slopes of magnitude sensitivity curves.

1 Pulse width PW
2 Pulse height-agonist PH-NAG
3 Agonist dashpot-6 BA Gb

4 Parallel elasticity Kp
5 Agonist dashpot-o BATa

6 Antagonist dashpot-& BATb

7 Agonist activation time constant A Gact
8 Agonist dashpot-a BA Ga

9 Agonist deactivation time
constant A Gdeact

10 Agonist series elasticity K^ g
11 Antagonist deactivation time

constant ^-^deact
12 Pulse width-end circumscription AGP^c
13 Antagonist activation constant -<47act
14 Pulse width-start circumscription A G?SC
15 Effective inertia JQ
16 Globe viscosity 'Bp
17 Antagonist series elasticity &AT
1 8 Pulse height-antagonist PH-NA T
19 Tonic level-agonist NA Gtonic
20 Tonic level-antagonist NAT\{c

0.540
0,519 *
0.505
0.432
0.316
0.263
0.250
0.160

0.113
0.100

0.094
0.045
0.038
0.030
0.030
0.020
0.013
0,013
glissades
glissades

From table 2, we see that the other three variables
of the two muscle dashpot coefficients A Tg,ATb,
AGg rank 5, 6 and 8, respectively, in their sensitivity
coefficients. This shows that viscosity has a relatively
strong effect on output behavior. Although skeletal
muscle behavior has been studied extensively, in vivo
measurements of extra ocular muscles have only been
done by relatively few experimenters [18] due to the
difficulties in doing research on human subjects. How-
ever, the sensitivity analysis points out that data on
viscosity of the extraocular muscles are crucial to im-
proving our understanding of the eye movement plant.

The physiology of activation-deactivation processes
of active state tension of muscles is not well understood.
Their time constants have a secondary effect on behavior
[19] as confirmed by their ranks in table.2. Another
interesting fact is that series elasticity of agonist has
a sensitivity coefficient of 0.1 as compared to 0,013 of
series elasticity of antagonist. This is probably due to
the greater force exerted by the agonist than the anta-
gonist.
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cades show a strong dependence on PW since the Main
Sequence has the greatest slope for large saccades.
Small magnitude saccades seem to be controlled only
by PH since the Main Sequence duration plot shows
a scattergram rather than a tight cluster of points. The
region in between one and ten degrees saccades seem
to be controlled by both PW and PH. This is confirmed
by the sensitivity analysis in that PW and PH are the
two most sensitive parameters of the model. The fact
that parallel elasticity Kp is fourth on the list is not
surprising since it is a lumped parameter representing
three separate elasticities — the parallel elasticity of
both muscles and the passive elasticity of the globe.
Kp is a passive element of the plant and is not a control
parameter. The sensitivity of the model ioAGb is sur-
prising, AGb is a constant in the Hill equation for the
force-velocity relationship of muscles. This parameter
had been extensively studied by Hill and he estimated
that AGb should be approximately 1/4 Kmax. But Kmax

must be evaluated for each muscle studied. Cook and
Stark estimated Fmax to be 3600°/s. Because this mo-
del is so sensitive to AGb, we have started experiments
to investigate it in greater detail. This unexpected re-
sult has stimulated new experiments and thus illustrates
the value of a sensitivity analysis for models.

8, Conclusion

Our reciprocal innervation model reproduced phy-
siological data accurately for both saccadic and ver-
gence eye movements over three orders of magnitude.
A sensitivity analysis on ten degree saccades was per-
formed on the twenty internal parameters. These re-
sults showed the most sensitive parameters to be pulse
width and pulse height, the two controlling parameters
representing neuronal firing for saccadic control.
Passive elements representing the eyeball, surrounding
muscles and tissues had low sensitivity coefficients and
have little effect on the dynamic behavior of the model.
This contrast is in concurrence with the fact that most
saccadic trajectory variability is of neural, not muscular
origin [20,21,22]. Further studies will be needed to
understand why the model is so sensitive to viscosity
of the muscles, especially to AGb of the Hill equation.
The usefulness of a sensitivity analysis for simulation
studies is illustrated by the fact that old ideas were con-
firmed, new insights gained, and direction for further
research was provided.



116 F,K. Hsu et al, Ilomcomorphic model for saccadic and vvrgence eye movements

References

[1] M.R. Clark and L. Stark, Control of human eye move-
ments, Math. Biosci. 20 (1974) 191-265.

[2] G. Cook and L. Stark, The human eye movement mecha-
nism: experiments, modelling, and model testing, Arch.
Ophthalrnol. 79 (1968) 428-436.

[3] Galen, De Motu Musculorum, in: Medicorum Graccorum
Opera Quae Extant, Bk. one, Chap. 4-6, Karl Gottlob
Kuhn (Cnobloch, Leipzig, 1822).

[4] A.V. Hill, The heat of shortening and the dynamic con-
stants of muscles, Froc. Roy. Soc. B. 126 (1938) 135-
195.

[5] B. Katz, The relationship between force and speed in
muscular contraction, J. Physiol. 96 (1939) 45—64.

[6] X. Aubert, Le couplage energetique de la contraction
musculaixe. Editions Arscia 60, Bruxelles, 1956.

[7] P.M.H. Rack and D.R. Westbury, The effects of length
and stimulus rate on tension in the isometric cat soleus
muscles, J. Physiol. 204 (1969) 443-460.

[8] G.C. Joyce and P.M.M. Rack, Isotonic lengthening and
shortening movements of cat soleus muscle, J. Physiol.
204(1969)475-491.

[9] G.C. Joyce, P.M.H. Rack and D.R. Westbury, The mecha-
nical properties of the cat soleus muscle during con-
trolled lengthening and shortening movements, J. Phy-
siol. 204 (1969)461-474.

[10] J.C. Houk, A mathematical model of the stretch reflex
in human muscle systems, Master's Thesis, M.I.'f. (1963).

[11] B.C. Abbott and D.R. Wilkie, The relationship between
velocity of shortening and the tension length curve of
skeletal muscle, J. Physiol. 120 (1953) 214-223.

J12] A.T. Bahill and L. Stark, The high-frequency burst of

motoncuronal activity lasts about half of the duration
of saccadic eye movements, Math. Biosci. 26 (1975)
319-323.

[13] G. Cook and L. Stark, Dynamic behavior of the human
eye-positioning mechanism, Commun. Behav. Biol, Part
A(3) (1968) 197-204.

[14] D.A. Robinson, The mechanism of human saccadic eye
movement,J. Physiol. 174 (1964) 245-264.

[15] R, Dodge and T.S. Cline, The angle velocity of eye move-
ments, Phys. Choi. Rev. 8 (1901) 145-157.

[16] A.T. Bahill, M.R. Clark and L. Stark, The main sequence,
a tool for studying eye movements, Math. Biosci. 24
(1975) 191-204.

[17] D.R. Miller, An experiment in sensitivity analysis on an
uncertain model, Simulation 23 (1975) 101-104.

[18] C.C. Collins, The human oculomotor control ssytem, in:
Basic Mechanisms of Ocular Motility and Their Clinical
Implications (Pergamon, New York, 1974).

[19] M.R. Clark and L. Stark, Sensitivity of control param-
eters in a model of saccadic eye tracking and estimation
of resultant nervous activity, Bulletin of Math. Bio. 37
(1975) 1-19.

[20] A.T. Bahill and L. Stark, Overlapping saccades and glis-
sades are produced by fatigue in the saccadic eye move-
ment system, Exp. Neurol. 48 (1975) 95-106.

[21] A.T. Bahill, M.R. Clark and L. Stark, Dynamic ovei-
shoot in the saccadic eye movements is caused by neuro-
logical control signal reversals, Exp. Neurol. 48 (1975)
107-122.

[22] A.T. Bahill, M.R. Clark and L. Stark, Glissades - eye mo-
vements generated by mismatched components of the
saccadic motoneuronal control signal, Math. Biosci. 26
(1975)303-318.


