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ABSTRACT
The human can overcome a time delay and track visual targets with zero latency. This

is nicely demonstrated by the smooth pursuit eye movement system. We found that if our
model was to emulate the human, it had to predict target velocity and compensate for system
dynamics. The model accomplished this using a least means-square prediction algorithm. To
help validate the model, a sensitivity analysis and a parameter estimation study were performed,

1. INTRODUCTION

The control of movement has long been an enigma for scientists as well as for
parents who marvel at the miracle of seeing their children take their first steps. The
control of muscles that we often take for granted is so complex that it is difficult
to comprehend the intricacies involved, To develop an understanding of such com-
plex movement control systems, we started with a study of a simple neuro-muscular
system, developed physiologically realistic models, and then refined these models.

The eye movement system is a good starting point because of its simplicity,
relative to other neuro-muscular systems. This system has primarily two degrees
of freedom, horizontal and vertical, and only two muscles are involved in horizon-
tal eye movements, as compared with six or more degrees of freedom and about
thirty major muscles for each leg involved in locomotion. The study of the eye move-
ment system is also aided by the ease with which the movements can be measured.
Any knowledge gained in the control of eye movements will contribute not only
to the understanding of the oculomotor system but also to the understanding of larger,
more complex neuro-muscular systems,
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Figure 1 shows our model for the human eye movement systems. Like the
human, this model can overcome the time delay and track a target without laten-
cy. To do this, the model must be able to predict future target velocity, and com-
pensate for system dynamics. In this paper a least means-square technique for pre-
dicting target velocity is described. After incorporating this prediction algorithm
into the model, the model was studied to learn more about the model, and hopeful-
ly about the human. In particular, we performed a sensitivity analysis of the predic-
tor and then investigated how parameter variations effected the mean-square error
between the predicted output and the actual target waveform.

2. EYE MOVEMENT SYSTEMS

The purpose of the eye movement system is to keep the fovea, the region of
the retina with the greatest visual acuity, on the object of interest. To accomplish
this task, the following four types of eye movements work in harmony: saccadic
eye movements, which are used in reading text or scanning a roomful of people;
vestibulo-ocular eye movements, used to maintain fixation during head movements;
vergence eye movements, used when looking between near and far objects; and
smooth pursuit eye movements, used when tracking a moving object. These four
types of eye movements have four independent control systems involving different
areas of the brain. Their dynamic properties, such as latency, speed, and high-
frequency cutoff values, are different, and they are affected differently by fatigue,
drugs, and disease (Bahill 1981, Bahill and Stark 1975, Leigh and Zee 1983). For
simplicity, none of the other neural systems associated with vision or movement
will be discussed in this paper.

SACCADIC BRANCH

USAC

LIMITER

SMOOTH^PURSUIT BRANCH

K

iS+1
ST

DELAY SAT.

TARGET-SELECTIVE
ADAPTIVE CONTROLLER

E
X
T P
R L
A A
O N
C T
,U
L
A
R

Figure 1. The Target Selective Adaptive Control Model (TSAC) of Bahill and McDonald (1983)
has three branches: smooth pursuit, saccadic, and the adaptive predictor.
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The specific actions of these four systems can be illustrated by the example of
a duck hunter sitting in a rowboat on a lake. 'He scans the sky using saccadic eye
movements, jerking his eyes quickly from one fixation point to the next. When he
sees a duck, he tracks it using smooth pursuit eye movements. If the duck comes
close to him, he moves his eyes toward each other with vergence eye movements.
Throughout all this, he uses vestibule-ocular eye movements to compensate for the
movement of his head caused by the rocking of the boat. Thus, all four systems
are continually used to move the eyes.

3. THE TSAC MODEL

This paper primarily examines the smooth pursuit eye movement system. The
earliest model for the smooth pursuit system is the sampled data model developed
by Young and Stark (1963). As a result of later evidence presented by Robinson (1965)
and Rrodkey and Stark (1968), the pursuit branch is no longer viewed as a sampled
data system, but rather as a continuous one.

There is one physically realizable model capable of overcoming the time delay
in the smooth pursuit branch, the Target Selective Adaptive Control (TSAC) model
developed by Bahill and McDonald (1983) and McDonald and Bahill (1983). This
model with the saccadic and smooth pursuit branches and their interactions is shown
in Fig. 1.

Referring to Fig. 1, the input to the smooth pursuit branch is retinal error,
which is converted to velocity by the differentiator. The limiter prevents any
velocities greater than 70 degrees per second from going through this branch, (The
numbers given in this section are only typical values, the standard deviations are
large, g.g., Bahill and LaRitz (1984) showed smooth pursuit velocities of over 150
deg/sec for a baseball player.) The leaky integrator Kl(rs + 1) is suggested from
experimental results showing that humans can track ramps with zero steady-state
error (Rashbass 1961), and open-loop experiments that showed a slope of —20
decibels per decade for the pursuit branch's frequency response (Bahill and Harvey
1986). The gain, K, for the pursuit branch must be greater than unity, since the
closed-loop gain is almost unity, Currently used values for the gain are between
two and four (Bahill and Harvey 1986, Young 1971). The e~sT term represents the
time delay, or latency, between the start of the target movement and the beginning
of pursuit movement by the subject, A time delay of 150 msec is currently accepted
(Bahill and Harvey 1986). The saturation element prevents the output of any
velocities greater than 60 degrees per second, the maximum velocity produced by
the human smooth pursuit system.

The model must be able to overcome the 150 msec time delay and track with
zero latency. Because the smooth pursuit system is a closed loop system, the model's
time delay appears in the numerator and the denominator of the closed-loop transfer
function,

E Ke~sT
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An adaptive predictor using a Least Means-Square adaptive filter was designed to
overcome the time delay in the numerator. Compensation for the model's dynamics
overcomes the time delay in the denominator,

4. THE LEAST MEANS-SQUARE ADAPTIVE FILTER

The Least Means-Square (LMS) adaptive filter, popularized by Widrow 1971,
Widrow et al. 1976, Widrow and Stearns 1985, is a "self-designing" filter composed
of a tapped delay-line, variable weights, a summing junction to add the weighted
signals, and machinery to adjust the weights. Two processes occur in the adaptive
filter: the adaptation process and the operation process,

The adaptation process handles weight adjustment. The values of the weights
are determined by estimating the statistical characteristics of the input and output
signals. The heart of the adaptation process is the weight adjustment algorithm,
As each new input sample is received the weights are updated by the algorithm,

with

W(; -hi) = the weight vector after adaptation
W(/) = the weight vector before adaptation
ks = the proportionality constant controlling stability and the rate

of convergence
E(j) = the difference between the desired response and the filter's

output, the error
X ( / ) = the vector of input signals.
V[E 2 ( ; ) ] = the gradient of the error squared with respect to W(;)

In order to find the best possible weights, we computed the gradient (with
respect to W) of the squared error, set this equal to zero, and solved for the op-
timum weights. The result is the Weiner-Hopf equation.

where

WLMS = the vector of weights that would give the least mean-square error
$(x,x) = autocorrelation matrix of the input signals
$(x9d) = covariance matrix between the input signal and the desired

output signal,

To solve the Wiener-Hopf equation it is necessary to compute the correlation
matrices. However this would require a lot of computer time; furthermore these
matrices cannot be computed in advance, because this would require a priori
knowledge of the statistics of the input signal.

Because it is difficult to compute the true gradient, we use an estimate of the
gradient, which is equal to - 2£(;')X(;). Our algorithm is a form of the method of
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steepest descent using estimated gradients instead of measured gradients. Using this
estimated gradient, the adjustment algorithm can be written,

Figure 2 illustrates the implementation of this weight adjustment algorithm. If the
input signals are uncorrelated, then the expected value of the estimated gradient
converges to the true gradient without any knowledge of the input signal's statistics.

During the operation process of the LMS filter, illustrated in Fig. 3, the tapped
delay-line input signals are weighted, using the gains from the adaptation process
and summed to form the output signal. The difference between the desired output
signal and the actual output of the filter is the error that is fed back to the weight
adjustment algorithm.

The speed and accuracy of the filter while converging to the optimal solution
depends on several factors. Because noise is introduced into the weight vector from
the gradient estimates, it follows that if the filter is allowed to converge slowly,
less noise will be introduced during each adaptation cycle and the convergence will
be smoother. Regardless of the speed with which the filter converges, some noise
will be introduced. This noise prevents the filter from converging to the minimum
mean-square error. The ratio of the excess mean-square error to the minimum mean-
square error gives a measure of the misadjustment of the filter compared to the op-
timum system. The misadjustment depends on the time constant of the filter's
weights, where the time constant is equal to the time it takes for the weights to
fall within 2 percent of their converged value. A good approximate formula for the
misadjustment, M, is

M =
4-r. (1)

WEIGHT SETTING

2ksE(j)X,(j)

Figure 2. Implementation of the weight adjustment algorithm.
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Figure 3. The Least Means-Square (LMS) adaptive filter. The boxes labeled weight adjust-
ment contain systems like Fig. 2.

This algorithm shows that M is proportional to the number of weights, n, and in-
versely proportional to the time constant, rmse.

To insure convergence the proportionality constant, fcs, in the weight adjust-
ment algorithm must be within the following bounds

1(KJc<

where £[X,2] is the expected value of the square of the ;th input. For slow and
precise convergence ks should be within the following more restrictive bounds

0<M
:. » £[x2]; = 1 L nj

According to Widrow (1971) and Widrow et al. (1976), for a filter using tapped
delay-line input signals, the time constant is related to the proportionality constant by

4k (2)

In summary, an adaptive filter is made up of a tapped delay-line, variable
weights, a summing junction, and the weight adjustment algorithm. The filter ad-
justs its own internal settings to converge to the optimal solution. Due to noise from
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the gradient estimate, the accuracy and speed of convergence depends on the number
of weights and the proportionality constant, ka.

5. THE ADAPTIVE PREDICTOR

The adaptive predictor is an application of the LMS adaptive filter. We used
this predictor to overcome the 150 msec time delay in the smooth pursuit model.

Figure 4 shows the design of the adaptive predictor. Two filters are used: an
adaptive filter and a slave filter. The adaptive filter determines the appropriate
weights.^ It does this by predicting the value of the input signal 150 msec into the
future, D(j + T). To accomplish this, the input signal, D(/), is delayed by an amount
of time equal to the time to be predicted, in this case 150 msec. This delayed signal,
X(/), then serves as the input to the adaptive filter. The filter's weights converge
to values that give an output signal, Y(j) or £>(/), which ideally matches the undelayed
input signal,

The slave filter is responsible for predicting. The input to the slave filter is the
undelayed signal, D(j). The slave filter is organized like the adaptive filter except
there is no automatic adaptation process, i.e., no weight adjustment. The weights
from the adaptive filter are copied into the slave filter after each adaptation cycle.
The output of the slave filter, D(j + T), is the predicted value of the input signal
at the desired future time.

For the TSAC model, the velocity of the target must be predicted 150 msec
into the future to overcome the smooth pursuit system's time delay. Therefore, the
target's velocity, the input signal to the predictor, was delayed by 150 msec and
used as the adaptive filter's input. Our adaptive filter used between 15 and 150

Z ' ADAPTIVE
FILTrR

\E
FILTER

D(| 4 T)

Figure 4. The Adaptive Predictor. The boxes labeled adaptive filter and slave filter contain
systems similar to Fig. 3.
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weights and a proportionality constant of 0.00001. Figures 5 and 6 show the behavior
of the predictor with 150 weights. Figure 5 shows the output of the predictor,
D(j + T), for various waveforms superimposed on the signal to be predicted. The
filter's transients die out within 2.5 seconds of each abrupt change in velocity.

Figure 6 shows the predictor's mean-square error, ||E(;')||2, plotted against the
number of iterations of the filter; an iteration was completed every 5 msec. After

TARGET
PREDICTED TARGET

10 11
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TIME
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TIME
(SEC)

1 2 3 4 5 6 7 8 9 10 11 12
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1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
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Figure 5. The predictor's output superimposed on the signal it is predicting. The target velocity
waveforms are from top to bottom: parabolic, triangular, sinusoidal, and square.
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Figure 6: The learning curve for the adaptive predictor.

450 iterations the mean-square error was effectively zero; this corresponds to 2.25
seconds, which agrees with the predictor's output in Figure 5. The settling time
of the filter, 450 iterations, is approximately 4rmse, where rmse is the average time
constant for the weights. This gives a Tmse of 112.5 iterations. Using Eq. (5), M =
n/4rmse, the predictor has a misadjustment of approximately 33.3 percent.

6. COMPENSATING FOR PLANT DYNAMICS

The predicted target velocity from the adaptive predictor compensates for the
effects of the time delay in the numerator of the transfer function of Eq. (1). To
overcome the effects of the time delay in the denominator, compensation for the
model's dynamics must be done. This means that the brain must have a model for
itself and the rest of the physiological system, and that it uses this model to generate
the required compensation signal.

When linear state-variable feedback notation is used for a system its closed-
loop transfer function is

R{(s)
(3)



284 TRANSACTIONS [Vol. 2, No. 4

where

Y = system output, 9 in Fig. 1
R{ = system input
T = time delay
A = system matrix
b = input coefficient vector

= vector transpose operation
k' = transposed control vector
h f = transposed output coefficient vector
K = the gain.

The general method of compensating for model dynamics is complex. It in-
volves computing an adaptive signal Bfl, which, when added to the target position
Rs, produces a system input R{ that will produce zero-latency tracking. This method
is discussed in detail by McDonald and Bahill (1983), We will now briefly show
how we used it.

For the human eye movement system the order of the system and the control
and output vectors are one so that the following values are appropriate.

h = 1

fc = 1.

The system's input, r^t),,is the sum of the target reference signal, rs(t), and
the adaptive signal, ra(t) that must be computed. To obtain zero latency tracking
y(t) must equal rs(t). Putting all of this information into Eq. (3) gives

*(l/T) Ke~sT , .r = —* —-—— (r -f T )
s -l -°T^s a>

Solving for ra gives

, + sT
(4)

The e+sT term shows that predictions must be made. However, the smooth pur-
suit system is a velocity tracking system, not a position tracking system, so the con-
troller must be able to predict future values of target velocity. For example, if ts(t)
is the present target velocity, it must be able to produce rs(t + T), where T is the
time delay of the smooth pursuit system. And the controller must modify this predic-
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tion to compensate for the dynamics of the system in accordance with Eq, (4).
Therefore, the compensation signal, Rc of Fig. 1 becomes

rc(t) = [Jf^+T) + '.(*+r)l (5)

This compensation signal allows the smooth pursuit system to overcome the time
delay. To synthesize this signal the adaptive controller must be able to both predict
future values of the target velocity, and compute first derivatives. These are
reasonable computations for the human brain. Therefore, Eq. (5) is the algorithm
that is in the box of Fig. 1 labeled Target Selective Adaptive Controller.

7. THE SENSITIVITY OF THE PREDICTOR TO PARAMETER CHANGES

To determine which parameters have the greatest effect on the model and when
they exert their influence, we computed the semirelative sensitivity function, S|,
for each parameter (Bahill 1981, Bahill et al 1980).

where y is the output of the system and $ is the parameter that is varied. For this
study we used a fixed pertubation size of + 5 % , While tracking slowly moving targets
the model is linear and therefore only one perturbation step size was needed (Bahill
et al 1980).

The smooth pursuit model developed in this study is not independent of other
systems. The saccadic system and the adaptive predictor interact with the smooth
pursuit branch. Therefore, we performed the sensitivity analysis both with the sac-
cadic system and the predictor turned on, and with the saccadic system and the
predictor turned off. Eliminating the saccadic system and predictor allowed us to
isolate the pursuit branch and study it independently.

The sensitivity of the predictor was studied for three parameters: fcs, the pro-
portionality constant; the number of weights; and the time to be predicted. For
ks and the number of weights, the target waveforms were also changed to deter-
mine if the predictor was sensitive to different input signals.

The effect of ks was found to be the greatest after points of acceleration discon-
tinuities. We performed a sensitivity analysis for many target waveforms, including
the four shown in Fig, 5. The influence of ks is most apparent for the analyses done
with the cubic position waveforms. In Fig. 7 we show the results for the cubical
target position waveform, which has the parabolic velocity waveform shown in this
figure. Sk peaks at the turnaround points and then begins to taper off to a steady
state value.

Similar results were found for the sensitivity analyses when the number of
weights was changed for each target waveform. Figure 8 shows the results of the
sensitivity analysis for the weights. Sn is similar for the two parameters, but the
time of greatest sensitivity occurs a little later for the weights. This similarity of
the two sensitivity functions is reasonable if the misadjustment algorithm for the
adaptive filter from Eqs. (1) and (2) is recalled,
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» 7. Semirelative sensitivity function of the predictor for changes in the proportionality
int, ks, for a cubic waveform.
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This equation shows that a 5 percent change in either the proportionality constant,
ks, or the number of weights, n, will change the misadjustment of the predictor
in a similar manner.

The other parameter changed for the predictor was the prediction time, the
desired time to be estimated. The S curve for this case also had the same shape as
the curve for the number of weights and the proportionality constant, but its
magnitude was smaller.

From these curves, the effect of the predictor can be determined. Changing
each parameter by 5 percent showed that all of them exert their greatest influence
right after acceleration discontinuities. Therefore, the predictor's influence will be
the greatest at those points.
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Figure 8. Semirelative sensitivity function of the predictor for changes in the number of weights
for a cubic waveform.

8. THE EFFECT OF PARAMETER CHANGES ON THE MEAN-SQUARE ERROR

Our Semirelative sensitivity analysis gives a measure of how changing a
parameter affects the model and it shows when the parameter exerts its greatest
influence. For our second sensitivity analysis, we considered the effect on the model's
performance of changing each parameter over a range of values. Each parameter
was given values above and below the nominal values; the velocity mean-square
error between the model's output and the target was computed for each change.
For the predictor, the filter's mean-square error, FMSE, was computed between
the velocity of the target 150 msec in the future and the velocity predicted by the
adaptive predictor. The mean-square errors were then plotted against the parameter
values.
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9. THE PREDICTOR'S SENSITIVITY TO CHANGES IN PARAMETERS

The effect of changes in the proportionality constant on the predictor was
studied first. As the proportionality constant in Fig. 9 became larger, the filter's
mean-square error became smaller. According to the misadjustment algorithm, the
larger ka, the larger the misadjustment. This appears to disagree with this figure.
However, the mean-square error for the figure was taken during the first 12 seconds
of the simulation; therefore, the start-up transients are influencing the error. The
larger ks the faster the filter adapts; for smaller ks the filter takes longer to con-
verge, but does converge to a solution with smaller error. Therefore, in the figure,
the large mean-square error for a small ks is because the filter takes longer to con-
verge to the optimal solution. With the larger ks values, the filter is converging
rapidly and appears to have a smaller error. If ks were increased even more, the
error would also begin to increase. When we made the filter's task easier, by
eliminating the startup transient and only studying the steady-state behavior, we
found the FMSE increased with ks as expected.

Our detailed analysis also showed a larger mean-square error for the cubic
waveform compared to the sinusoidal waveform. This result is not unexpected since
the cubic is a higher order waveform than the sine wave and the misadjustment
is proportional to the expected value of the input signal.

Referring to Fig. 10, the mean-square error of the predictor is shown as a func-
tion of the number of weights in the adaptive filter. According to the misadjust-
ment algorithm, as the number of weights increases so does the misadjustment of
the filter. The curves here show the filter's error decreasing until 15 weights and
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Figure 9. The mean-square error of the predictor as a function of changes in the propor-
tionality constant, ks. The top figure shows the changes in the error for a cubic waveform.
The bottom figure is the mean-square error as a function of changes in ks for a parabolic
waveform.
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then rising slightly before falling off after 40 weights. Because the adaptive filter
is using a tapped delay-line input signal, as the number of weights is increased the
input signals for the adaptive and slave filters begin to overlap. This improves the
predictor's performance because the statistics of the two input signals are the same
since the input signals are the same.

The increase in error between 15 and 40 weights shows the rise in error predicted
by the misadjustment algorithm. However, after 40 weights the statistics of the in-
put signals for the two filters begin to get close enough that the error drops off.
The input signals for the two filters begin overlapping after 30 weights, which is
approximately where the curves peak.

The effect of changing the prediction time and the signal's frequency were also
studied. Figure 11 shows the predictor's error as a function of prediction time. The
error appears to be a linear function of the prediction time. The further into the
future that is to be predicted, the worse the predictor does. We also computed that
for changes in frequency, the faster the target moves the poorer the predictor does.

Summarizing, the predictor's performance is poorer as the proportionality con-
stant is increased, although the error is a function of the time when the measurements
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Figure 10. The mean-square error of the predictor as a function of changes in the number
of weights for a cubic waveform.
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Figure 11. The change in the mean-square error of the predictor as the prediction time is
changed.

were taken. For instance, in this study, the start-up transients have not died down
so the reverse statement appears true. For the weights, as the number of weights
increased, the error also increased. The exception, seen in this work, is when a tapped
delay-line input signal is used and the statistics of the input signals to the adaptive
and slave filters are similar. The error of the predictor increases as the prediction
time increases and as the input signal's frequency increases.

10. DISCUSSION

To create a model, we first determine the form, then derive parameter values.
When possible we use physiological data to derive these values. A sensitivity analysis
shows which parameters are the most and the least important so we can focus our
efforts appropriately. In one of our final modeling stages we run a function minimiza-
tion routine to adjust parameter values so that we get the least squared error be-
tween the human and the model outputs.

When we applied our parameter estimation program to this present model it
failed, because the number of weights was discrete, and our function minimization
routine used a modified gradient technique, which only works with continuous func-
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tions (Latimer and Bahill 1979). Therefore, we used a manual function minimiza-
tion scheme as shown in Figs. 9 and 10. We are presently modifying our parameter
estimation program so that it will work on discrete parameters,

Our model shown in Fig. 1 is an approximation to the human smooth pursuit
system. Similarly our simulation is only an approximation of the model of Fig. 1.
For example, the model of Fig. 1 should be stable for any gain up to 2.3. But our
simulation started to oscillate at L8, We found that we were getting 5 to 10 degrees
of artifactual phase shift from the differentiators, the integrators, and even the sum-
mers. A smaller simulation step size would have obviously solved the problem,
however, just being aware of the problem was also sufficient.

11. CONCLUSIONS

Our least mean-squares predictor worked well except when discontinuities in
the target waveform were present. For any desired accuracy, trade-offs could be
made between the predicted gain and the number of weights. When this predictor
was incorporated into our full eye movement model, the model was able to over-
come its 150 msec delay and track targets with no latency, just like the human.

For optimal performance, 150 weights were used, Because the model gets a
new target position every 5 msec, this means it uses the previous 750 msec of data
for each calculation. We are not sure that the human uses this large a data win-
dow. Therefore, we also ran the model with only 15 weights. Even with this re-
duced number of weights, the model still performed as well as the human. We are
presently designing experiments to be performed on the model and on the human
that will allow us to differentiate between these possibilities.
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