
584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCHiAPRIL 1993

VII. CONCLUSION
In this paper, optimal path planning for robot manipulator is

presented that utilizes a variational technique. A simplified robot arm
is considered to facilitate geometric collision checking scheme. This
is incorporated in the variational technique to develop a collision
avoidance strategy. The collision checking scheme is rather stringent.
However, it reduces the computational requirements.

Different path planning problems are considered in an unified
treatment. The method adopted is very flexible and can handle various
criterion functions. It can also take into account different kinds
of obstacles. The efficacy of the method is demonstrated through
numerical examples and digital simulation of a PUMA 560 type of
robot arm. The obstacles considered in the numerical examples are
simplistic in nature. This however, is not a restriction as the method
can be extended to consider multiple static or dynamic obstacles at
an increased cost of computation.

Finally, a couple of words about the scope of this paper. Firstly,
the path planning procedures proposed here are very effective in
repetitive pick-and-place operations rather than in assembly opera-
tions. In a much cluttered workspace, the objective is to choose a
path that avoids all the obstacles and to travel cautiously through it.
Optimum paths are fairly meaningless in such situations. Secondly,
the global convergence property of the MLV have not been proved.
It is possible that such variational technique may lead to a local
optimum. However, this should not cause any difficulty to the MTPP
problem. In the MEPP problem the final trajectory may depend on
the nominal trajectory chosen. One way of choosing the nominal
trajectory is using the joint interpolation technique. One can also use
the trial and error method. In either case, the trajectory chosen will
not be very far away from the optimal path and the MLV can be
effectively applied. In cases where there are many posisible choices
of the nominal trajectory, it is advisable to compute the optimal path
for each and compare them.

REF ERE N c E s

M. E. Kahn and B. Roth, “Near minimum time control of open loop
articulated kinematic chains,” Trans. ASME J . Dyn. Syst., Measurement,
Contr., vol. 93, pp. 164-171, 1971.
J. Y. S. Luh and W. M. Walker, “Minimum time along the path for a
mechanical arm,” in Proc. 26th Conf Decision and Contr., vol. 1, New
Orleans, LA, 1977, pp. 755-759.
J. Y. S. Luh and C. S. Lin, “Optimum path planning for mechanical
manipulators,” Trans. ASME J . Dyn. Syst.. Measurement, Contr., vol.
102, pp. 142-151, 1981.
A. Ghosh and P. Balamuraleedhar, “Near-minimum-time trajectory
planning in Cartesian space,” in Proc. 4th Int. Conf: on CAD, CAM,
Robotics and Factories of Future, New Delhi, India, 1989.
J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” Trans.
ASME J . Dyn. Sysr., Measurement, Contr., vol. 106, pp. 102-106, 1984.
J. F. Bobrow, S. Dubowsky and J. Gibson, “Time optimal control of
robotic manipulators along specified paths,” Int. J . Robotic Res., vol. 4,
no. 3, pp. 3-17, 1985.
J. F. Bobrow, “Optimal robot path planning using the minimum-time
criterion,” IEEE J. Robotics Automat., vol. RA-4, pp. 443-450, 1988.
K. G. Shin and N. D. McKay, “Minimum time control of robotic
manipulator with geometric path constraints,” IEEE Trans. Automatic
Control, vol. AC-30, pp. 531-541, 1985.
-, “Selection of near minimum time geometric paths for robotic
manipulators,” IEEE Trans. Automat. Contr., vol. AC-31, pp. 501-51 1,
1986.
-, “A dynamic programming approach to trajectory planning of
robotic manipulators,” ZEEE Trans. Automat. Contr., vol. AC-31, pp.
491-500, 1986.

A. Ghosh and A. M. Patrikar, “Optimum path planning using the method
of local variations,” in Proc. SME World Conf: Robotic Res., Maryland,
1989. (Also SME Trans. Robotics Automat., 1990.)
L. A. Krylov and F. L. Chernous’ko, “Solutions of problems of optimal
control by the method of local variations,” U.S.S.R. Comput. Maths. &
Math. Physics, vol. 6, pp. 12-31, 1966.
A. Ghosh, C. Seshadri and A. M. Patrikar, “Time optimal path planning
for robot manipulators,” in Proc. IEEE Int. Symp. Circuits Syst., New
Orleans, LA, 1990.
T. Lozano Perez, “Automatic planning of manipulator transfer move-
ments,” IEEE Trans. Syst., Man, Cybern., vol. SMC-11, pp. 681-698,
1981.
-, “A simple motion-planning algorithm for general robot manipu-
lators,” IEEE J . Robotics Automat., vol. RA-3, pp. 224-238, 1987.
R. A. Brooks, “Planning collision free motions for pick and place
operations,” Int. J . Robotic Res., vol. 2, no. 4, pp. 1944, 1983.
E. G. Gilbert and D. W. Johnson, “Distance functions and their applica-
tions to robot path planning in presence of obstacles,” IEEE J. Robotics
Automat., vol. RA-I, pp. 21-30, 1985.
S. H. Suh and K. G. Shin, “A variational dynamic programming
approach to trajectory planning with a distance safety criterion,” IEEE
J . Robotics Automat., vol. RA-4, pp. 334-349, 1988.
J. W. Boyce, “Interference detection among solids and surfaces,” Comm.
ACM, vol. 22, pp. 3-9, 1979.
B. H. Lee and C. S. G. Lee, “Collision-free motion planning of two
robots,”IEEE Trans. Syst., Man, Cybern., vol. SMC-17, pp. 21-32, 1987.
C Seshadri and A. Ghosh, “Minimum-time trajectory planning for two
robots,” Proc. IEEE Ind. Electron. Soc. Conf:, CA, 1990.
C. Seshadri and A. Ghosh, “Optimum path planning for two robots-A
variational approach,” Proc. Int. Symp. Intell. Robotics, Bangalore, India,
1991.
C. P. Neuman and V. D. Tourassis, “Discrete dynamic robot models,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 193-204, 1985.

A Hypertext Software Package to Help Document
System Designs

William L. Chapman and A. Terry Bahill

Abstruct- A hypertext-based software package was created to help
engineers, with little formal systems engineering experience, to docu-
ment a system design. A hypertext-based object-oriented programming
environment was used to allow easy transfer of information within the
design and to provide a user friendly interface. Tradeoff analysis was
automated. This allowed fast sensitivity analysis within the tradeoff
studies and greatly decreased the time needed to complete the concept
exploration. Graduate students extensively tested the software. Ease in
writing the documentation and completing the analysis was a major
benefit. Drawbacks were the software’s slow speed and its inability to
automatically reenter extracted data.

I. INTRODUCTION
Documenting a system design is a mundane but important task.

Most systems are documented poorly if at all. This causes a break-
down in communicating the requirements to the designer and results
in a nonoptimized system design. We built a hypertext-based object-

Manuscript received September 19, 1990; revised August 14, 1992.
W.L. Chapman is with the Hughes Aircraft Company, P.O. Box 11338,

A. T. B’ahill is with the Department of Systems and Industrial Engineering,

IEEE Log Number 9206199.

Tucson, AZ 85734.

University of Arizona, Tucson, AZ 85721.

0018-9472/93$03.00 0 1993 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCHIAPRIL 1993

oriented tool to help document system designs. This software package
is called the systems engineering design software (SEDSO).

In this paper, we will first explain the elements of system design
that must be documented. Next, there will be a description of an
example of system design documentation. We then describe our soft-
ware tool SEDSO that allows easy creation of the systems engineering
documentation. This software guides the systems engineer through
the documentation of the design effort. When completed, all the
requirements necessary for conceptual development and evaluation
will have been rigorously defined and the tradeoff and sensitivity
analysis completed. Finally we examine the use of the software by
students to formally document and analyze their class project designs.

11. MODEL-BASED SYSTEMS ENGINEERING

Model-based systems engineering [l] , [2], which is similar, but not
identical to, the systems engineering procedures used in most large
companies, divides the systems requirements into six categories.

1. Inputioutput and functional.
2. Technology.
3. Input/output performance.
4. Utilization of resources.
5. Tradeoff.
6. System test.
The input/output and functional requirement defines the time scale,

inputs, outputs, and functions the system must perform. It represents
what the system must do independent of the technology.

The technology requirement defines what the system can be
built with and typically consists of the components available and
their individual characteristics such as cost, availability, schedule,
reliability, etc., for the system design.

The input/output performance requirement is used to measure how
well the input/output and functional requirement is met. This is
typically done through figures of merit and performance indices.

The utilization of resources requirement is used to measure how
well the technology requirement is met. This is also done through the
use of figures of merit and performance indices such as project cost,
schedule, environmental impact, etc.

The tradeoff requirement is used to decide the tradeoffs between the
input/output performance and utilization of resources requirements
that must be made to choose the best system.

The system test requirement is used to describe how the system
requirements will be evaluated and figures of merit measured on
a real system. In addition, the criteria for observance, compliance,
conformance and acceptance are given.

To describe the system dcsign, seven systems engineering docu-
ments are used.

1. Problem situation document.
2. Operational need document.
3. System requirements document.
4. System requirements validation document.
5 . Concept exploration document.
6. System functional analysis document.
7. System physical synthesis document.
The problem situation document is the executive summary. It

explains the problem that needs to be solved and states who the
customer and designers are. It is written in plain language and is
intended for management.

The operational need document is used to define, in plain language,
what the customer expects from the new system. The needs of the
system are described by using the six categories of requirements
mentioned above. This document is intended for management, the
customer and systems engineers.

5x5

The system requirements document is used to mathematically, or in
complete textual detail, describe each of the requirements addressed
in the operational need document. Its audience is systems engineering.

In the system requirements validation document we examine the
mathematical description of the input/output requirements presented
in document 3 to check for consistency, demonstrate that a real world
solution can be built, and show that a real world solution can be tested
to prove that it satisfies the input/output and functional requirements.
Often identifying an existing system that satisfies all the requirements
is enough to complete the system validation. This document is written
for systems engineering.

The concept exploration document is used to develop several
different concepts. This is done through the use of tradeoff studies
and modeling to determine which of the concepts is superior. This
document will be rewritten many times as more information becomes
available. It is written for systems engineering.

The system functional analysis document is used to decompose
the chosen concept into successively smaller functions that will
eventually be simple enough to implement physically. Its intended
audiences is systems engineering.

The system physical synthesis document is used to break the system
functions from document 6 into successively smaller physical units
until the design is complete. It is created in conjunction with system
functional analysis.

SEDSO was built to simplify the creation of these documents.

111. SIERRA
A project from an undergraduate microcomputer class was chosen

to test the software package and provide a small engineering
project for which we could create a complete set of systems
engineering documents. The students had to create a controller for
two trains that run on two intersecting circular tracks. The trains
can collide at the intersections. The controller must interface to
existing location detectors and power controllers to prevent collisions.
The requirements were provided to the students and they then built
the systems and documented the results. This project is known as
the Systems & Industrial Engineering RailRoad Assignment or
SIERRA. The students created three different controllers: one with
integrated circuits, another with an assembly language program for a
Motorola 68000 microcomputer, and the last with a Pascal program.
This project has been done by more than 500 students since 1986.
The old student reports were the control group that we compared to
the engineering reports generated with SEDSO.

The full documentation of this system design as produced with
SEDSO is contained in [8, ch. 61. This was the first full imple-
mentation, available to the general public, of the seven systems
engineering documents outlined in model-based systems engineering
[l] . The documentation for SIERRA was created as an example of
a good systems engineering documentation report. SIERRA is 82
pages including exhibits.

IV. SYSTEMS ENGINEERING DESIGN SOFTWARE
It was decided that a software package that could be used to create

the documentation of the system design would help engineers design
systems. This software would create the seven systems engineering
documents used to track the requirements development and concept
exploration phases of the life cycle. This new software is called the
systems engineering design software (SEDSO).

After investigating several commercial software packages a product
called HyperPAD [lo] was selected for building SEDSO. This product
is an object-oriented programming language for I B M compatible

586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCHIAPRIL 1993

Section 2.4 - ENTER THE 1/0 PERFORMANCE REQUIREMENTS
Figure of Merit Name 1 Number of Collisions]
Description

The number of times the trains come into physical I contact.

El Relative Importance

Fig. 1. A performance requirement template.

TABLE I
TYPICAL WEIGHTS FOR THE FIGURES OF MERIT

Importance Value Weight

Figure of Merit 1 to 10 IWi

1) Number of Collisions
2) Trips by train A
3) Trips for train B
4) Spurious stops by A
5) Spurious stops by B
6) Availability
7) Reliability

8 0.258
7 0.225
7 0.225
3 0.096
3 0.096
2 0.064
1 0.032

personal computers. The package has a strong programming language
coupled with an easy to use interface.

SEDSO begins a new system design by prompting the systems
engineer to enter requirements information. All the information for
each requirement explained above is used. SEDSO documents the
system design by using the requirement information to fill in the
blanks in the hypertext fields for each systems engineering document.
The questions help engineers provide all the requirements needed in
the project. Data was entered only once then used in several different
documents. For example, the user entered data for performance
and resource requirements once in document 2 and the data was
subsequently used in documents 3 and 5 for evaluating the system.

Templates for the design approach were provided. For example, the
1/0 requirements have a field for the system states. The “boiler plate”
symbology for the modeling language was already filled in with the
terminology for the system and the student needed only to fill in the
blanks. After the systems engineer has completed the state diagram
this data is easily entered. To enter a new performance requirement
a template with edit fields is provided as shown in Fig. 1.

Automated creation of the weights for each figure of merit is
accomplished by having the systems engineer enter the data into
a template similar to that shown. The relative importance of each
figure of merit based on a scale of 1 to 10 is entered. These numbers
are summed and a weighted value between 0 and 1 is assigned by
SEDSO as the normalized weight (IWi). Table I shows an example
of weightings used on SIERRA.

Sublevels of figures of merit can also be entered. These sublevels
are computed separately and the overall value passed up to the
main level. This allows the breakdown of large figures of merit into
manageable pieces. We seldom used more than seven figures of merit
at any level.

The scoring and tradeoff analysis was also automated. We used
scoring functions to scale different figures of merit to values between
0 and 1. Calculation of the standard scoring functions are done based
on values for upper, lower, baseline, and slope parameters entered.
Instead of 12 scoring functions of Wymore [l], SEDSO defines only
one scoring function that encompasses all 12. The four basic shapes
that can be derived from our scoring function are shown in Fig. 2.

t Score t Score

0 - 0 :
Figureof merit Lower Baseline Upper

Figure of merit
(a) (b)

0.5 _____ _ _ _ _ [A* I

0.5 l p (f -_--- ----

0 I I
0

Figureof merit Figure of merit
(c) (4

Fig. 2. The four shapes that our scoring function can assume.

Equations for these scoring functions are given in [8] . The software
required the systems engineer to enter values of infinity for upper
thresholds when there was no upper limit or negative infinity for lower
thresholds when there was no lower limit. For example in SIERRA
the scoring function shown in Fig. 2(a) was created to evaluate the
number of trips for the model trains. In this case a lower limit of 0
was set and an upper limit of infinity. The baseline or expected value
of FigureMerit was 0.5. The baseline parameter indicates what figure
of merit yields a score of 0.5 on a scale from 0 to 1. The slope is
measured at the baseline and showed how quickly the score changed
at that point. The standard scoring function accepted the value of
the observed number of trips and returned a scaled score between 0
and 1. For example, for 8 trips a score of 0.917 was returned. For
10 trips a score of 0.982 was returned. These functions are versatile
and can be used in other domains such as for activation functions
in artificial neural networks and for membership functions in fuzzy
logic knowledge-based systems.

The tradeoff was computed automatically when all the data had
been entered. Overall scores for each concept were computed al-
lowing a comparison of how well each conceptual design met the
requirements. Although in decision analysis many different means are
available for calculating tradeoffs we used a linear tradeoff between
performance requirements and resource requirements. In SIERRA
both were weighted equally so a value of 0.5 was assigned to TW1
and TW2. The following equation was used for the tradeoff analysis:

TFO = IF0 * T W 1 + UFO * TW2

where IF0 is the overall input/output performance index, and UFO
is the overall utilization of resources index.

This automation of the decision theory made it much easier for the
systems engineer to compute the tradeoffs and to do the sensitivity
analysis needed in the concept exploration in document 5. After
changing the weights, figures of merit, or parameters of the scoring
function, new tradeoff scores were automatically computed. These
were compared with previous scores to determine how sensitive the
design was to small changes in the data. For example, Table I1 shows
approximate values, or blue sky guesses, for the number of trips
completed by each train.

With these estimates the overall I/O Performance Index is 0.963.
We then played a “what-if game” and asked what would happen if

T -

587 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCHIAPRIL 1993

TABLE I1
APPROXIMATE VALUES FOR I/O FIGURES OF MERIT

Requirements FigureMerit Score IWi

1) Number of Collisions 0 1 0.258
2) Trips by train A 8 0.917 0.225
3) Trips by train B 8 0.917 0.225
4) Spurious stops by A 0 1 0.096
5) Spurious stops by B 0 1 0.096
6) Availability 1 1 0.064
7) Reliability 1 1 0.032

Overall Performance Index = 0.963

TABLE I11
REVISED APPROXIMATE VALUES FOR I/O FIGURES OF MERIT

Requirements FigureMerit Score IWi

Often when we present the recommended alternative, our customers
say “This is not the right answer.” So we open up document 3
and ask which of the weights or parameters they want to change.
We make the changes and record the source of the changes. Then
SEDSO automatically recomputes the tradeoff study, and presents
a new recommended altemative. This process continues until the
customers are happy. At the end of this process an alternative has
been recommended, the reasons for its superiority are made manifest,
and the sources of the design decisions have been documented. This
documentation is important for subsequent operation and replacement
of the system.

SEDSO required a total software development time of about 180
hours with an additional 60 h of tests. This number is low because of
the use of the object-oriented tool, however the size of the program
is large at about 552 Kbytes. This is because of the integration of the
database with the code. Because of the speed in creating the software,
the size of the final program was not an issue.

1) Number of Collisions 0 1 0.258
2) Trips by train A 9 0.961 0.225
3) Trips by train B 10 0.982 0.225
4) Spurious stops by A 0 1 0.096
5) Spurious stops by B 0 1 0.096
6) Availability 1 1 0.064
7) Reliability I 1 0.032

Overall Performance Index = 0.987

we changed the approximated values for the number of trips for Train
A and Train B as shown in Table 111.

The increased number of trips resulted in a higher scaled score,
which when multiplied by the appropriate weight and summed gave
a new value of 0.987. In other words a design that allowed each train
to make more trips had an higher overall score. This score was the
basis for computing the tradeoff and determining the best system. To
conduct a sensitivity analysis the user repetitively changed a value for
a figure of merit and the software computed the new overall scores.
Likewise, the weights or the scoring function could be changed for
a figure of merit in documents 2 or 3 and a new value computed in
document 5. The time required to change a weight, scoring function or
figure of merit and obtain a new overall score was only a few minutes.
A new document with the updated information was then immediately
available. A more rigorous method for sensitivity analyses has been
given in [ll].

After the user entered all the requirements data for a document, a
copy was printed or sent to a disk file. This was accomplished by
SEDSO by inserting the requirements information into the hypertext
fields. The fields were embedded in standard specification text. The
output allowed checking of the information by others involved in the
project and provided a permanent record of the system design. Each
printed copy carried a date stamp for control purposes.

Hypertext is a means of interlinking data that is not tied to
specific fields as it is in most flat file database schemes [3], [4].
This feature was a helpful tool in this project since data was used in
several separate documents and cross checking was useful without
locking users into a fixed framework. It also allowed searching
all fields in the document for a phrase. This was needed when
updating the documents. Other system theories such as quality
function deployment (QFD) [5] , [6] can also be implemented using
this hypertext approach.

The alternative that gets the highest score in the tradeoff analysis
of document 5 is called the “recommended alternative” and its value
is assigned to a variable that is printed in the output text paragraph.

V. STUDENT TESTING

Students in a graduate systems engineering course were asked to
document a system design for a class project. The students were given
the requirements for conducting a Cub Scout Pinewood Derby race.
Students divided themselves into four groups comprised of 3 to 5
students and were given the option of generating the documentation
with or without SEDSO. Three of the groups chose to use SEDSO
and one did not.

The students had one month to complete their projects, which
averaged 100 pages in length and took on average 200 total student
hours. With the help of SEDSO as a software tool and SIERRA as
an example, these students were able to create the complete set of
system engineering documentation in a reasonable period of time.
The team that decided not to use the SEDSO package to document
their system design delivered a project report that was not internally
consistent. Different writing styles were obvious and all requirements
were not documented with the same detail level. However, their
report was much better than similar reports done in previous years:
this was attributed to the SIERRA example. The instructor felt that
the documents that used SEDSO were much more consistent and
had better modeling and analysis. Two of the groups generated the
results with SEDSO then reformatted it using a word processor. Their
documentation had the best appearance.

However, the students who used SEDSO felt that it was too slow
and did not have enough word processing features (such as a spelling
checker) that they were accustomed to from personal computers. In
addition bugs in the SEDSO software resulted in loss of data on
several occasions. Generally the aspect of the software the students
liked the most was the automatic computation of the scoring functions
and the consistent transfer of requirements information from one
document to the next. We felt that the students had a much better
understanding of systems theory and documentation practices from
using the software and completing the projects. The results indicate
that SEDSO was of help to the students, but that a more complete
and trouble free software package is needed. The amount of quality
documentation generated in a short time by a team of students was
clearly linked to the SEDSO software’s ability to accurately track the
requirements and output the results.

It is appropriate for students in a graduate level Systems Engineer-
ing course to use SEDSO to produce all seven system engineering
documents for a particular system. SEDSO and SIERRA help. In
addition we have found that undergraduate students in our Micro-
computer Systems and Expert Systems courses also benefit from
writing these documents. But time constraints limit use to requesting
only documents 1, 2, 3, and 5. SEDSO and the Pinewood Derby

588 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCHIAPRIL 1993

Documentation [8, ch. 51 provide excellent demonstration and lecture
material for these courses. SEDSO is being used every semester at
the University of Arizona.

VI. DISCUSSION

By writing our own system design documentation software we
learned a considerable amount about what should be in a system
design report. Many of the features we put into SEDSO were not
considered before the design began. For example, we did not initially
appreciate how long the documents would be and their storage
requirements. Also the more user friendly the software became, the
better the student’s documentation also became. Because we used
a hypertext environment, we decided to prompt the user to enter
weights, scoring functions, test methods, test results and sensitivity
analysis for each requirement stated by the customer. This changed
the way we thought of the reports, particularly during the concept
exploration phase. We never ‘‘lost’’ a requirement or failed to address
it, because a blank paragraph would have been output in our report.
We also encouraged the designers to include four types of data in
the concept exploration document: the Present System (if one exists),
Approximation, Simulation and, when appropriate, a Prototype.

Developing SEDSO dramatized these four iterations of the concept
exploration document. Many proposed systems are similar enough to
an existing system so that the existing system can be used to provide
initial values for the figures of merit. For SIERRA we had hundreds of
previous student projects that could be used. In the design of a mass
rapid transit system for a metropolitan area, the existing system of
streets and roads can be used for figures of merit. However, for other
proposed systems no similar system might exist, such as a manned
station on Mars.

All systems should have an iteration based on approximations,
or educated guesses, made by experts. Most systems can have an
iteration based on a simulation of the system. Finally, many systems
will have prototypes that can be used to generate figures of merit.
In order to be useful the prototypes would have to be low in cost
compared to the final system, otherwise it would not be economical to
throw away prototypes that are not chosen. The field of expert systems
is epitomized by fast low-cost prototypes. It is the rule, rather than
the exception, to throw away the first prototype. This allows several
prototypes to be made for each system. These prototypes can be used
to provide figures of merit for the tradeoff studies. This process of
evaluating each concept numerous ways would not have been put
into every set of documentation if it were not automated.

We made a mistake designing SEDSO: we did not include spelling
checkers and text processors. So the users took SEDSO’s output
and processed it with their spelling checkers and text processors.
Unfortunately, SEDSO could not accept this processed output as
its input. Therefore, the users had to also reenter the changes with
SEDSO. We could have ameliorated this problem by using a hypertext
tool that used ASCII files so that the users could correct spelling,
grammar and formatting on the original files. However, at the time
no such tool existed. If we were to rewrite SEDSO we would use a
newer hypertext tool that could do this, or perhaps C++.

RDD-lOO@ is a commercial systems engineering software package
that addresses this problem. It has one database with a dozen facets.
One person can use a graphics editor on a block diagram; this does
not merely change the graphics display, but instead it changes the
fundamental database. Another person can edit a text file. Once again
this does not simply change the text file, it changes the underlying
database. A third person could alter the data with a spreadsheet, once
again they would not be simply changing the values in the cells, but
they would be altering the database.

Our system was implemented using a 12-MHz IBM AT environ-
ment but the students created their reports on a 5-MHz IBM XT. This
proved too slow for their use, especially when outputting copies of the
entire set of documents. More modern workstations would obviously
improve the performance of the system.

Other requirement tracking schemes appear in the literature. Auto-
mated design systems can be used for keeping a library of existing
technologies and pruning the set for a viable solution [7] , [12].
Commercial packages, such as Ascent Logic’s RDD-100, provide
standard system modeling output, such as IDEF charts and flow
diagrams, and can be used to track some requirement information
[9]. We have found no package that will simultaneously track the
requirements, aid in concept selection via a tradeoff study and output
system requirement documentation besides SEDSO.

VII. CONCLUSION

Systems engineering methodology is of great practical use. The
most useful aspect we found was the documentation of the entire
system design. This project has helped by creating the first complete
set of seven systems engineering documents, as defined in Model-
based Systems Engineering [11, available to the public. The software
package SEDSO was instrumental in creating the documentation for
SIERRA and for automating the decision theory used in concept
selection.

A more complete software package would be of benefit to the
students. SEDSO was the foundation upon which a complete system
can be built. Students who used SEDSO created more complete
documentation in less time than students who did not use SEDSO. In
addition requirements were carefully tracked throughout the design
and concept selection tradeoffs were automated enabling a thorough
sensitivity analysis. A package with stronger word processing tools
and better response is also desirable.

The example SIERRA was of particular importance to the students.
By having a simple design to follow from document 1 through
document 7 the students could easily see the benefits of system
design. It is felt that with SIERRA and SEDSO, system design
techniques are more easily understood and are more useful for
students.

ACKNOWLEDGMENT

We thank Dr. Wayne Wymore for spending time reviewing
SIERRA and SEDSO and ensuring its correctness and accuracy. His
expertise in systems design was of great practical use.

REFERENCES

A. W. Wymore, Model-based Systems Engineering. Boca Raton, F L
CRC Press, 1993.
A. W. Wymore, System Engineering Methodology for Interdisciplinary
Teams. New York: Wiley, 1976.
J. Conklin, “Hypertext: An introduction and survey,” Compufer, vol. 20,
no. 9, pp. 17-41, 1987.
J. H. Walker, ‘‘Supporting document development with Concordia,”
Computer, vol. 21, no. 1, pp. 48-59, 1988.
B. King, Better Designs in Half the Time. Methuen, MA: GOAWQPC,
1989.
Y. Akao, Quality Function Deployment: Integrating Customer Require-
ments into Product Design. Cambridge, M A Productivity Press, 1990.
J. W. Rozenblit and Y. M. Huang, “Rule-based generation of model
structures in multifaceted modeling and system design,” ORSA J.
Computing, vol. 3, pp. 330-344, 1991.
W. L. Chapman, A. T. Bahill, and A. W. Wymore, Engineering Modeling
and Design.
RDD-100 User’s Manual.
HyperPAD User’s Guide.

Boca Raton: CRC Press, 1992.
San Jose: Ascent Logic Corp., 1991.
New Canaank, CT: Benchmark, 1989.

TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 2, MARCH/APRIL 1993

W. J. Karnavas, LP. Sanchez, and A. T. Bahill, “Sensitivity analyses of
continuous and discrete systems in the time and frequency domains,”
IEEE Trans. Syst., Man, Cybern., pp. 488-501, this issue.
J. Grady, Systems Requirements Analysis. New York: McGraw-Hill,
1993.
S. Khoshafian and R. Abnous, Object Orientation. New York: Wiley,
1990.

Robust Adaptive Controller Design and Stability
Analysis for Flexible-Joint Manipulators

R. A. AI-Ashoor, R. V. Patel, and K. Khorasani

Abstract-The problem of controlling robot manipulators with flexible
joints is considered. A reduced-order flexible-joint model based on a
singular perturbation formulation of the manipulator equations of motion
is used. The concept of an integral manifold is utilized to construct
the dynamics of the slow subsystem. A fast subsystem is constructed to
represent the dynamics of the elastic forces at the joints. A composite
adaptive control scheme is developed with special attention to stability and
robustness of the controller. The proposed controller is based on on-line
identification of the manipulator parameters and takes into account the
effect of a class of unmodeled dynamics, identification errors and param-
eter variations. Stability analysis of the resulting closed-loop full-order
system is presented. To show the capability of the proposed algorithm, an
example of a two-link flexible-joint manipulator is considered. Simulation
results are given to illustrate the applicability of the proposed control
scheme.

NOMENCLATURE

Unless mentioned otherwise, the following notation is used in this
paper. Matrices are denoted by bold letters.

Number of joints.
n x n identity matrix.
n x 1 generalized joint torque vector.
n x 1 joint position (velocity, acceleration) vector.

2 n x 2 n positive-definite inertia matrix.
n x 1 torque vector representing unmodeled dynamics in
the slow subsystem.
n x 1 generalized joint position (velocity, acceleration)
error vector.
Matrix of estimated parameters.

Vector of measured variables.
Elasticity parameter.
71 x 1 elastic joint force/torque vector.
n x 1 actuator position (velocity, acceleration) vector.

Integral manifold of 7 , ’ .

Deviation of 41 from the integral manifold (transient
behavior of (1).

Manuscript received July 1, 1991; revised May 26, 1992.
This work was supported in part by the Natural Sciences and Engineering

The authors are with the Department of Electrical and Computer Engineer-

IEEE Log Number 9205807.

Research Council of Canada under grants OGP0001345 and OGP0042515.

ing, Concordia University, Montreal, PQ, H3G 1M8, Canada.

589

n x n moments of inertia corresponding to the links and
motors, respectively.
n x n centrifugal and Coriolis terms for the links and
motors, respectively.
Stiffness of the flexible joints.
17 x 1 gravity and friction terms for the links and motors,
respectively.

I. INTRODUCTION
Joint elasticity in a robot manipulator implies that the position

of an actuator (i.e., the angle of the motor shaft) is not directly
related to the position of the driven link. From the modeling point
of view this internal deflection can be approximated by inserting a
linear torsional spring at each joint. As a consequence, the rigid arm
dynamic model has to be modified in order to describe completely the
relation between applied torque and link motion [l]. Most industrial
robots employ DC or AC motors connected in series with harmonic
drives (high-torque, high-ratio gear boxes) used mainly for speed
reduction. In some applications, transmission belts, or long shafts
in the drive system (usually in the joints) are also used. The joint
elasticity results in lightly damped oscillatory modes in the open-loop
response of the system [2]. To capture the aforementioned behavior,
the manipulator is modeled by a chain of rigid sublinks interconnected
by elastic joints [lo].

It is shown in [3], [4] that the control schemes that assume a
rigid model for the manipulator are limited in their applicability to
real robots where the assumption of perfect rigidity is never satisfied
exactly. The resonant behavior in some range of frequencies imposes
bandwidth limitations on any control algorithm that is designed
assuming perfect rigidity. This may cause stability problems for
feedback control laws that neglect joint elasticity [7]. For quasi-static
applications, simplified models that consider only the dynamics of
the drive system have been used by Kuntze et al. [8] . Spong [lo] has
investigated a simplified model that neglects the inertial coupling
between the actuators and links. Models including full nonlinear
dynamic interactions among joint elasticities and inertial properties
of links and actuators have been introduced by Nicosia et al. [9].

Recently several advanced control algorithms for flexible-joint
manipulators have been proposed. Approaches using singular pertur-
bation techniques [111, sliding modes [12], pseudolinearization [131,
and model reference adaptive control [14] have been developed. A
method based on the concept of integral manifold was suggested
by Khorasani et al. [5] , [6] and Spong et al. [7]. In this approach
the control algorithm is designed by assuming perfect knowledge of
the parameters of the flexible-joint manipulator. De Luca [l] uses
dynamic feedback for linearization also with no uncertainties. A
theoretical study of robust control was performed by De Wit and
Lys [2]. Their approach uses a two-step estimation procedure for
the unknown parameters of the manipulator. Stability analysis of the
resulting closed-loop system was not investigated when significant
parameter variations are permitted in the open-loop system. Since the
estimation of the rigid body dynamics depends on the elasticity of the
joints, a two-step estimation procedure for flexible-joint manipulators
is not possible.

Different adaptive control schemes for rigid manipulators have
been proposed in the literature [28], [29] to circumvent the difficulties
arising from parametric uncertainty. We can essentially classify these
works into two different categories. In the first category, the adaptive

0018-9472/93$03.00 0 1993 IEEE

