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ABSTRACT

This paper compares two common risk-modeling approaches and then uses them to analyze the risk of
incorporating solar photovoltaic (PV) systems into a commercial electric power grid. It uses procedures
from both approaches such as Hierarchical Holographic Models, frequency and severity normalization,
and avoiding numerical skewing by rare but serious events: It describes the benefits and limitations of
these approaches. Then, this paper summarizes the main risks associated with incorporating Solar PV
panel systems into a commercial electric power grid, presents a what-if analysis for extreme scenarios,
and explains mitigation strategies to ameliorate these risks. Finally, the paper points out some possible
unintended consequences of incorporating Solar PV systems into a commercial electric power grid. © 2013
Wiley Periodicals, Inc. Syst Eng 17: 89–111, 2014
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1. INTRODUCTION

Economically viable harvesting of renewable energy is one
of the most profound challenges of the 21st century. The most
promising renewable energy source in the southwest United
States is photovoltaic. However, incorporating solar photo-
voltaic (PV) subsystems into an existing electric power grid
presents a significant challenge because of the intermittent

and diurnal characteristics of the environment. This, and the
uncertainty of dealing with the unknown, mean that evolving
such a big complex system is risky. Therefore, a risk analysis
is a crucial part of system design. This paper compares two
common risk-modeling approaches: The first is based on a
popular industry approach [Bahill and Karnavas, 2000; Bahill
and Smith, 2009; Smith, Siefert, and Drain, 2009], and the
second is mainly based on statistics [Asbeck and Haimes,
1984; Kaplan, Haimes, and Garrick, 2001; Reyes Santos and
Haimes, 2002; Haimes, Kaplan and Lambert, 2002; Henry
and Haimes, 2009; Haimes, 2009; Yan and Haimes, 2011].
The goal is to compare these two approaches and then apply
them to the risk analysis of a large-scale grid-tied solar PV
subsystem for Tucson Electric Power (TEP), the electricity
service provider for the Tucson metropolitan area.

TEP has been operating a 4.6-megawatt (MW) Solar PV
panel array at their Springerville Solar Generating Station for
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the last 6 years. However, this facility provides only 0.2% of
their total generating capacity, and they need to increase their
renewable-energy generating capacity significantly in order
to comply with the Arizona Corporation Commission’s
[2008] Renewable Energy Standard. This Standard requires
that, by the year 2025, 15% of the utility companies’ retail
sales must be supplied from renewable-energy sources.

The risk analysis of this paper was conducted under the
assumption that most of this Renewable Energy Standard will
be satisfied with solar photovoltaic energy. It identifies risks
and complications associated with incorporating large-scale
photovoltaic-solar systems from the utility company’s per-
spective.

2. DEFINITION OF RISK

The world is full of uncertainty, and this makes risk an
inherent component in the design of any system. Risk is an
expression of the potential harm or loss associated with an
activity executed in an uncertain environment. Starting in
1662, Arnauld and Nicole, French Catholic priests, wrote that
risk had at least two components: “Fear of some harm ought
to be proportional not only to the magnitude of the harm, but
also to the probability of the event”  [Arnauld and Nicole,
1996: 274]. This is the first use of these phrases magnitude of
harm and probability of the event. Some ancient Greek,
Chinese, and biblical sources express the concept of risk; but
they do not have these phrases. It is unlikely that any older
source had these phrases, because Arnauld’s friend Blaise
Pascal only invented probability in 1654 and the Oxford
English Dictionary cites the earliest use of the word risk as a
few years after that.

This paper will primarily examine two risk-modeling ap-
proaches.1 They use different methods to design the system,
to model the system, to identify risks, and to quantify risk.
Haimes’ [2009] process for quantifying risk uses the follow-
ing equations:

E[x] = ∫
a

b

x ⋅ p(x)dx,
(1)

E[x] = Σ pi xi. (2)

The expected value of risk, E[x], can be represented with Eq.
(1) for the continuous case or Eq. (2) for the discrete case,
where X is a random variable representing the severity of
consequences (often called damage), p(x) is the probability

density function of X, and a and b are the lower and upper
range limits of the severity of consequences. In Eq. (2), the
probability mass function is used for the expected value of
risk. The frequency of occurrence of the threat scenario is
implicit, meaning it does not appear in Eqs. (1) or (2). How-
ever, Haimes [2009] cautions that risk is a multidimensional
function and it cannot be expressed through a single metric.
Some of these other dimensions will be revealed as this paper
progresses.

Bahill [2010] quantifies risk as the product of the relative
likelihood (or frequency of occurrence) of a failure event and
the severity of consequences for each occurrence of that
failure event, as in

risk = relative likelihood × severity of consequences. (3)

This process uses the product combining function.
Risk as the product of relative likelihood (or frequency of

occurrence) and the severity of consequences is the definition
usually used in American industry. It is the only approach that
Bahill has seen government contractors use. This may be the
result of US government guidance and professional standards.
For example, the US Food and Drug Administration [FDA,
2006: 1] wrote: “ It is commonly understood that risk is
defined as the combination of the probability of occurrence
of harm and the severity of that harm.”  The Department of
Defense [DoD, 2006: 1] stated: “Risks have three compo-
nents: A future root cause (yet to happen), which, if eliminated
or corrected, would prevent a potential consequence from
occurring, A probability (or likelihood) assessed at the present
time of that future root cause occurring, and The consequence
(or effect) of that future occurrence.”  The Defense Systems
Management College [DSMC, 2001: 10], which is based on
DoDI 5000.2 and DoD 5000.2-R, states: “ Risk is a measure
of the potential inability to achieve overall program objectives
within defined cost, schedule, and technical constraints and
has two components: (1) the probability/likelihood of failing
to achieve a particular out-come, and (2) the conse-
quences/impacts of failing to achieve that outcome.”  The
Institute of Risk Management [IRM, 2012] states: “Risk can
be defined as the combination of the probability of an event
and its consequences (ISO/IEC Guide 73).”  By design, the
CMMi [2012] is broad: It states what must be done, never how
it should be done. Here it states what is needed to quantify
risk: “Parameters for evaluating, categorizing, and prioritiz-
ing risks include the following: Risk likelihood (i.e., prob-
ability of risk occurrence) Risk consequence (i.e., impact and
severity of risk occurrence) Thresholds to trigger manage-
ment activities.”  The INCOSE Systems Engineering Hand-
book [INCOSE, 2011: 225] states: “Level of risk depends
upon both likelihood and consequences … [R]isk is expressed
as: Risk = Probability of failure (Pf) * Consequence of failure
(Cf).”  There are differences between these definitions, but for
the most part they all state that risk should be quantified as a
combination of relative likelihood (or frequency of occur-
rence) of a potential failure event and the severity of the
consequences of that event.

Besides the product combining function, there are other
functions for combining data [Daniels, Werner, and Bahill,

1This paper will use the following dictionary definitions: they are listed from
high-level abstract terms to low-level concrete terms. Approach is a plan of
attack, or a means to accomplish a goal. It is high level and abstract.
Methodology is a toolbox of methods, processes, and procedures for achiev-
ing a goal. Method is a regular orderly way of doing something, e.g., a
teaching method, the scientific method. Process is a chain of related activities
that transforms inputs into outputs, e.g., a Markov process, a system design
process. Procedure is a sequence of steps conducted in a prescribed manner
to attain a goal, e.g., a medical procedure. Technique is a concrete application
of a method: it is a single operation. Checklist can be used to ensure that all
of the prescribed steps were actually performed.
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2001]. For example, the linear combining function, which is
the simplest and most common, is defined as

f = ∑
i=1

n

wi ⋅ xi,

where n is the number of data elements to be combined, wi
represents the weight of importance (scaled from 0 to 1)
assigned to the ith data element and xi represents the score for
the ith data element. Second, the product combining function
is defined as

f =∏
i=1

n

xi
w

i,

In Eq. (3), both of the weights are usually 1.0. Third, the
exponential combining function is defined as

f = 1 − e
−∑

i=1

n

kw
i
x

i
.

where k is a scaling constant used to tailor the output to match
the requirements necessary for accurate evaluation [Cooper,
1999]. Fourth, the sum minus product combining function is
defined as

f = w1x + w2y − w3xy.

The sum minus product combination function [Kerzner,
2002] has its origins in probability theory: it is appropriate for
computing probabilities of unions for independent events. It
also is the function used in Mycin-style decision support
systems for computing certainty factors when two or more
rules with the same conclusion succeed [Buchanan and
Shortliffe, 1984]. But this formula has drawbacks. For exam-
ple, if you set the severity to 1 (assuming a range of 0–1), then
the relative likelihood could be reduced from say 10–1 to 10–6

without changing the risk, which we do not want. Further-
more, if either the relative likelihood or the severity is 0, then
the risk should be 0, but this equation does not produce that
result. Fifth, the compromise combining function is defined
as

f = [(w1x)
p + (w2y)

p]1 / p.

The variable p is a scaling factor explained in detail in
[Daniels, Werner, and Bahill, 2001].

Sixth, Ben-Asher [2006] writes that people do not equally
weigh relative likelihood and severity of the consequences.
For example, people buy collision insurance for their cars, but
they seldom insure their tires against premature wear. There-
fore, he computes risk as

risk = relative likelihood × (severity of consequences)2

Seventh, the Failure Modes and Effects Analysis (FEMA)
process also includes the difficulty of detection in the product
[Carbone and Tippett, 2004], so that

risk = relative likelihood × severity of consequences
× difficulty of detection.

Eighth, terrorism risk can be viewed as having three compo-
nents: the threat to a target, the target’s vulnerability to the
threat, and the consequence should the target be successfully
attacked [Willis et al., 2005]. The threat is defined as the
probability that a specific target is attacked in a specific way
during a specific time period. Vulnerability is defined as the
probability that damages occur, given a specific attack type,
at a specific time, on a given target. The consequence is
defined as the expected magnitude of damage given a specific
type of attack, at a specific time, that results in damage to a
specific target. Terrorism risk is defined as the expected
consequence of an existent threat (for a given target, attack
mode, and damage type) which can be expressed as

risk = threat × vulnerability × consequence.

“Rather than seek an optimal method for estimating risk, we
seek a method that leads us to make the least egregious errors
in decision making across the range of possible scenarios that
might develop in the future”  [Willis et al., 2005].

Bahill’s [2010] process for quantifying risk uses the prod-
uct of relative likelihood (or frequency of occurrence) and the
severity of consequences. This product combining function
of likelihood and severity makes intuitive sense. People are
familiar with multiplying data; for example, multiplication is
used in computing a benefit to cost ratio. (A ratio is just
multiplication by the reciprocal.) The product combining
function is used in many different realms; for example, a
person buying a lottery ticket should care about the size of the
pot divided by the number of people buying tickets; insurance
rates on a Corvette are higher than for a typical automobile,
because the frequency of accidents is higher and it is an
expensive car so the monetary loss in an accident is higher: It
seems intuitive to multiply the frequency times the monetary
loss. The product combining function can also have weights
of importance, like this:

risk = (relative likelihood)wrl × (severity of consequences)wsc.

(4)
Of course, a risk analyst would never give a decision maker

a single number and say, “This is the most important risk.”
The risks must be prioritized and discussed with the decision
makers. Risk management progress must be understood. Fig-
ure 1 presents a risk plot, using the definition of Eq. (3), that
can facilitate these discussions. It is similar to the DoD Risk
Reporting Matrix [DoD, 2006] and [INCOSE, 2011: Figs.
5–10].

Each row in a risk table (like Table I) describes particular
risk. It contains a potential failure event, the consequences of
that failure event, the frequency of occurrence (or relative
likelihood) of the event, the severity of consequences, the
estimated risk, and perhaps a short identification tag. The
frequency of occurrence (or relative likelihood) of the event
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the last 6 years. However, this facility provides only 0.2% of
their total generating capacity, and they need to increase their
renewable-energy generating capacity significantly in order
to comply with the Arizona Corporation Commission’s
[2008] Renewable Energy Standard. This Standard requires
that, by the year 2025, 15% of the utility companies’ retail
sales must be supplied from renewable-energy sources.

The risk analysis of this paper was conducted under the
assumption that most of this Renewable Energy Standard will
be satisfied with solar photovoltaic energy. It identifies risks
and complications associated with incorporating large-scale
photovoltaic-solar systems from the utility company’s per-
spective.

2. DEFINITION OF RISK

The world is full of uncertainty, and this makes risk an
inherent component in the design of any system. Risk is an
expression of the potential harm or loss associated with an
activity executed in an uncertain environment. Starting in
1662, Arnauld and Nicole, French Catholic priests, wrote that
risk had at least two components: “Fear of some harm ought
to be proportional not only to the magnitude of the harm, but
also to the probability of the event”  [Arnauld and Nicole,
1996: 274]. This is the first use of these phrases magnitude of
harm and probability of the event. Some ancient Greek,
Chinese, and biblical sources express the concept of risk; but
they do not have these phrases. It is unlikely that any older
source had these phrases, because Arnauld’s friend Blaise
Pascal only invented probability in 1654 and the Oxford
English Dictionary cites the earliest use of the word risk as a
few years after that.

This paper will primarily examine two risk-modeling ap-
proaches.1 They use different methods to design the system,
to model the system, to identify risks, and to quantify risk.
Haimes’ [2009] process for quantifying risk uses the follow-
ing equations:

E[x] = ∫
a

b

x ⋅ p(x)dx,
(1)

E[x] = Σ pi xi. (2)

The expected value of risk, E[x], can be represented with Eq.
(1) for the continuous case or Eq. (2) for the discrete case,
where X is a random variable representing the severity of
consequences (often called damage), p(x) is the probability

density function of X, and a and b are the lower and upper
range limits of the severity of consequences. In Eq. (2), the
probability mass function is used for the expected value of
risk. The frequency of occurrence of the threat scenario is
implicit, meaning it does not appear in Eqs. (1) or (2). How-
ever, Haimes [2009] cautions that risk is a multidimensional
function and it cannot be expressed through a single metric.
Some of these other dimensions will be revealed as this paper
progresses.

Bahill [2010] quantifies risk as the product of the relative
likelihood (or frequency of occurrence) of a failure event and
the severity of consequences for each occurrence of that
failure event, as in

risk = relative likelihood × severity of consequences. (3)

This process uses the product combining function.
Risk as the product of relative likelihood (or frequency of

occurrence) and the severity of consequences is the definition
usually used in American industry. It is the only approach that
Bahill has seen government contractors use. This may be the
result of US government guidance and professional standards.
For example, the US Food and Drug Administration [FDA,
2006: 1] wrote: “ It is commonly understood that risk is
defined as the combination of the probability of occurrence
of harm and the severity of that harm.”  The Department of
Defense [DoD, 2006: 1] stated: “Risks have three compo-
nents: A future root cause (yet to happen), which, if eliminated
or corrected, would prevent a potential consequence from
occurring, A probability (or likelihood) assessed at the present
time of that future root cause occurring, and The consequence
(or effect) of that future occurrence.”  The Defense Systems
Management College [DSMC, 2001: 10], which is based on
DoDI 5000.2 and DoD 5000.2-R, states: “ Risk is a measure
of the potential inability to achieve overall program objectives
within defined cost, schedule, and technical constraints and
has two components: (1) the probability/likelihood of failing
to achieve a particular out-come, and (2) the conse-
quences/impacts of failing to achieve that outcome.”  The
Institute of Risk Management [IRM, 2012] states: “Risk can
be defined as the combination of the probability of an event
and its consequences (ISO/IEC Guide 73).”  By design, the
CMMi [2012] is broad: It states what must be done, never how
it should be done. Here it states what is needed to quantify
risk: “Parameters for evaluating, categorizing, and prioritiz-
ing risks include the following: Risk likelihood (i.e., prob-
ability of risk occurrence) Risk consequence (i.e., impact and
severity of risk occurrence) Thresholds to trigger manage-
ment activities.”  The INCOSE Systems Engineering Hand-
book [INCOSE, 2011: 225] states: “Level of risk depends
upon both likelihood and consequences … [R]isk is expressed
as: Risk = Probability of failure (Pf) * Consequence of failure
(Cf).”  There are differences between these definitions, but for
the most part they all state that risk should be quantified as a
combination of relative likelihood (or frequency of occur-
rence) of a potential failure event and the severity of the
consequences of that event.

Besides the product combining function, there are other
functions for combining data [Daniels, Werner, and Bahill,

1This paper will use the following dictionary definitions: they are listed from
high-level abstract terms to low-level concrete terms. Approach is a plan of
attack, or a means to accomplish a goal. It is high level and abstract.
Methodology is a toolbox of methods, processes, and procedures for achiev-
ing a goal. Method is a regular orderly way of doing something, e.g., a
teaching method, the scientific method. Process is a chain of related activities
that transforms inputs into outputs, e.g., a Markov process, a system design
process. Procedure is a sequence of steps conducted in a prescribed manner
to attain a goal, e.g., a medical procedure. Technique is a concrete application
of a method: it is a single operation. Checklist can be used to ensure that all
of the prescribed steps were actually performed.
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uncertainty in only the occurrence of the event as long as the
time interval is the same. In a fourth case, the likelihood of
the event occurring cannot be estimated, for example, when
dealing with terrorist attacks on population centers. For these
cases, Haimes’ approach replaces the difficulty of estimating
the likelihood of occurrence with the difficulty of obtaining
data to compute probability density functions for the severity
of consequences given that the failure has occurred.

In a risk table, a failure event might have multiple conse-
quences, as in Table II. In this case, each consequence will
have an expected frequency of occurrence, which will be the
product of the frequency of the failure event times the fre-
quency of each consequence. 

A particular consequence might cause a different amount
of damage, depending on the specific event that caused it and
the environment in which it occurred. If data are available for
such events, then the severity of the occurrence and the
frequency of occurrence can be described with a probability
distribution instead of a single value.

It is difficult to get good frequency of occurrence data for
physical and cyber infrastructure. For example, terrorism is
an asymmetric nonzero sum game with spotty and weak
intelligence. The frequency of occurrence of an initiating
event (e.g., act of terrorism or a natural disaster) is fraught
with epistemic and aleatory uncertainties. On the other hand,
the probability distribution of the severity of consequences is
easier to assess by experts, using modeling and simulation
tools. Indeed, Haimes’ approach develops scenarios of future
failures; then simulations and expert evidence are used to
assess the severity of consequences as functions of different
failures.

For the severity of consequences, Haimes’ risk quantifica-
tion process uses the expected value of a probability density
function: whereas Bahill’s process uses a single value. Al-
though the definitions are similar, the two risk analysis proc-
esses differ. Haimes’ process is statistical, whereas Bahill’s
process is quantitative. Bahill’s process uses the relative
likelihood of the failure event times the severity of conse-
quences. Haimes’ process does not use the frequency of
occurrence of the failure event itself. Instead, he uses the
expected value of the severity of consequences and the prob-
ability of the consequences, given the event. These processes
are discussed in the following section.

3. SYSTEM CHARACTERIZATION 

There are many methods for breaking down a system into
smaller parts. To design and model a large or complex system,
the system can be decomposed using a hierarchy of physical
or functional components. Functional decomposition decom-
poses the system according to the functions that the system
must perform. The top-level function is decomposed into
subfunctions, and the subfunctions are decomposed into sub-
subfunctions. When should this decomposition stop? When a
function is found that can be satisfied by a commercial off the
shelf (COTS) component [Bahill et al., 2008].

The Zachman framework is a classification method used
to organize descriptive representations of an enterprise. Each
row represents a different stakeholder’s perspective of an
enterprise, while each column depicts a different area of
interest within those perspectives. The forte of the Zachman
framework is that it provides an even coverage of important
topics without redundancy, repetition, or lacuna. Each cell in
the matrix contains at least one model or artifact [Bahill,
Botta, and Daniels, 2006].

Haimes’ system analysis method starts with a hierarchical
holographic model (HHM) that is comprised of many system
models: some models overlap; some do not [Haimes, 1981,
2009; Agrawal, Barker, and Haimes, 2011]. Typical perspec-
tives of an HHM include business models (with aspects of
purchase orders, invoices, costs, schedules, and return on
investment); architectural models; use case models; behav-
ioral/functional models; requirements models [Bahill and
Dean, 2009]; physical structure/component models; and per-
formance/parametric models. Each of the models in an HHM
requires determining its properties, constructing relationships
among its inputs and outputs through its state variables, and
quantifying dependencies and interfaces between its compo-
nents and subsystems [Haimes, 2012]. Figure 2 shows an
HHM for our solar power system. The top-level box is the

Table II. A Failure Event with Multiple Consequences

These annual data are for the state of Arizona.
Figure 2. An HHM for an electric power grid with Solar PV
subsystems.
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occurring can be derived from historical data or it can be
estimated based on expert opinion. Likewise, the severity of
consequences of a potential failure event can be based on
historical data or expert opinion. The estimated risk is usually
defined as the product of relative likelihood and severity of
consequences.

However, the terms relative likelihood and frequency of
occurrence are not quite synonyms. If there are historical data
for an event, then we use the term frequency of occurrence.
Otherwise, if we are guessing the future, then we use the term
relative likelihood. The word relative emphasizes that it is the
relationships between risks that are being illustrated. The
word likelihood is not used in a probabilistic sense, but rather
in its dictionary sense to indicate the events that are likely to
happen. Frequency is used instead of probability, because
humans evaluate probability poorly: The frequency approach
helps humans to partition a set of cases into exclusive subsets,

which is a mental operation that is performed quite well
[Gigerenzer, 2002; Bahill and Smith, 2009].

These two types of uncertainty are sometimes called alea-
tory and epistemic. Aleatory uncertainty describes inherent
variability or randomness in the physical system: It would be
reported as frequency of occurrence. Epistemic uncertainty is
due to a present lack of knowledge or data about how the
system behaves or interacts with its environment: Epistemic
uncertainty would be estimated by domain experts and re-
ported as relative likelihood.

The events in Table I have uncertainty in both the relative
likelihood of occurrence and the severity of consequences.
However, sometimes we know when an event will occur, so
the likelihood that the event will occur is 1.0 and we only need
to estimate the severity of the consequence. For example,
assume that you have bet on tails in a coin flipping event and
you are about to flip the coin. The likelihood that the event
will occur is 1.0 and the severity of the consequence is that
you will lose half the time. Therefore, the risk of losing your
bet in the next moment is 0.5. Most gambling games are of
this nature.

On the other hand, sometimes there is no uncertainty in the
consequence, only uncertainty that the event will occur in the
specified time interval. For example, assume that you are
performing an experiment with radium and an alpha particle
would ruin your experiment. In radioactive decay of radium-
226 into radon-222, we can estimate the likelihood of the
event as 3.7 × 1010 decays/s-g. When the event occurs, we
know with absolute certainty that the consequence will be an
alpha particle; therefore, the severity of this consequence is
1.0. Therefore, the risk of getting an alpha particle is 3.7 ×
1010/s-g. If there is 1 g of radium (about 1022 atoms) and the
experiment lasts 1 s, then the risk is 3.7 × 1010.

We can compare these three types of events and conse-
quences (1) uncertainty in both the event and the conse-
quences, (2) uncertainty in only the consequences and (3)

This is an abridgment of Table IV. These data come from TEP managers,
TEP documents, academics, and project managers of renewable energy
projects.

Table I. Selected Risks for Incorporating Solar PV
Subsystems into a Commercial Electric Grid

Figure 1. A linear risk chart for some failure events explained in
Table I. The arrow shows that the biggest risk, risk A, has dropped
in severity since the last review, due to risk mitigation action.
Uncertainty in the likelihood and severity numbers can be shown
with ellipses, as is illustrated with risk F. Risks in the red (darkest
grey) region are high risk and must be managed. Risks in the yellow
(medium grey) region are medium risk and should be managed if it
fits within the budget. Risks in the green (lightest grey) region are
low risk and need only to be monitored. The curves are iso-risk
contours. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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uncertainty in only the occurrence of the event as long as the
time interval is the same. In a fourth case, the likelihood of
the event occurring cannot be estimated, for example, when
dealing with terrorist attacks on population centers. For these
cases, Haimes’ approach replaces the difficulty of estimating
the likelihood of occurrence with the difficulty of obtaining
data to compute probability density functions for the severity
of consequences given that the failure has occurred.

In a risk table, a failure event might have multiple conse-
quences, as in Table II. In this case, each consequence will
have an expected frequency of occurrence, which will be the
product of the frequency of the failure event times the fre-
quency of each consequence. 

A particular consequence might cause a different amount
of damage, depending on the specific event that caused it and
the environment in which it occurred. If data are available for
such events, then the severity of the occurrence and the
frequency of occurrence can be described with a probability
distribution instead of a single value.

It is difficult to get good frequency of occurrence data for
physical and cyber infrastructure. For example, terrorism is
an asymmetric nonzero sum game with spotty and weak
intelligence. The frequency of occurrence of an initiating
event (e.g., act of terrorism or a natural disaster) is fraught
with epistemic and aleatory uncertainties. On the other hand,
the probability distribution of the severity of consequences is
easier to assess by experts, using modeling and simulation
tools. Indeed, Haimes’ approach develops scenarios of future
failures; then simulations and expert evidence are used to
assess the severity of consequences as functions of different
failures.

For the severity of consequences, Haimes’ risk quantifica-
tion process uses the expected value of a probability density
function: whereas Bahill’s process uses a single value. Al-
though the definitions are similar, the two risk analysis proc-
esses differ. Haimes’ process is statistical, whereas Bahill’s
process is quantitative. Bahill’s process uses the relative
likelihood of the failure event times the severity of conse-
quences. Haimes’ process does not use the frequency of
occurrence of the failure event itself. Instead, he uses the
expected value of the severity of consequences and the prob-
ability of the consequences, given the event. These processes
are discussed in the following section.

3. SYSTEM CHARACTERIZATION 

There are many methods for breaking down a system into
smaller parts. To design and model a large or complex system,
the system can be decomposed using a hierarchy of physical
or functional components. Functional decomposition decom-
poses the system according to the functions that the system
must perform. The top-level function is decomposed into
subfunctions, and the subfunctions are decomposed into sub-
subfunctions. When should this decomposition stop? When a
function is found that can be satisfied by a commercial off the
shelf (COTS) component [Bahill et al., 2008].

The Zachman framework is a classification method used
to organize descriptive representations of an enterprise. Each
row represents a different stakeholder’s perspective of an
enterprise, while each column depicts a different area of
interest within those perspectives. The forte of the Zachman
framework is that it provides an even coverage of important
topics without redundancy, repetition, or lacuna. Each cell in
the matrix contains at least one model or artifact [Bahill,
Botta, and Daniels, 2006].

Haimes’ system analysis method starts with a hierarchical
holographic model (HHM) that is comprised of many system
models: some models overlap; some do not [Haimes, 1981,
2009; Agrawal, Barker, and Haimes, 2011]. Typical perspec-
tives of an HHM include business models (with aspects of
purchase orders, invoices, costs, schedules, and return on
investment); architectural models; use case models; behav-
ioral/functional models; requirements models [Bahill and
Dean, 2009]; physical structure/component models; and per-
formance/parametric models. Each of the models in an HHM
requires determining its properties, constructing relationships
among its inputs and outputs through its state variables, and
quantifying dependencies and interfaces between its compo-
nents and subsystems [Haimes, 2012]. Figure 2 shows an
HHM for our solar power system. The top-level box is the

Table II. A Failure Event with Multiple Consequences

These annual data are for the state of Arizona.
Figure 2. An HHM for an electric power grid with Solar PV
subsystems.
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the expected value of a random variable, given that this value
lies within some pre-specified range. The conditional ex-
pected value of risk, f(x), for severity of consequences be-
tween β and ∞ (where β represents an extreme value of
severity of consequences) is given in

f(x) = E[x|x > β] =
∫ xp
β

∞
(x)dx

∫ p
β

∞
(x)dx

, (5)

As shown in Figure 3, this upper-tail region, with lower
limit β, is the zone containing rare but serious events. On the
other hand, when analyzing return on investment [Reyes
Santos and Haimes, 2002] (or profit or another more-is-better
metric) the lower-tail would be the region of interest, and Eq.
(5) would be rewritten accordingly. These statistics for fre-
quency and severity are used for calculating risk as well as for
reliability analysis, sensitivity analysis and the search for
unintended consequences. So we do not want them skewed
by outliers in these tail regions. 

Applying the Partitioned Multiobjective Risk Method
(PMRM) to our TEP case study was difficult because there
were no data with which to calculate probability density
functions. Therefore, to avoid skewing the statistics with
extreme events, events with low-frequency but high-severity
(such as category 5 hurricanes, volcanic eruptions, acts of war
and terrorist attacks) were removed from the numerical com-
putations and have been marked in the risk tables with a
“ 0×∞”  symbol. These rare but potentially catastrophic
events would have been in the lower-right corner of Figures
1 and 4. The upper-left corners of these figures could have
contained events with high-frequency but low-severity (such
as birds and airplanes casting shadows on the solar panels,
solar corona mass ejections and solar PV customers connect-
ing to and disconnecting from the electric power grid), but
they were removed from the statistics.

5. RISK SEVERITIES

The severity of consequences of a risk event is the perceived
damage due to its occurrence. Determining severities is an
important step, because it allows us to calculate the risks and
rank them in order to identify the most critical elements.
Severity values can be derived using brainstorming, group
decision techniques, modeling, and simulation. However,
severity values are subjective and depend on the perception
of the analyst. Fortunately, it is possible to reduce analyst-in-
duced bias by sharing the resulting severity values with
system experts and other analysts so that they can validate the
severity values.

Analyzing risk severities is a common practice. Insurance
companies have developed tables to quantify risk so that
different risks can be compared. They assess policyholders’
risk in order to estimate the total risk of their insured pool and
derive the expected payout costs. Understanding risk severi-
ties allows them to quantify the risk and act accordingly. By
estimating expected payout costs, insurance companies are
able to set the price of insurance premiums so that they almost
always generate a profit. (It is only the rare but catastrophic
events that bankrupt them.) Utility companies also routinely
analyze risk severities. If the utility company understands the
severity of consequences, they will be able to prioritize risk
mitigation strategies.

The two risk approaches being compared in this paper have
different processes for determining risk severities. Bahill’s
process normalizes the severity of consequences scale so that
it has the same range as the likelihood scale. This guarantees
that the risk does not depend only on the likelihood or the
severity. If the event’s likelihood and severity scales were
different (e.g., likelihood had 5 orders of magnitude, but
severity had only 1), it is possible that the severities would
have no impact on determining the highest risks; risk would
be dependent only on the likelihood values. When the likeli-
hood and severity scales are normalized, they will have the
same weight in the quantification of risk and bias is elimi-
nated. For example, if the likelihood scale goes from 10–6 to
10–1, then the range has 5 orders of magnitude, and thus the
severity scale must also have a range of 5 orders of magnitude
(e.g., from 1, very low, to 105, very high).

Figure 3. Typical normal distribution curve.  [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]

Table III. The Problem with Different Ranges for
Likelihood of Occurrence and Severity of Consequences

Risk = Likelihood × Severity 
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system that we are analyzing, the electric power grid with
Solar PV subsystems. The next level shows some overlapping
perspectives (or views) of this system, namely, operations, the
environment, project management, and economic/govern-
ment. Each of these perspectives is analyzed using various
aspects. For example, some aspects of the operations perspec-
tive are terrorist attacks, variation in solar panel output, the
Western Power Grid, etc. Each entity in this figure would
typically have a model and a risk analysis.

Bahill’s system design process is a use-case-based iterative
process [Bahill, 2010, 2012]. It starts with a problem state-
ment. Next, we make a rough schedule of who does what and
when. Those were brief activities. Now we write the use cases
that describe the behavior of the system. While we are writing
the use cases, we develop functional and nonfunctional re-
quirements: These are large documents. Design of tests can
start as soon as the use cases are written. The systems engi-
neers then derive the technical requirements and the test
engineers create the test requirements. Now that we have
some requirements, we can form evaluation criteria that will
be used in the tradeoff studies. Design engineers create the
design model containing UML and SysML diagrams that
show the behavior (with state machine diagrams, sequence
diagrams, and activity diagrams) and structure (with block
diagrams) of the proposed system. This system design process
is iterative and hierarchical. Creating these documents is not
a serial process. There must be many iterations, and there are
many opportunities for parallel processing. This process rec-
ommends identifying various risk aspects (such as cost,
schedule, performance, project, business, safety, environ-
mental, etc.). Defining the system and explaining its behavior
are the two most important tasks at the start of a risk analysis.
Communicating with the decision makers and explaining the
risks are the most important tasks near the end of a risk
analysis.

An electric power grid with solar PV subsystems, is de-
fined as follows. “An electric power grid with solar PV
subsystems consists of photovoltaic (PV) solar panel arrays,
DC to AC inverters and the hardware that connects them to
the electric power grid. It includes both small grid-connected
solar systems as well as utility-scale projects. These systems
may be located on residential or commercial property, on
rooftops, or in open-land. Net-metering allows customers
with grid-connected electric generating systems to buy elec-
tricity from the utility company when they need more elec-
tricity than they are generating and to sell electricity to the
utility company (at a predetermined price) when they generate
more electricity than they need. The utility company uses this
solar-generated electricity to meet part of their electric de-
mand, and it must be capable of meeting electric demand
during the night and during days with reduced solar power
output. These systems shall comply with all local and federal
laws.”  An HHM that describes a small portion of such a
system is depicted in Figure 2. This figure is used to help
identify system risks.

In this paper, we show the risk analysis of the top-level
system, the electric power grid with Solar PV subsystems.
The risk analysis for operating performance is shown in Table
IV. The risk analysis for the environment is shown in Table
VII. The risk analysis for project management is shown in

Table VIII. The risk analysis for economic/government is
shown in Table IX. As a further decomposition example, the
risk analysis for a motor-generator backup system is shown
in Tables X and XI.

4. RISK IDENTIFICATION AND
QUANTIFICATION

The two risk analysis approaches use similar methods for risk
identification: First, they obtain significant input from system
experts and outsiders to help identify potential failure events
and their consequences. Bahill’s approach uses brainstorming
and risk tables, whereas Haimes’ approach uses HHMs and
risk matrices. The term risk usually describes risks to the
system being designed or its primary users, not to unintended
consequences in systems outside the scope of the system
being designed. Risk identification is an iterative and hierar-
chical process. Once a risk table or matrix is obtained, the
resulting risks must be discussed with professionals, academ-
ics, and other system experts that will help verify, quantify,
add and eliminate risks. The risk tables summarized in this
paper required multiple iterations. As time goes by and as risk
management strategies are implemented, risks and risk severi-
ties will have to be revised in order to be a true representation
of the existing system. 

Next, the effects of these failures should be explained.
These failures could affect cost, schedule, performance, op-
erations, the environment, safety, etc. Then the likelihood of
each risk occurring should be estimated. If the project has
plentiful statistical data, then the frequency of each event
might be calculated. But typically such data are not available,
so the likelihood of occurrence in some given time interval is
estimated.

Haimes’ process does not use the frequency of occurrence
of each failure: it focuses on the probability of the severity of
consequences, given the events. Bahill’s process estimates the
frequency of occurrence of each failure event based on obser-
vations, statistical analyses of historical events, and expert
opinion. Bahill’s process quantifies the risk as the product of
frequency of occurrence and severity of consequences and
emphasizes the importance of normalizing the values of both
frequency and severity on the same scale. This normalization
guarantees that both frequency and severity are given the
same weight when calculating the final risk. This process also
recommends the use of log-log plots so that rare events can
be tracked without distorting the risk analysis.

Haimes emphasizes not using only the expected value of
the risk to determine the total system risk: because this could
give a risk with a high-frequency and low-severity the same
weight as a risk with a low-frequency and high-severity.
Instead, he uses the Partitioned Multiobjective Risk Method
(PMRM) [Asbeck and Haimes, 1984; Haimes, 2009] and
develops a risk function for each risk. It is important to note
that for extreme events, the conditional expected value of the
risk supplements and complements the expected value of the
risk; it does not replace the expected value of risk. Indeed, all
figures in Haimes [2009] depict the tradeoffs between the
expected value of risk and the conditional expected value of
risk. The conditional expected value of the risk is defined as
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the expected value of a random variable, given that this value
lies within some pre-specified range. The conditional ex-
pected value of risk, f(x), for severity of consequences be-
tween β and ∞ (where β represents an extreme value of
severity of consequences) is given in

f(x) = E[x|x > β] =
∫ xp
β

∞
(x)dx

∫ p
β

∞
(x)dx

, (5)

As shown in Figure 3, this upper-tail region, with lower
limit β, is the zone containing rare but serious events. On the
other hand, when analyzing return on investment [Reyes
Santos and Haimes, 2002] (or profit or another more-is-better
metric) the lower-tail would be the region of interest, and Eq.
(5) would be rewritten accordingly. These statistics for fre-
quency and severity are used for calculating risk as well as for
reliability analysis, sensitivity analysis and the search for
unintended consequences. So we do not want them skewed
by outliers in these tail regions. 

Applying the Partitioned Multiobjective Risk Method
(PMRM) to our TEP case study was difficult because there
were no data with which to calculate probability density
functions. Therefore, to avoid skewing the statistics with
extreme events, events with low-frequency but high-severity
(such as category 5 hurricanes, volcanic eruptions, acts of war
and terrorist attacks) were removed from the numerical com-
putations and have been marked in the risk tables with a
“ 0×∞”  symbol. These rare but potentially catastrophic
events would have been in the lower-right corner of Figures
1 and 4. The upper-left corners of these figures could have
contained events with high-frequency but low-severity (such
as birds and airplanes casting shadows on the solar panels,
solar corona mass ejections and solar PV customers connect-
ing to and disconnecting from the electric power grid), but
they were removed from the statistics.

5. RISK SEVERITIES

The severity of consequences of a risk event is the perceived
damage due to its occurrence. Determining severities is an
important step, because it allows us to calculate the risks and
rank them in order to identify the most critical elements.
Severity values can be derived using brainstorming, group
decision techniques, modeling, and simulation. However,
severity values are subjective and depend on the perception
of the analyst. Fortunately, it is possible to reduce analyst-in-
duced bias by sharing the resulting severity values with
system experts and other analysts so that they can validate the
severity values.

Analyzing risk severities is a common practice. Insurance
companies have developed tables to quantify risk so that
different risks can be compared. They assess policyholders’
risk in order to estimate the total risk of their insured pool and
derive the expected payout costs. Understanding risk severi-
ties allows them to quantify the risk and act accordingly. By
estimating expected payout costs, insurance companies are
able to set the price of insurance premiums so that they almost
always generate a profit. (It is only the rare but catastrophic
events that bankrupt them.) Utility companies also routinely
analyze risk severities. If the utility company understands the
severity of consequences, they will be able to prioritize risk
mitigation strategies.

The two risk approaches being compared in this paper have
different processes for determining risk severities. Bahill’s
process normalizes the severity of consequences scale so that
it has the same range as the likelihood scale. This guarantees
that the risk does not depend only on the likelihood or the
severity. If the event’s likelihood and severity scales were
different (e.g., likelihood had 5 orders of magnitude, but
severity had only 1), it is possible that the severities would
have no impact on determining the highest risks; risk would
be dependent only on the likelihood values. When the likeli-
hood and severity scales are normalized, they will have the
same weight in the quantification of risk and bias is elimi-
nated. For example, if the likelihood scale goes from 10–6 to
10–1, then the range has 5 orders of magnitude, and thus the
severity scale must also have a range of 5 orders of magnitude
(e.g., from 1, very low, to 105, very high).

Figure 3. Typical normal distribution curve.  [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]

Table III. The Problem with Different Ranges for
Likelihood of Occurrence and Severity of Consequences

Risk = Likelihood × Severity 
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was $81 billion. These three events are mentioned because
they indicate that the probability density function for the
severity of consequences is not Gaussian. The right tail (and
perhaps the left tail containing Microsoft, the Internet, Goo-
gle, and Social Networking) has far more occurrences than a
Gaussian distribution would have. Insurance companies and
politicians have a hard time dealing with such rare but serious
events.

5.3. Minisummary

Risk is a multidimensional function, representing the affected
multidimensional states of a system, and thus it cannot be
measured with a single number [Haimes, 2009]. Therefore,
many additional attributes, such as difficulty of detection and
vulnerability, have been included in the risk definition. If a
problem is difficult to detect (in testing, verification, etc.),
then we should worry more about it and increase its contribu-
tion to risk [Bahill and Karnavas, 2000]. If we know that we
are vulnerable in a certain area, then we should worry more
about that area and increase its contribution to risk. When
quantifying risk, Haimes [2009] has used the following attrib-
utes: frequency, severity, safety, efficiency, reliability, vul-
nerability, and resilience.

The biggest difference between the two approaches is the
scale. Haimes’ approach is a statistically based risk-manage-
ment process that includes risk analysis, risk modeling, risk
assessment, and risk communication and is explained in doz-
ens of papers and several books. In contrast, Bahill’s approach
might be considered a subset of Haimes’ approach in that it
only covers risk analysis, risk prioritization, risk modeling,
and risk communication. It is described in a couple of papers
and is easier to implement, furthermore, it is the approach
commonly used in American industry.

Both approaches work on existing systems as well as on
new systems being designed. However, we believe that
Haimes’ approach of the 1980s and 1990s was optimized for
existing systems where plentiful statistical data either existed
or could be collected. On the other hand, Bahill’s approach
was designed to be an integral part of the system design
process; although in this paper, it is being applied to an
existing system.

Both approaches emphasize that after completing a risk
analysis, you should look at (1) high-risk events, (2) high-se-
verity events (no matter how unlikely), and (3) estimates that
have a large uncertainty. These should be discussed with the
decision makers. In the next iteration, you should focus
resources on these items.

6. RISK ANALYSIS OF POWER GRID WITH
SOLAR PV

There are two categories of risk for incorporating solar pho-
tovoltaic subsystems into a commercial electric power grid:
risks related to uncontrollable factors such as weather and
risks related to software, hardware, and human error. Al-
though many papers on risk do not consider uncontrollable
factors or acts of God, because they cannot be predicted, we
deem them important given that weather risk is one of the
greatest sources of uncertainty for solar power production.

Risks were initially analyzed in different tiers or levels
[Bahill et al., 2008]: (1) risks related to the utility company
and the power grid, (2) operations, project management,
environment, and economic/government, and (3) components
of these. The risk tiers correspond to the perspectives of the
HHM depicted in Figure 2.

The risk-tiers were analyzed from various stakeholder
perspectives. For example, the first tier, “Electric Power Grid
with Solar PV Subsystems,”  is clearly a risk to the utility
company; however, it can also be a risk to the customer,
because brownouts or blackouts can affect their daily activi-
ties and may damage their property. Each tier will have risks
that affect various stakeholders (utility company, customers,
environment, regulators, etc.); however, the risk tables in this
paper summarize the risks from the perspective of the utility
company.

Our project started with a search for risks of using renew-
able energy resources in an electric power grid [Bahill, 2010,
2012]. Then, to help expand and solidify the risk descriptions,
we interviewed TEP managers and directors, academics, and
project managers of renewable energy projects. The informa-
tion provided by them was summarized and analyzed to
determine the possible risks. After identifying the risks, risk
frequencies were calculated or estimated based on the avail-
able information. Finally, the risks were prioritized and dis-
cussed with the decision makers.

6.1. Description of Identified Risks

We will now describe the most important risks, which are in
Tables IV–XI. Our preliminary risk analysis indicated that the
greatest risk for an electric power grid with Solar PV subsys-
tems was weather causing the solar panels to receive less
sunlight than expected. This is a critical factor for a self-sus-
taining PV system, but it is less important for a large-scale
system comprised of both renewable (solar) and nonrenew-
able resources. As will be discussed in Section 6.3, this risk
can be mitigated by using energy storage systems or increas-
ing backup generating capacity. In consequent iterations, this
risk was modified in order to encompass output variability:
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The examples in the left and right halves of Table III have
the same likelihood of failure, but the severity column in the
right half has been turned upside down. The risk columns are
different, but the rank order columns are identical. Severity
has no effect. We can generalize this idea by letting Fi, Si and
Ri  and Fj, Sj and Rj be, respectively, the frequency, severity
and risk data for any two rows of Table III. Clearly Ri > Rj if
and only if Fi × Si > Fj × Sj, that is, when Fi/Fj > Sj/Si. For the
data of Table III, the smallest possible value of  Fi/Fj = 10, for
Fi > Fj. The largest possible value of Sj/Si = 6. Since 10 > 6,
the ratio Fi/Fj  will always dominate S, regardless of the order
of the rows.

In general, if two items are being multiplied and they have
different ranges, the one with the bigger range has more
weight, perhaps secretly. To explicitly weight frequency and
severity, weights of importance can be used as exponents, as
in Eq. (4).

5.1. Data Range is Proportional to the
Weighting Exponent

Assume that the frequency (F) data for a particular risk
analysis extend from 1 to 100, but the severity (S) data only
extend from 1 to 10. We would then need a function that
would transform the S data so that they would have the same
range as the F data. First, let’s try an exponential function like
f(S) = SwS, where the weight of importance for severity
ws ≥ 1. If ws = 1  then the S data will extend from 1 to 10. If
ws = 2 then the S data will extend from 1 to 100. Generalizing,
if we need the S data to extend from 1 to α, then we need
f(S) = Sws = α. The original maximum value of S was 10 and
now we need it to be α. So we need f(10) = 10wS = α, ∴
w ≈ 0.43 ln α. In contrast, for a different set of F and S data,
we might need to compress the data range of S, which we can
do using a logarithmic transform, f(S) = ln S. Obviously, both
of these transforms are nonlinear. In summary, for an equation
in the form of two exponential functions being multiplied
together, the exponents are proportional to the data ranges and
therefore the function with the bigger exponent has more
weight.

5.2. An Algorithm for Computing Severity 

The following algorithm is used for computing values for the
severity of consequences [Bahill and Smith, 2009].

1. Assign a relative likelihood of occurrence to each po-
tential failure event.

2. Find the failure event that might have the most severe
consequences, call its value Sworst.

3. For each other failure event, ask, “How many of these
failures would be equally painful to the Worst?”  Call
this Ni. This can be rephrased as: “Cumulatively, how
many of these failures would have an equal impact to
the Worst?”

4. Compute the severity of consequences for each failure
event as Si = Sworst/Ni.

5. Remove the low-frequency and high-severity failure
events and the high-frequency low-severity failure
events.

6. Normalize the severity values so that their range equals
the range of the likelihood values.

7. Compute the estimated risk using a combining function
[Bahill and Smith, 2009].

8. Prioritize the risks to show which are the most impor-
tant [Botta and Bahill, 2007].

Because step 3 is subjective, numerical values for severity and
estimated risk cannot be directly compared from one table to
the next.

Another technique for step 6 is to use the likelihood of
occurrence of the failure event, which is restricted to values
of 0–1, and then for each row, assign a scoring function
[Daniels, Werner, and Bahill, 2001] for the severity of conse-
quences. Scoring functions also produce outputs in the range
of 0–1. Therefore, the range for both likelihood and severity
will be between 0 and 1. On the other hand, if you use the
probability of occurrence and the dollar value of the loss, you
are certain to create confusion.

Haimes’ approach uses various methods for quantifying
severity. In the Partitioned Multiobjective Risk Method
(PMRM) [Asbeck and Haimes, 1984; Reyes Santos and
Haimes, 2002; Haimes, 2009], severity is typically quantified
using measurement units relevant to the event (dollar losses,
acres of flooded land, etc.), which may be easier to interpret
than Bahill’s approach (a unitless value). However, to avoid
unwanted hidden weighting of severity and likelihood, the
range for each must be the same. This makes it hard to use
natural units. Haimes’ approach uses the PMRM to partition
the frequency axis and the severity (damage) axis into various
severity or damage ranges and uses the conditional expected
value of damage (the expected value of the damage given that
the damage is within a specific range) in order to avoid
extreme-event bias and obtain a better estimate of risk.

Haimes’ Risk Filtering and Ranking Method (RFRM) uses
an ordinal scale from 1 (very low) to 5 (very high) to quantify
severities on both quantitative and qualitative frequency
scales. Based on the normalization discussion in Bahill’s
approach, this could have drawbacks; however, given the
purpose of the RFRM, the selection of the severity scale is not
that important. The RFRM places emphasis on finding risks
that are above a certain severity threshold and filtering the rest
in order to reduce the number of risks that will be analyzed in
depth. Each failure mode is divided into several frequency
ranges, and each range is assigned a severity. The filtering is
only conducted based on a qualitative basis determined by the
severity of each risk (and not the product of frequency and
severity). In essence, the problem described by Bahill’s ap-
proach is avoided since the focus is placed on finding the
failure events that exceed a certain severity threshold, rather
than in determining a numerical value of the risk.

Decision makers should be interested in rare but serious
events. Over the last decade, we have witnessed a series of
such events. In April 2010, a British Petroleum oil well in the
Gulf of Mexico exploded and leaked 5 million barrels of oil.
The terrorist attacks on the World Trade Towers September
11, 2001 caused severe physical and emotional damage. Hur-
ricane Katrina of August 2005 was the costliest natural disas-
ter in the history of the United States; because so many
properties were built below sea level: Total property damage
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was $81 billion. These three events are mentioned because
they indicate that the probability density function for the
severity of consequences is not Gaussian. The right tail (and
perhaps the left tail containing Microsoft, the Internet, Goo-
gle, and Social Networking) has far more occurrences than a
Gaussian distribution would have. Insurance companies and
politicians have a hard time dealing with such rare but serious
events.

5.3. Minisummary

Risk is a multidimensional function, representing the affected
multidimensional states of a system, and thus it cannot be
measured with a single number [Haimes, 2009]. Therefore,
many additional attributes, such as difficulty of detection and
vulnerability, have been included in the risk definition. If a
problem is difficult to detect (in testing, verification, etc.),
then we should worry more about it and increase its contribu-
tion to risk [Bahill and Karnavas, 2000]. If we know that we
are vulnerable in a certain area, then we should worry more
about that area and increase its contribution to risk. When
quantifying risk, Haimes [2009] has used the following attrib-
utes: frequency, severity, safety, efficiency, reliability, vul-
nerability, and resilience.

The biggest difference between the two approaches is the
scale. Haimes’ approach is a statistically based risk-manage-
ment process that includes risk analysis, risk modeling, risk
assessment, and risk communication and is explained in doz-
ens of papers and several books. In contrast, Bahill’s approach
might be considered a subset of Haimes’ approach in that it
only covers risk analysis, risk prioritization, risk modeling,
and risk communication. It is described in a couple of papers
and is easier to implement, furthermore, it is the approach
commonly used in American industry.

Both approaches work on existing systems as well as on
new systems being designed. However, we believe that
Haimes’ approach of the 1980s and 1990s was optimized for
existing systems where plentiful statistical data either existed
or could be collected. On the other hand, Bahill’s approach
was designed to be an integral part of the system design
process; although in this paper, it is being applied to an
existing system.

Both approaches emphasize that after completing a risk
analysis, you should look at (1) high-risk events, (2) high-se-
verity events (no matter how unlikely), and (3) estimates that
have a large uncertainty. These should be discussed with the
decision makers. In the next iteration, you should focus
resources on these items.

6. RISK ANALYSIS OF POWER GRID WITH
SOLAR PV

There are two categories of risk for incorporating solar pho-
tovoltaic subsystems into a commercial electric power grid:
risks related to uncontrollable factors such as weather and
risks related to software, hardware, and human error. Al-
though many papers on risk do not consider uncontrollable
factors or acts of God, because they cannot be predicted, we
deem them important given that weather risk is one of the
greatest sources of uncertainty for solar power production.

Risks were initially analyzed in different tiers or levels
[Bahill et al., 2008]: (1) risks related to the utility company
and the power grid, (2) operations, project management,
environment, and economic/government, and (3) components
of these. The risk tiers correspond to the perspectives of the
HHM depicted in Figure 2.

The risk-tiers were analyzed from various stakeholder
perspectives. For example, the first tier, “Electric Power Grid
with Solar PV Subsystems,”  is clearly a risk to the utility
company; however, it can also be a risk to the customer,
because brownouts or blackouts can affect their daily activi-
ties and may damage their property. Each tier will have risks
that affect various stakeholders (utility company, customers,
environment, regulators, etc.); however, the risk tables in this
paper summarize the risks from the perspective of the utility
company.

Our project started with a search for risks of using renew-
able energy resources in an electric power grid [Bahill, 2010,
2012]. Then, to help expand and solidify the risk descriptions,
we interviewed TEP managers and directors, academics, and
project managers of renewable energy projects. The informa-
tion provided by them was summarized and analyzed to
determine the possible risks. After identifying the risks, risk
frequencies were calculated or estimated based on the avail-
able information. Finally, the risks were prioritized and dis-
cussed with the decision makers.

6.1. Description of Identified Risks

We will now describe the most important risks, which are in
Tables IV–XI. Our preliminary risk analysis indicated that the
greatest risk for an electric power grid with Solar PV subsys-
tems was weather causing the solar panels to receive less
sunlight than expected. This is a critical factor for a self-sus-
taining PV system, but it is less important for a large-scale
system comprised of both renewable (solar) and nonrenew-
able resources. As will be discussed in Section 6.3, this risk
can be mitigated by using energy storage systems or increas-
ing backup generating capacity. In consequent iterations, this
risk was modified in order to encompass output variability:
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large changes in solar power output (±60 MW) that would
correspond to a solar power output variation of ±3 sigma in a
15-min period. This change in power output could introduce
transients onto the grid and could produce load shedding.

Grid related risks are another risk category. These risks
include the grid frequency going out of the ±0.5 Hz limit,
feeder circuits disconnecting and shorts to ground. The first
two risks are expected to increase as solar PV generation
increases, because the solar subsystems may introduce tran-
sients or voltages that are out of phase with the grid. The
frequency of occurrence of these failures was obtained from
TEP.

Hardware risks include failures due to component mal-
function or external events such as lightning or dust. The
frequency of failures of PV system hardware such as data
acquisition systems, junction boxes, PV modules, and general
failures due to lightning strikes was based on a report of TEP’s
experience with the Springerville Generating Station [Moore
et al., 2010]. Severity for hardware failures ranged from a
simple system restart to more complex maintenance require-
ments [Moore et al., 2010]. In addition to the hardware
failures reported by TEP, we included storage system failures,
because storage technologies are being considered by TEP
and may be implemented in the future. A storage system
failure may result in a loss of stored energy and will eliminate
the possibility of using this stored energy to meet electric
demand. Failure of a backup generator will affect the capabil-
ity of supplying enough power during peak demand or low
power production hours. The severity values and frequencies
were estimated based on hardware-specific reliability rates
(assuming an expected lifetime of 30 years).

Environmental risks of Table VII include immediate risks
to the environment such as habitat destruction, as well as
deferred risks (such as the disposal after the system’s design
life or after irreparable failure). Large-scale solar farms could
harm local habitats and modify animal migration routes.
Disposing of the solar subsystems at the end of their design
life is low risk, because PV panels (as well as the rest of the
system hardware) do not contain dangerous or extraneous
materials that would complicate system disposal. However,
this risk could increase if stronger recycling regulations were
passed. The other environmental risk is unknown hazards and
is related to the possibility of discovering that the system
contains elements that may become suspects for causing
cancer or illnesses, or that the system could produce other
unknowns.

Tables VIII and XI shows that accidents and human mis-
takes are the risks with the highest severities given that they can
harm people; however, based on TEP’s historical record, the
occurrence of such events is extremely low and thus their
frequencies are almost negligible. Other extreme events such as
terrorist attacks on the Western Power Grid and volcanic erup-
tions were also considered; however, as can be seen in Table IV,
the estimated risks for these extreme events were filled with our
null symbol, 0×∞, which means that they were excluded from
our numerical calculations. This is expected to reduce the skew-
ing of numerical calculations that would result by including these
rare but serious events [Haimes, 2009].

Economic risks of Table IX include a change in interest
rates. Changes in interest rates were deemed low-severity

risks since TEP engages in interest rate swaps, hedging their
interest rate exposure and minimizing the impact from future
interest rate changes.

Finally, government risks in Table IX include changes in
government funding and regulations, such as carbon emission
policies and carbon taxes that would have a direct or an
indirect impact on the viability and size of PV systems.
Government policy changes concerning impacts on wildlife
habitat, lands and water [http://solareis.anl.gov/docu-
ments.index.cfm] could make TEP’s renewable energy port-
folio plan obsolete, and could require total replanning of
strategies. The early elimination of rebates is another govern-
ment risk: It would affect customer incentives to convert to
solar-powered generation [Richardson-Smith, 2010].

Tables IV–IX contain risk analyses with both PV system-
specific risks as well as risks associated with Tucson Electric
Power’s AC electric power distribution grid. The data for the
distribution grid risks were given to us by Tom Hansen, vice
president of TEP in 2008, and Bahill derived the rest of the
distribution grid data by normalizing the frequency of occur-
rence and calculating the range: about 6 orders of magnitude.
Since the range for frequency and severity should be about
the same [Bahill and Smith, 2009], numerical values were
assigned to the severities as follows:

Is it really mandatory to give frequency and severity the same
range? Like most systems engineering questions, the best
answer is, “ It depends.”  If your customer does not want you
to normalize frequency and severity, then don’t do it.

Table IV summarizes the operating performance risks for
Solar PV systems and TEP’s distribution grid. These risks are
related to the functionality of the system. Failure events in the
performance category typically result in system downtime
and will affect the quality and reliability of system operations.

Tables IV–XI have five or six columns describing a Po-
tential Failure Event, the Consequences of that failure event,
the Frequency of Occurrence (or relative likelihood) of the
event in the relevant environment, the Severity of Conse-
quences for each failure event, the Estimated Risk, and per-
haps a short Identification Tag. The Frequency of Occurrence
was based on historical data and expert opinion. Estimated
Risk was defined as the product of the Frequency of Occur-
rence and Severity of Consequences.

Mitigation strategies must be written for all risks. Here are
a few examples for Table IV. 

Risk: Solar panel output fluctuates by more than 60 MW
in 15 min. Mitigation Strategy: To ameliorate these
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*These values will increase with an increasing number of solar PV subsystems.
Tables IV and  XI estimates are represented with integers or decimals with only one significant figure. Decimal numbers with two or more significant figures
were calculated from TEP databases.
These data are also plotted in Figure 4. 

Table IV. Operating Performance Risks for Incorporating Solar PV Subsystems into a Commercial Electric Power Grid
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large changes in solar power output (±60 MW) that would
correspond to a solar power output variation of ±3 sigma in a
15-min period. This change in power output could introduce
transients onto the grid and could produce load shedding.

Grid related risks are another risk category. These risks
include the grid frequency going out of the ±0.5 Hz limit,
feeder circuits disconnecting and shorts to ground. The first
two risks are expected to increase as solar PV generation
increases, because the solar subsystems may introduce tran-
sients or voltages that are out of phase with the grid. The
frequency of occurrence of these failures was obtained from
TEP.

Hardware risks include failures due to component mal-
function or external events such as lightning or dust. The
frequency of failures of PV system hardware such as data
acquisition systems, junction boxes, PV modules, and general
failures due to lightning strikes was based on a report of TEP’s
experience with the Springerville Generating Station [Moore
et al., 2010]. Severity for hardware failures ranged from a
simple system restart to more complex maintenance require-
ments [Moore et al., 2010]. In addition to the hardware
failures reported by TEP, we included storage system failures,
because storage technologies are being considered by TEP
and may be implemented in the future. A storage system
failure may result in a loss of stored energy and will eliminate
the possibility of using this stored energy to meet electric
demand. Failure of a backup generator will affect the capabil-
ity of supplying enough power during peak demand or low
power production hours. The severity values and frequencies
were estimated based on hardware-specific reliability rates
(assuming an expected lifetime of 30 years).

Environmental risks of Table VII include immediate risks
to the environment such as habitat destruction, as well as
deferred risks (such as the disposal after the system’s design
life or after irreparable failure). Large-scale solar farms could
harm local habitats and modify animal migration routes.
Disposing of the solar subsystems at the end of their design
life is low risk, because PV panels (as well as the rest of the
system hardware) do not contain dangerous or extraneous
materials that would complicate system disposal. However,
this risk could increase if stronger recycling regulations were
passed. The other environmental risk is unknown hazards and
is related to the possibility of discovering that the system
contains elements that may become suspects for causing
cancer or illnesses, or that the system could produce other
unknowns.

Tables VIII and XI shows that accidents and human mis-
takes are the risks with the highest severities given that they can
harm people; however, based on TEP’s historical record, the
occurrence of such events is extremely low and thus their
frequencies are almost negligible. Other extreme events such as
terrorist attacks on the Western Power Grid and volcanic erup-
tions were also considered; however, as can be seen in Table IV,
the estimated risks for these extreme events were filled with our
null symbol, 0×∞, which means that they were excluded from
our numerical calculations. This is expected to reduce the skew-
ing of numerical calculations that would result by including these
rare but serious events [Haimes, 2009].

Economic risks of Table IX include a change in interest
rates. Changes in interest rates were deemed low-severity

risks since TEP engages in interest rate swaps, hedging their
interest rate exposure and minimizing the impact from future
interest rate changes.

Finally, government risks in Table IX include changes in
government funding and regulations, such as carbon emission
policies and carbon taxes that would have a direct or an
indirect impact on the viability and size of PV systems.
Government policy changes concerning impacts on wildlife
habitat, lands and water [http://solareis.anl.gov/docu-
ments.index.cfm] could make TEP’s renewable energy port-
folio plan obsolete, and could require total replanning of
strategies. The early elimination of rebates is another govern-
ment risk: It would affect customer incentives to convert to
solar-powered generation [Richardson-Smith, 2010].

Tables IV–IX contain risk analyses with both PV system-
specific risks as well as risks associated with Tucson Electric
Power’s AC electric power distribution grid. The data for the
distribution grid risks were given to us by Tom Hansen, vice
president of TEP in 2008, and Bahill derived the rest of the
distribution grid data by normalizing the frequency of occur-
rence and calculating the range: about 6 orders of magnitude.
Since the range for frequency and severity should be about
the same [Bahill and Smith, 2009], numerical values were
assigned to the severities as follows:

Is it really mandatory to give frequency and severity the same
range? Like most systems engineering questions, the best
answer is, “ It depends.”  If your customer does not want you
to normalize frequency and severity, then don’t do it.

Table IV summarizes the operating performance risks for
Solar PV systems and TEP’s distribution grid. These risks are
related to the functionality of the system. Failure events in the
performance category typically result in system downtime
and will affect the quality and reliability of system operations.

Tables IV–XI have five or six columns describing a Po-
tential Failure Event, the Consequences of that failure event,
the Frequency of Occurrence (or relative likelihood) of the
event in the relevant environment, the Severity of Conse-
quences for each failure event, the Estimated Risk, and per-
haps a short Identification Tag. The Frequency of Occurrence
was based on historical data and expert opinion. Estimated
Risk was defined as the product of the Frequency of Occur-
rence and Severity of Consequences.

Mitigation strategies must be written for all risks. Here are
a few examples for Table IV. 

Risk: Solar panel output fluctuates by more than 60 MW
in 15 min. Mitigation Strategy: To ameliorate these
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than 60 MW in a 15-min interval,”  is 10–6. These
numbers give a risk value of 0.1.

These four consequences could be treated separately, or they
could be fit with a probability density function. The expected
value of the integral of this probability density function from
zero to infinity yields a severity of consequences value of 200,
which, by coincidence, is the same as in row four of Table IV.
Haimes’ approach would also add a comment such as: “You
should also be aware that there is an unlikely occurrence (A4)
that could be catastrophic.”

The above section shows the mechanics for implementing
Haimes’ process for computing the severity of consequences.
It shows that Bahill’s process and Haimes’ process could be
compatible if there were sufficient data.

6.1.2. Normalization of Frequency and Severity
In this section, each cell of a table will be identified with
{Table, Row, Column}. For example, the cell in Table VI,
row 5, column DD will be identified as {VI, 5, DD}.

The linear technique, {V, all, C, H, I & J}. Let us now
go back to the principle of normalizing frequency and severity
so that they have the same range. First, we put the biggest
risks from Table IV into cells {V, 7 to 16, A to G}. Then we
introduced a new linear technique for computing severity.

The severities {V, all, H} were assigned using a linear scale
of 1 to 10 [DoD, 2006; Bahill and Smith, 2009; Haskins, 2011,
Figs. 5–10]. This will be called the linear technique. The
severities {V, all, H} were then multiplied by the frequencies
{V, all, C} to estimate the risks presented in {V, all, I}. These
estimated risks were used to compute the risk rank order in
{V, all, J}.

                    Table V. The Biggest Operating Performance Risks from Table IV (Condensed), 
                    with the Addition of Linear Technique Data in Columns H, I, and J

With the addition of columns 8, 9, and 10 which were derived with a linear technique that estimates
severity of consequences on a scale of 1–10. Estimated risk is defined as the product of frequency
and severity.

Table VI. Correlation Coefficients between Frequency,
Severity, and Risk Data of Table V
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possibilities, TEP will buy and operate backup gener-
ators and negotiate purchase agreements with other
suppliers. TEP will plan controlled brownouts with
load shedding. Presently this is not much of a problem,
because solar power comprises only a few percent of
the load. But when solar power approaches one-fourth
of the peak power, TEP will need extensive backup
systems.

Risk: Feeder circuit disconnects from substation. Mitiga-
tion Strategy: TEP will use synchronized reclosers.

Risk: Western Power Grid fails (to other than terrorist
activities). Mitigation Strategy: TEP will have backup
generators and plans for controlled brownouts with
load shedding.

Risk: Software failure. Mitigation Strategy: Every soft-
ware module in the system shall have redundancy and
built in self-test to help reduce the severity.

The range of magnitudes for Frequency of Occurrence and
Severity of Consequences must be the same. In Table IV, the
frequency of occurrence covers 4 orders of magnitude (from
10–15 to 1025), and the severity of consequences also covers 4
orders of magnitude (from 100 to 104). Low-frequency high-
severity risks, such as terrorist attacks and volcanic eruptions,
are not included in these calculations.

The most interesting points of Table IV are plotted in
Figure 4: (1) risk A, that the “ solar panel output fluctuates by
more than 60 MW in a 15-min interval,”  is the riskiest, (2)
risk D, that the “Western Power Grid fails,”  is in the rare but
severe corner, and (3) risk B, that a “ feeder circuit discon-
nects from its substation,”  is in the common but benign

corner. Therefore, our overall advice is to (1) apply risk
mitigation to risk A, (2) keep an eye on risk D, and (3)
ameliorate risk B. Although Risk B is not high risk, inexpen-
sive mitigation would improve the overall reliability of the
system. Now, please look back at the simple risk plot of Figure
1. Figures 1 and 4 agree except that risk F, “ failure of DC to
AC inverters,”  has been transferred from Table IV to a table
for risks from the consumers’ point of view.

6.1.1. Comparison with the Approach of Haimes
We will now compare these results with the approach of
Haimes. We will consider only risk A:

The domain experts have stated that when “solar panel
output fluctuates by more than 60 MW in a 15-min interval,”
there are four important consequences: (A1) Breakers trip
leaving customers without electric power, (A2) grid voltage
drops, (A3) grid frequency changes, and (A4) blackouts. To
show how Haimes computes the severity of consequences, we
have created the following heuristic data:

The severity of consequence A1 has a probability density
function with an expected value of 100 units of damage,
where units could be dollars, thousands of dollars,
millions of dollars, etc. The likelihood of consequence
A1 occurring given that “ solar panel output has fluctu-
ated by more than 60 MW in a 15-min interval,”  is one
fourth. These numbers give a risk value (product) of 25.

The severity of consequence A2 has a probability density
function with an expected value of 200 units of damage.
The likelihood of consequence A2 occurring given that
“Solar panel output has fluctuated by more than 60
MW in a 15-min interval,”  is one half. These numbers
give a risk value of 100.

The severity of consequence A3 has a probability density
function with an expected value of 300 units of damage.
The likelihood of consequence A3 occurring given that
“ solar panel output has fluctuated by more than 60 MW
in a 15-min interval,”  is one fourth. These numbers
give a risk value of 75.

The severity of consequence A4 has a probability density
function with an expected value of 100,000 units of
damage. The likelihood of consequence A4 occurring
given that “ solar panel output has fluctuated by more

Figure 4. A log-log risk chart for Table IV. The arrows show that in
the next few years risk G is expected to move down and to the right
and risk O is expected to move to the right. The straight lines are
iso-risk contours. This process uses log-log plots so that rare events
can be tracked without distorting the risk analysis. [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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than 60 MW in a 15-min interval,”  is 10–6. These
numbers give a risk value of 0.1.

These four consequences could be treated separately, or they
could be fit with a probability density function. The expected
value of the integral of this probability density function from
zero to infinity yields a severity of consequences value of 200,
which, by coincidence, is the same as in row four of Table IV.
Haimes’ approach would also add a comment such as: “You
should also be aware that there is an unlikely occurrence (A4)
that could be catastrophic.”

The above section shows the mechanics for implementing
Haimes’ process for computing the severity of consequences.
It shows that Bahill’s process and Haimes’ process could be
compatible if there were sufficient data.

6.1.2. Normalization of Frequency and Severity
In this section, each cell of a table will be identified with
{Table, Row, Column}. For example, the cell in Table VI,
row 5, column DD will be identified as {VI, 5, DD}.

The linear technique, {V, all, C, H, I & J}. Let us now
go back to the principle of normalizing frequency and severity
so that they have the same range. First, we put the biggest
risks from Table IV into cells {V, 7 to 16, A to G}. Then we
introduced a new linear technique for computing severity.

The severities {V, all, H} were assigned using a linear scale
of 1 to 10 [DoD, 2006; Bahill and Smith, 2009; Haskins, 2011,
Figs. 5–10]. This will be called the linear technique. The
severities {V, all, H} were then multiplied by the frequencies
{V, all, C} to estimate the risks presented in {V, all, I}. These
estimated risks were used to compute the risk rank order in
{V, all, J}.

                    Table V. The Biggest Operating Performance Risks from Table IV (Condensed), 
                    with the Addition of Linear Technique Data in Columns H, I, and J

With the addition of columns 8, 9, and 10 which were derived with a linear technique that estimates
severity of consequences on a scale of 1–10. Estimated risk is defined as the product of frequency
and severity.

Table VI. Correlation Coefficients between Frequency,
Severity, and Risk Data of Table V
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the range for the frequency data and severity is now more
important than frequency.

Is a linear correlation coefficient appropriate? {VI, 4,
DD}. Excel’s CORREL and PEARSON functions are the
same. They return a value for r that indicates the goodness of
a linear fit between two data sets. But what does r mean if the

data sets are not linearly related? To answer this question, we
fit exponential, linear, logarithmic, second-order polynomial
and power law trend lines to the data sets. Different functions
fit different data sets better or worse. For example, {VI, 4,
DD} shows r = 0.964. The functions CORREL, PEARSON,
RSQ and the linear trend line from the scatter chart all have

          Table X. Operating Performance Risks for a 20-MW Backup Quick-Start Natural-Gas Motor-Generator 
          Set

             These data are also plotted in Figure 5. Estimated risk is defined as the product of frequency of occurrence and severity of 
             consequences.
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Correlation coefficients, linear technique, 10 failure
events, {VI, 4, DD & EE}. Next, we used Excel to calculate
the correlation coefficients (r) between frequency, severity
and estimated risk. The results of applying Excel to the new
linear technique data are shown in Table VI. Cell {VI, 4, DD}
shows that for this linear technique the correlation coefficient,
r, of estimated risk {V, all, I} and frequency {V, all, C} is
0.964: this is a large value, which means that frequency is
dominating the estimated risk calculations. In contrast, esti-
mated risk {V, all, I} versus severity {V, all, H} has an r of
only –0.21 as shown in {VI, 4, EE}, which means that
severity is having little effect on the estimated risk. This
difference in influence on risk values is caused by the mis-
match between the ranges of the frequency data (four orders
of magnitude) and the severity data (one order of magnitude).
Frequency has the larger range and totally dominates the
calculation of risk.

Correlation coefficients, linear technique, 12 failure
events, {VI, 5, DD}. In order to change the frequency and
severity ranges, the frequency of occurrence for Terrorist
Attacks and Volcanic Eruptions were assigned non-zero val-
ues and were put into {V, 5 & 6, all}. Column {V, all, C} now
has a range of 4.5 orders of magnitude, but the linear tech-
nique for severity {V, all, H}, still has a range of one. Cell
{VI, 5, DD} shows that the correlation coefficient of the linear
technique estimated risk {V, all, I} versus frequency {V, all,
C} is now 0.965, which is a large value indicating that once
again frequency dominates the calculation of risk, because the
frequency range is larger than the severity range.

Correlation coefficients, log-log technique, 10 failure
events, {VI, 7, DD & EE}. In contrast, for the log-log severity
technique and the original set of ten potential failure events,
both the frequency data {V, all, C} and the severity data {V,
all, D} have a range of four. Data in {VI, 7, DD} show that
the correlation coefficient of estimated risk {V, all, E} versus
frequency {V, all, C} is only 0.17: this is a small value, which
means that now frequency is not dominating the estimated
risk calculations. Furthermore, estimated risk {V, all, E}

versus the log-log technique severity {V, all, D} has an r of
only –0.08 {VI, 7, EE}, which means that severity is not
dominating the estimated risk. These low correlation values,
indicate that the estimated risk is a combination of frequency
and severity and neither one dominates.

Correlation coefficients, log-log technique, 12 failure
events, {VI, 8, DD & EE}. When frequencies for Terrorist
Attacks and Volcanic Eruptions were added into {V, 5 & 6,
all}, the range of the frequency data {V, all, C} became 4.5
orders of magnitude and the range of the log-log technique
severity data {V, all, D} became six. The correlation coeffi-
cient of estimated risk {V, all, E} and frequency {V, all, C}
decreased from 0.17 to 0.10 {VI, 7 & 8, DD}. The correlation
coefficient of estimated risk {V, all, E} and severity {V, all,
D} increased from –0.08 to 0.39 {VI, 7 & 8, EE}. The range
for the log-log technique severity data has become larger than

Table VIII. Project Management Risk for Incorporating
Solar PV Subsystems into a Commercial Electric Power
Grid

Estimated risk uses Eq. (3), the product of frequency of occurrence and
severity of consequences.

Table IX. Economic and Government Risk for
Incorporating Solar PV Subsystems into a Commercial
Electric Power Grid

Estimated risk is defined as the product of frequency of occurrence and
severity of consequences.

Table VII. Environmental Risk for Incorporating Solar PV
Subsystems into a Commercial Electric Power Grid

Estimated risk is defined as the product of frequency of occurrence and
severity of consequences.
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the range for the frequency data and severity is now more
important than frequency.

Is a linear correlation coefficient appropriate? {VI, 4,
DD}. Excel’s CORREL and PEARSON functions are the
same. They return a value for r that indicates the goodness of
a linear fit between two data sets. But what does r mean if the

data sets are not linearly related? To answer this question, we
fit exponential, linear, logarithmic, second-order polynomial
and power law trend lines to the data sets. Different functions
fit different data sets better or worse. For example, {VI, 4,
DD} shows r = 0.964. The functions CORREL, PEARSON,
RSQ and the linear trend line from the scatter chart all have

          Table X. Operating Performance Risks for a 20-MW Backup Quick-Start Natural-Gas Motor-Generator 
          Set

             These data are also plotted in Figure 5. Estimated risk is defined as the product of frequency of occurrence and severity of 
             consequences.
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frequency of occurrence data of Table VIII by 1% for use in
Table XI.

In addition to the previously described risks, some risks
that we identified for the Solar PV system had already been
mitigated. They are presented in Table XII. Discovering risks
that have already been mitigated is very important because it
validates the completeness of the search.

6.1.4. Identified Risks That Were Not Included
Failure of DC to AC inverters of the solar subsystems is the
most common hardware failure. Data for failures of the DC
to AC inverters were supplied by Mike Sheehan [personal

communication]. In 2010 TEP had 3500 3-kW residential
inverters connected to their grid. These inverters had typical
product warranty periods of about 10 years. We assumed that
manufacturers used percentile warranty pw = 50% and that the
underlying failure rate is an exponential distribution,
pw = e−λt. For pw = 0:5 and a warranty period t = 10, λ =
0.0693. For 3500 inverters connected to the power grid, we
can expect around 240 failures per year. When an inverter
fails, the homeowner who owns it loses a part of his electric
generating capacity and has to buy a new inverter. However,
this failure produces only minor inconvenience to TEP. Table
IV was constructed from the point of view of the utility
company, not the homeowner. Therefore, risk F was removed
from Table IV.

A recently discovered risk, that the installers install the
solar panels wrong so that they are damaged or get apprecia-
ble shade, was also not included in Table IV. Acts of war such
as cloud seeding and weather manipulation were considered
but not included.

              Table XII. Risks That Have Already Been Addressed

Figure 6. solar PV generating capacity and retail electric demand
projected for a typical summer day in Tucson in 2025. The solar PV
generating capacity peaks at 600 MW around noon and drops to 25%
of its peak capacity by 5:30 PM (the dashed vertical line). These data
are used in Tables XIII and XIV. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

   Table XIII. TEP Power Projections for 2025
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the exact same number (to fourteen decimal places). How-
ever, the power function trend line gave a better match with
r = 0.995. Small differences like these were common. We
used all five of the Excel functions to fit every combination
of data sets that we were considering. Functions other than
the linear function offered no improvements: investigating
these other functions merely ensured that we were not trying
to fit (for example) a sinusoid with a linear regression line.

Differences between the two techniques. Finally, the
most important risks are different for the log-log and the linear
techniques. The log-log severity technique {V, all, A to G}
indicates that the most serious risks are (in order of impor-
tance): (1) Solar power drops 60 MW in 15 minutes, (2)
Terrorist Attack, (3) Volcanic Eruption and (4) Feeder circuit
disconnecting from the substation. Whereas, the linear sever-
ity technique {V, all, A to C & H to J} indicates that the most
serious risks are (in order of importance): (1) Feeder circuit
disconnecting from the substation, (2) Solar power drops 60
MW in 15 minutes, (3) Short to ground and (4) Grid voltage
exceeds its ±5% limits. To quantify this mismatch we note
that the correlation coefficient between the log-log estimated
risk {V, all, E} and the linear estimated risk {V, all, I} is only
0.3: this is a small value. It seems that it is time to discuss
these results with the customer.

6.1.3. Other Risks
Table VII summarizes the environmental risks. These risks
are related to the environment surrounding the system and
affect various stakeholders (utility company, wildlife, hu-
mans, and the environment). The first three risks were ana-
lyzed from both an environmental and utility company
perspective, while the latter two were analyzed strictly from
the utility company’s perspective due to the possibility of
large financial repercussions. In the complete study, Tables
VII, VIII, and IX had dozens of rows.

Table VIII summarizes project management risks. These
risks are associated with the operation and management of
grid-connected solar PV farms (either by the utility company
or by a third party).

Table IX summarizes economic and government risks.
These risks are associated with economic policy changes or
changes in government regulations. Although the third risk
directly affects customers by increasing the cost of renewable
energy systems, the risks in this table were analyzed only from
the utility company’s perspective.

To mitigate risk A of Table IV, unexpected demand peaks
or decreases in power output; motor-generator (MG) sets are
used as backup generators. The backup generators that are
being considered for future PV projects produce 20 MW of
power and have startup times of approximately 10 min. To
further emphasize the hierarchical nature of risk analyses that
was first presented in Section 3, we will now show the main
results of a risk analysis performed on the motor-generator
backup system. The risk analysis for a quick-start natural-gas
motor-generator set, which is described in Tables X and XI,
was conducted in the same manner as the risk analysis for the
distribution grid with Solar PV systems; however, the severi-
ties for this table used the following scale:

Because of the illustration in Table III, the range of magni-
tudes for Frequency of Occurrence and Severity of Conse-
quences were made about the same. In Table X, the frequency
of occurrence covers 2 orders of magnitude and the severity
of consequences also covers 2 orders of magnitude.

Figure 5 shows that (1) risk A, “backup power generation
is unavailable in a timely manner,”  is the riskiest failure event
and mitigation efforts should be applied to it; (2) risk K, “grid
frequency changes abruptly,”  is in the rare but severe corner,
so we should keep an eye on it; and (3) risk H, “ the system
connects the MG set out of phase with the grid,”  is in the
common but benign corner: It is not high risk, but inexpensive
mitigation would improve the overall reliability of the system;
a little money would go a long way.

Because a 20 MW natural-gas MG set would produce 1%
of the total 2000 MW power generated, we multiplied the

Estimated risk is defined as the product of frequency of occurrence and
severity of consequences.

Figure 5. A log-log risk chart for the risks of Table X. [Color figure
can be viewed in the online issue, which is available at wileyonlineli-
brary.com.]

Table XI. Safety Risks for a Backup Quick-Start
Natural-Gas Motor-Generator Set
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frequency of occurrence data of Table VIII by 1% for use in
Table XI.

In addition to the previously described risks, some risks
that we identified for the Solar PV system had already been
mitigated. They are presented in Table XII. Discovering risks
that have already been mitigated is very important because it
validates the completeness of the search.

6.1.4. Identified Risks That Were Not Included
Failure of DC to AC inverters of the solar subsystems is the
most common hardware failure. Data for failures of the DC
to AC inverters were supplied by Mike Sheehan [personal

communication]. In 2010 TEP had 3500 3-kW residential
inverters connected to their grid. These inverters had typical
product warranty periods of about 10 years. We assumed that
manufacturers used percentile warranty pw = 50% and that the
underlying failure rate is an exponential distribution,
pw = e−λt. For pw = 0:5 and a warranty period t = 10, λ =
0.0693. For 3500 inverters connected to the power grid, we
can expect around 240 failures per year. When an inverter
fails, the homeowner who owns it loses a part of his electric
generating capacity and has to buy a new inverter. However,
this failure produces only minor inconvenience to TEP. Table
IV was constructed from the point of view of the utility
company, not the homeowner. Therefore, risk F was removed
from Table IV.

A recently discovered risk, that the installers install the
solar panels wrong so that they are damaged or get apprecia-
ble shade, was also not included in Table IV. Acts of war such
as cloud seeding and weather manipulation were considered
but not included.

              Table XII. Risks That Have Already Been Addressed

Figure 6. solar PV generating capacity and retail electric demand
projected for a typical summer day in Tucson in 2025. The solar PV
generating capacity peaks at 600 MW around noon and drops to 25%
of its peak capacity by 5:30 PM (the dashed vertical line). These data
are used in Tables XIII and XIV. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

   Table XIII. TEP Power Projections for 2025
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feedback system with a long time delay (a potentially unstable
system).

6.2.2. Analytic Sensitivity Analyses
You should perform a sensitivity analysis anytime you create
a model, write a set of requirements, design a system, make a
decision, plan a tradeoff study, search for cost drivers or
engineer a risk analysis [Smith et al. 2008]. A sensitivity
analysis of risk analyses is simple and it can be done in general
terms. In this TEP risk analysis case study, our problem
statement was, “ In a risk analysis, what parameters can
change the rank order of the most important risks?”

To be general, we will use the definition of risk given in
Eq. (4) where the frequency and severity have weights of
importance as exponents. Estimated risk (R) equals frequency
of occurrence (F) raised to the power of weight of importance
of frequency (wF) times severity of consequences (S) raised
to the power of weight of importance of severity (wS ), like
this, R = FwF × SwS . In economics, this functional form is
called the Cobb-Douglas production function. The first step
is to derive the partial derivatives.
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data set with the bigger weight (bigger data range) is more
important.

Next, Which individual potential failure events give
rise to the greatest risks? If the weights of importance are
the same, then the potential failure events with the largest
sensitivity values create the greatest risks, because the sensi-
tivities are determined by the values of R0, as shown in the
above equations. This means that we should spend extra time
and effort estimating the frequency and severity of the highest
ranked risks, which seems eminently sensible. Of the poten-
tial failure events in Table IV for which data could be col-
lected, the most important are “Solar power drops 60 MW in
15 minutes”  and “Feeder circuit disconnects from substa-
tion.”  TEP already has good data for the former (several
databases with a data set every 15 minutes for years). There-
fore, they should spend more time and resources getting better
data for the Feeder circuit failure event.

6.3. Risk Management

Risk analysis is not an isolated step that should be conducted
in order to understand the risks associated with the system.
Instead, risk analysis should be an integral iterative process
that is accompanied by a risk management initiative. After
most of the risks inherent in a system have been identified,
several risk management or risk mitigation strategies may be
implemented to improve the system. The following section
describes some risk management strategies that have already
been implemented for electric power grids with Solar PV
subsystems and suggests additional alternatives.

6.3.1. Variations in Power Demand and Power Output
Electric power demand varies significantly. TEP’s Resource
Planning group factors in the variable demand exposure as-
sociated with renewable generation resources. Currently,
TEP targets a 15% planning reserve margin to ensure ade-
quate system capacity. This planning reserve margin is used
to cover peak load obligations and to mitigate unforeseen
system contingencies. According to Mike Sheehan, Director
of Resource Planning, TEP is aware of the increased demand
risk associated with renewable resources and is considering
the potential of customer demand response programs, energy
storage technologies, and the need for additional backup
quick-start combustion turbines as possible mitigation strate-
gies [Sheehan 2009].

Additionally, electric power output also varies. TEP will
create computer models to predict the output of wind and solar
systems [GE Energy, 2010]. Forecasts will be needed annu-
ally, monthly, daily, and on a minute-by-minute basis. Annual
and monthly forecasts will help with load planning, daily
forecasts will help handle the mismatch between peak solar
output at noon and peak customer demand at 5 PM, and the
minute-by-minute forecasts will allow nonspinning offline
natural-gas motor-generator sets the opportunity to start up in
response to rapidly incoming storms.

To accommodate changes in power demand and output
power, TEP will revise their backup capacity and operating
reserve policies. The possibility of designing curtailment
options may provide system dispatchers with another tool to
maintain system reliability on days with adverse weather
conditions. TEP’s most recent strategy is to implement a
diversified utility-scale renewable portfolio based on a wide
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Perhaps the greatest risk, uncontrollability of the electric
grid, was not included. Each of the US electric power grids is
a complex system that may be uncontrollable in itself. When
many of these are networked together, the problems may
become insurmountable. Farley [2004, p. 1] wrote that
“mathematical modeling suggests that big blackouts are in-
evitable.”

6.2. Sensitivity Analyses

Both approaches point out the importance of considering all
(or most) possible states of the system and the impact they
might have on the output. They require defining hypothetical
situations and examining the consequences and implications
on the current system. Both approaches recommend mathe-
matical sensitivity analyses [Hsu, Bahill, and Stark, 1976;
Karnavas, Sanchez, and Bahill, 1993; Smith et al., 2008], as
well as a qualitative analysis (a what-if analysis) by describing
and exploring possible outcomes and consequences. The next
section contains a what-if analysis for an electric power grid
with Solar PV subsystems.

6.2.1. What-If Analysis
6.2.1.1. Early Elimination of Rebates. Early elimination

of rebates would reduce customer incentives to install solar-
powered electric generating systems.

6.2.1.2. Cloudy Days. Weather is the most uncontrollable
factor for a PV subsystem. When clouds appear between the
solar panels and the sun, there is an immediate and significant
drop in power output. What would happen if there were a total
blockage of the sun (due to total cloud coverage) when the
system load peaked? There are two important factors to
consider: First, TEP peak summer loads typically occur in the
late afternoon, around 5 PM, and second, during these late
afternoon hours, output from PV panels has fallen to one-
fourth of their peak output, as shown in Figure 6.

In order to meet the Renewable Energy Standard, TEP
predicts that by 2025 its system will have about 600 MW of
utility-scale renewable-generating capacity. Assuming that
this is all Solar PV subsystems, this would produce 600 MW
at noon and 150 MW at 5 PM.

Tables XIII and XIV show that TEP can meet is load
obligations under the worst weather conditions (zero solar
power output) during peak summer loads. The first row of
Table XIII is used to compute the needed conventional gen-
erating capacity. It states that the peak load in the summer at

5 PM plus the planning reserve must be less than or equal to
the conventional generating capacity plus the solar generating
capacity. The other rows show that the total load can be met
at the other significant conditions.

6.2.1.3. Hardware Reliability. Another significant source
of risk is failure of the electric generators. Electric generators
(renewable or nonrenewable) could fail during peak load
hours. Depending on the total capacity loss and the availabil-
ity of reserves, it may or may not be possible to meet demand.
Given that the incident is not planned, there may be a lag
between the time when a generator trips offline and the time
when backup or reserve capacity is available to cover this
shortfall. Under rare circumstances, a large unit outage during
peak load conditions could result in a temporary capacity
shortage that requires TEP to shed load and/or call on sharing
reserves. In most cases, when generating units trip offline,
TEP is able to call on backup capacity from the Southwest
Reserve Sharing Group, which enables TEP to rely on re-
gional utilities for backup capacity for 1 h or less. TEP then
uses a combination of its own units (if available) and market
resources to replace the needed capacity for the next dispatch
hour.

6.2.1.4. Economic Factors. There are also economic fac-
tors that could affect the PV penetration on TEP’s system. For
example, if the cost of solar subsystems suddenly dropped,
then more homeowners might buy solar photovoltaic panel
systems. If a large number of households bought solar sub-
systems and put them on their houses, then, during the day,
customers would reduce their dependence on electricity sup-
plied by TEP. If this happened throughout the city of Tucson,
it could affect TEP’s bottom line. TEP would have underutil-
ized capacity during the day, since they would not be selling
as much electricity to residential customers, and thus their
revenues would drop. TEP is obligated to provide generating
capacity to meet demand during nighttime, during the after-
noon (low PV output and high demand hours), and during
cloudy days. Additionally, if all of these residential PV sys-
tems were grid-tied and customers were taking advantage of
net-metering, then during sunny days, TEP will be required
to buy all the excess electricity produced by residential cus-
tomers. As a result, TEP could lose money from decreased
revenues and increased net-metering costs. Consequently,
TEP could substantially reduce net-metering payments,
eliminating one of the incentives for residential customers to
acquire PV systems in the first place. This is a negative

                   Table XIV. Planning Reserve and Cloud Cover
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feedback system with a long time delay (a potentially unstable
system).

6.2.2. Analytic Sensitivity Analyses
You should perform a sensitivity analysis anytime you create
a model, write a set of requirements, design a system, make a
decision, plan a tradeoff study, search for cost drivers or
engineer a risk analysis [Smith et al. 2008]. A sensitivity
analysis of risk analyses is simple and it can be done in general
terms. In this TEP risk analysis case study, our problem
statement was, “ In a risk analysis, what parameters can
change the rank order of the most important risks?”

To be general, we will use the definition of risk given in
Eq. (4) where the frequency and severity have weights of
importance as exponents. Estimated risk (R) equals frequency
of occurrence (F) raised to the power of weight of importance
of frequency (wF) times severity of consequences (S) raised
to the power of weight of importance of severity (wS ), like
this, R = FwF × SwS . In economics, this functional form is
called the Cobb-Douglas production function. The first step
is to derive the partial derivatives.
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data set with the bigger weight (bigger data range) is more
important.

Next, Which individual potential failure events give
rise to the greatest risks? If the weights of importance are
the same, then the potential failure events with the largest
sensitivity values create the greatest risks, because the sensi-
tivities are determined by the values of R0, as shown in the
above equations. This means that we should spend extra time
and effort estimating the frequency and severity of the highest
ranked risks, which seems eminently sensible. Of the poten-
tial failure events in Table IV for which data could be col-
lected, the most important are “Solar power drops 60 MW in
15 minutes”  and “Feeder circuit disconnects from substa-
tion.”  TEP already has good data for the former (several
databases with a data set every 15 minutes for years). There-
fore, they should spend more time and resources getting better
data for the Feeder circuit failure event.

6.3. Risk Management

Risk analysis is not an isolated step that should be conducted
in order to understand the risks associated with the system.
Instead, risk analysis should be an integral iterative process
that is accompanied by a risk management initiative. After
most of the risks inherent in a system have been identified,
several risk management or risk mitigation strategies may be
implemented to improve the system. The following section
describes some risk management strategies that have already
been implemented for electric power grids with Solar PV
subsystems and suggests additional alternatives.

6.3.1. Variations in Power Demand and Power Output
Electric power demand varies significantly. TEP’s Resource
Planning group factors in the variable demand exposure as-
sociated with renewable generation resources. Currently,
TEP targets a 15% planning reserve margin to ensure ade-
quate system capacity. This planning reserve margin is used
to cover peak load obligations and to mitigate unforeseen
system contingencies. According to Mike Sheehan, Director
of Resource Planning, TEP is aware of the increased demand
risk associated with renewable resources and is considering
the potential of customer demand response programs, energy
storage technologies, and the need for additional backup
quick-start combustion turbines as possible mitigation strate-
gies [Sheehan 2009].

Additionally, electric power output also varies. TEP will
create computer models to predict the output of wind and solar
systems [GE Energy, 2010]. Forecasts will be needed annu-
ally, monthly, daily, and on a minute-by-minute basis. Annual
and monthly forecasts will help with load planning, daily
forecasts will help handle the mismatch between peak solar
output at noon and peak customer demand at 5 PM, and the
minute-by-minute forecasts will allow nonspinning offline
natural-gas motor-generator sets the opportunity to start up in
response to rapidly incoming storms.

To accommodate changes in power demand and output
power, TEP will revise their backup capacity and operating
reserve policies. The possibility of designing curtailment
options may provide system dispatchers with another tool to
maintain system reliability on days with adverse weather
conditions. TEP’s most recent strategy is to implement a
diversified utility-scale renewable portfolio based on a wide
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petitive advantage in the fixed or floating rate market, or
reduce their exposure to interest rate risk.

6.4. Unintended Consequences

Implementing new systems, strategies, laws, or controls often
has unintended negative or positive consequences. Therefore,
it is important that early in the system lifecycle the designers
try to predict what these consequences may be. The systems
engineer is responsible for the big picture of system develop-
ment. Hence, the system engineer must search for unintended
consequences of the system under design [Bahill, 2012].

Connecting a Solar PV system to an electric power grid
could cause problems for the grid. For example, presume that
an illumination-controlled building is in the state of Selling
AC Electricity, when clouds suddenly cover the sun. The
voltage generated by the solar panels will drop as will the
illumination in the building. Sensors will sense this drop in
illumination and will command the lights to produce more
illuminance. The lights will draw more power from the
source. This will produce a bigger voltage drop across the
source internal impedance, which will further drop the oper-
ating voltage. This is a positive feedback loop that could cause
the grid to become unstable. A second problem with clouds
blocking the sun is that the PV system would soon deplete its
small local energy store and would switch to the Buying AC
Electricity state. This would increase the operating voltage.
This is a negative feedback loop, but it contains a significant
time delay. Time delays make systems susceptible to insta-
bilities. Therefore, utility companies should create 1-s scale
simulations of the interactions between these systems in order
to investigate potential instabilities [Bahill, 2010].

A third problem with clouds blocking the sun is that, if the
voltage of the electric power grid falls out of its ±5% limits,
then most of the local solar PV subsystems will isolate them-
selves from the grid. This will further decrease the grid
voltage. This is a positive feedback loop. Positive feedback
loops can make a system unstable.

Incorporating solar photovoltaic subsystems into a com-
mercial electric power grid has another interesting possible
unintended consequence. Solar panels do two things: They
absorb solar energy and transform it into electricity, and they
also reflect solar energy back into the atmosphere. Both of
these actions reduce the solar energy that hits the ground and
is absorbed by the Earth. Therefore, solar panels have unin-
tended consequences of reducing the amount of energy ab-
sorbed by the Earth and therefore contribute to global cooling.

Solar panel systems are in positive feedback control loops
and negative feedback control loops with large time delays.
Both of these could cause instability on the grid. Bahill [2012]
has listed other unintended consequences of installing solar
panels into a commercial electric power grid.

7. SUMMARY

Both approaches use quantitative data: these data range from
estimates by experts to statistical databases that are expensive
to develop and maintain. Bahill’s published examples lean
toward the former: while Haimes’ published examples lean

toward the latter. In particular, Haimes’ PMRM method re-
quires a significant amount of data about the probability-dam-
age relationship. Bahill’s approach focuses on analyzing and
understanding the risks, whereas Haimes’ approach is ori-
ented towards risk management. In addition, the approaches
differ in the quantification of risk. Bahill uses the frequency
of occurrence of the risky event times the severity of conse-
quences, while Haimes computes the probability density
function for the severity of consequences. According to
Haimes, the probability of the severity of consequences can
be assessed well, based on historical and technical records,
and is more informative and representative. Both approaches
will work on existing systems as well as on new systems being
designed. However, Haimes’ approach was optimized for
existing systems, where abundant statistical data either exist
or can be collected. In contrast, Bahill’s approach was de-
signed to be an integral part of the system design process,
although, in this paper, it is being applied to an existing
system. So what should a system developer do? If the devel-
oper is limited to only one approach and the developer has
sufficient budget and data, then the preferred approach might
be the Haimes approach.

This comparison of the two risk analysis approaches sug-
gests two important points. The first is that the frequency and
severity scales must be normalized in order to give equal
weight to both factors [Bahill and Smith, 2009]. The second
is to beware of the problems of extreme events and to avoid
basing conclusions about them exclusively on the expected
value of risk, because this would give equal weight to events
with high frequency of occurrence and low severity and
events with low frequency of occurrence and high severity
[Haimes, 2009]. 

Regarding this whole Solar PV system risk analysis, the
risk of clouds blocking the sun and introducing output vari-
ability is the biggest risk. Additionally, as Solar PV becomes
a larger component of an electric company’s energy portfolio,
it is important to revise the backup capacity policies and
consider alternative storage methods in order to reduce the
risk of reduced power output during periods with high de-
mand. For TEP to meet the Arizona Corporation Commis-
sion’s requirements, rebates and federal tax incentives must
remain.

After conducting a what-if analysis, even under the worst-
case scenario of total sunlight blockage and demand peaking,
with appropriate planning, it is possible to develop strategies
that will prevent brownouts and power shortages. Based on
how much Solar PV energy TEP has, it may be important to
develop and implement state-of-the-art, 1-min-scale weather
forecasting, which combined with their current demand fore-
casting methods, will help them identify risky scenarios and
act appropriately. Utility companies should also create 1-s-
scale simulations of the interactions between customer PV
subsystems and the electric power grid in order to investigate
potential instabilities.

The risk analysis approaches discussed in this paper have
some common weaknesses. (1) Publishing the results of a risk
analysis (both internally and externally) in a timely manner is
a vital part of risk analysis. However, the publication cycle is
slow, but policies and data change rapidly. For example, by
the end of 2012 TEP phased out rebates for PV systems and
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range of technologies dispersed over a number of geographi-
cal locations. This diversification strategy should reduce out-
put variations and mitigate solar curtailments from cloud
cover. In order to maintain future system reliability standards,
both TEP and other regional utilities should revise their
backup capacity and operating reserve policies as their renew-
able energy portfolio increases.

TEP will create demand-forecasting models, power output
models, and real-time weather-forecasting models in order to
identify risky dispatch scenarios that might require higher
levels of backup generating capacity. These real-time moni-
toring systems would take the system to a prevention state that
would enable system dispatchers to bring on additional gen-
erating resources as required.

6.3.2. Environmental Risks
The US Department of Energy [2010] is writing a Solar
Energy Development Programmatic Environmental Impact
Statement to analyze the environmental impact that solar
projects might have and to develop and implement programs
that would facilitate responsible solar energy development.
All projects will undergo several detailed assessments to
comply with governmental and environmental regulations.
These studies include architectural studies, environmental
studies, and biological studies (all managed by the EPA).
They are conducted to ensure that the project’s environmental
impact is below acceptable levels. Once the Department of
Energy develops solar-specific environmental guidelines, the
risks associated with developing solar farms in open land will
be reduced, because there will be known requirements that
must be met.

What is the carbon footprint for incorporating solar pho-
tovoltaic subsystems into a commercial electric power grid?
No carbon emissions are produced during solar photovoltaic
electric generation; however, the solar panel manufacturing
process might not be a zero-emissions process. We were
concerned that the whole manufacturing, installing, and op-
erating process could have a net positive carbon footprint;
however, this is not the case. A study conducted by the Solar
Hydrogen Education Program [Mason, 2004] found that the
Springerville Solar Generating Station reduced the carbon
footprint by 36 tons of CO2 per kW DC installed. Thus, this
Station produces 91% less carbon than a comparable fossil
fuel powered plant. Additionally, the total energy used to
manufacture the hardware of the Springerville Solar Gener-
ating Station was 12 MWh AC per kW DC (88% of which
corresponds to solar panel manufacturing). Based on ex-
pected power production for the Springerville Solar Generat-
ing Station, the energy payback time would be 2.8 years,
which is less than the 30-year expected life of the solar-pow-
ered plant [Moore et al., 2010]. According to the United
Kingdom’s Parliamentary Office of Science and Technology
[2006], the carbon footprint of solar panel manufacturing is
expected to be reduced with the development of thin film
technologies and the implementation of new, less energy
intensive, semiconductor materials. Therefore, incorporating
solar photovoltaic systems into a commercial electric power
grid will contribute to global cooling.

Many technologies are available to simplify project plan-
ning and help design environmentally friendly projects. One

example is geographic information systems (GIS), which may
aid the planning of solar panel location. The GIS analysis may
be conducted in various ways in order to reduce environ-
mental impact. For example, GIS may be used to identify
solar-feasible greyfields2 and convenient installation sites
such as the roofs of buildings [Chaves and Bahill, 2010] that
would not require the modification of open land in order to
locate the PV system, sites that can be easily connected to the
grid, and sites that receive enough solar radiation to make the
project viable. TEP’s current environmental risk mitigation
strategy includes constructing utility-scale projects on grey-
fields such as reclaimed landfills and previous mining sites.

6.3.3. Financial Risks
Solar energy is currently in a developmental state, and capital
prices are expensive. Depending on the price characteristics
of energy and the inherent financial characteristics of the
company, developing a solar farm may not be financially
viable. However, in some cases, the financial penalty of
implementing a solar-powered plant may be reduced by in-
troducing renewable energy tariffs, such as TEP’s Renewable
Energy Standard Tariff, in order to use these funds to promote
the use of renewable energy. Revenues generated by these
tariffs are passed on to customers who incorporate renewable-
energy solutions in their homes, incentivizing them to switch
to greener energy technologies.

It is important to note that utilities cannot pass on their
increased costs directly to their customers since, in most
cases, there is a cap on the rate that they can charge for
electricity. In the case of TEP, they cannot file for a rate
increase until after June 30, 2012, with the earliest effective
date being January 1, 2013 (TEP 2009 Annual Report). There-
fore, this is not a viable risk management alternative for
mitigating the higher power costs from renewable energy
sources.

When the Springerville Solar Generating Station was built,
there were no federal incentives or rebates to help subsidize
the project, and TEP does not now have federal incentives that
can be used to lower the investment cost of a solar farm.
Therefore, TEP uses another alternative for mitigating finan-
cial costs: It creates special purpose entities (SPEs) to develop
and own the solar farms and develop lease agreements with
them. An SPE is a legal entity (typically a company or
partnership) that is created to serve a particular purpose, in
this case, owning the solar farm. This SPE may be owned by
one or more entities that are not related to TEP and therefore
may qualify for federal or state rebates that are not available
to TEP. This may help reduce the investment cost and would
reduce the electric generation cost for this facility.

Another financial risk is interest rate risk: the risk of
interest rates increasing and affecting the interest payments
on PV project loans. However, the interest rate risk may be
mitigated by conducting interest rate swaps. When companies
enroll in interest rate swaps, they swap floating debt for fixed
rate debt (or vice versa) in order to either exploit their com-

2Greyfields are underutilized real estate assets or lands. These sites have
previously had other uses, such as old mines, mine waste tailings, landfills,
mudslide zones, low-level radiation sites, frequently flooded zones, and
perhaps as buffer zones for wildlife reserves and wilderness areas.
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petitive advantage in the fixed or floating rate market, or
reduce their exposure to interest rate risk.

6.4. Unintended Consequences

Implementing new systems, strategies, laws, or controls often
has unintended negative or positive consequences. Therefore,
it is important that early in the system lifecycle the designers
try to predict what these consequences may be. The systems
engineer is responsible for the big picture of system develop-
ment. Hence, the system engineer must search for unintended
consequences of the system under design [Bahill, 2012].

Connecting a Solar PV system to an electric power grid
could cause problems for the grid. For example, presume that
an illumination-controlled building is in the state of Selling
AC Electricity, when clouds suddenly cover the sun. The
voltage generated by the solar panels will drop as will the
illumination in the building. Sensors will sense this drop in
illumination and will command the lights to produce more
illuminance. The lights will draw more power from the
source. This will produce a bigger voltage drop across the
source internal impedance, which will further drop the oper-
ating voltage. This is a positive feedback loop that could cause
the grid to become unstable. A second problem with clouds
blocking the sun is that the PV system would soon deplete its
small local energy store and would switch to the Buying AC
Electricity state. This would increase the operating voltage.
This is a negative feedback loop, but it contains a significant
time delay. Time delays make systems susceptible to insta-
bilities. Therefore, utility companies should create 1-s scale
simulations of the interactions between these systems in order
to investigate potential instabilities [Bahill, 2010].

A third problem with clouds blocking the sun is that, if the
voltage of the electric power grid falls out of its ±5% limits,
then most of the local solar PV subsystems will isolate them-
selves from the grid. This will further decrease the grid
voltage. This is a positive feedback loop. Positive feedback
loops can make a system unstable.

Incorporating solar photovoltaic subsystems into a com-
mercial electric power grid has another interesting possible
unintended consequence. Solar panels do two things: They
absorb solar energy and transform it into electricity, and they
also reflect solar energy back into the atmosphere. Both of
these actions reduce the solar energy that hits the ground and
is absorbed by the Earth. Therefore, solar panels have unin-
tended consequences of reducing the amount of energy ab-
sorbed by the Earth and therefore contribute to global cooling.

Solar panel systems are in positive feedback control loops
and negative feedback control loops with large time delays.
Both of these could cause instability on the grid. Bahill [2012]
has listed other unintended consequences of installing solar
panels into a commercial electric power grid.

7. SUMMARY

Both approaches use quantitative data: these data range from
estimates by experts to statistical databases that are expensive
to develop and maintain. Bahill’s published examples lean
toward the former: while Haimes’ published examples lean

toward the latter. In particular, Haimes’ PMRM method re-
quires a significant amount of data about the probability-dam-
age relationship. Bahill’s approach focuses on analyzing and
understanding the risks, whereas Haimes’ approach is ori-
ented towards risk management. In addition, the approaches
differ in the quantification of risk. Bahill uses the frequency
of occurrence of the risky event times the severity of conse-
quences, while Haimes computes the probability density
function for the severity of consequences. According to
Haimes, the probability of the severity of consequences can
be assessed well, based on historical and technical records,
and is more informative and representative. Both approaches
will work on existing systems as well as on new systems being
designed. However, Haimes’ approach was optimized for
existing systems, where abundant statistical data either exist
or can be collected. In contrast, Bahill’s approach was de-
signed to be an integral part of the system design process,
although, in this paper, it is being applied to an existing
system. So what should a system developer do? If the devel-
oper is limited to only one approach and the developer has
sufficient budget and data, then the preferred approach might
be the Haimes approach.

This comparison of the two risk analysis approaches sug-
gests two important points. The first is that the frequency and
severity scales must be normalized in order to give equal
weight to both factors [Bahill and Smith, 2009]. The second
is to beware of the problems of extreme events and to avoid
basing conclusions about them exclusively on the expected
value of risk, because this would give equal weight to events
with high frequency of occurrence and low severity and
events with low frequency of occurrence and high severity
[Haimes, 2009]. 

Regarding this whole Solar PV system risk analysis, the
risk of clouds blocking the sun and introducing output vari-
ability is the biggest risk. Additionally, as Solar PV becomes
a larger component of an electric company’s energy portfolio,
it is important to revise the backup capacity policies and
consider alternative storage methods in order to reduce the
risk of reduced power output during periods with high de-
mand. For TEP to meet the Arizona Corporation Commis-
sion’s requirements, rebates and federal tax incentives must
remain.

After conducting a what-if analysis, even under the worst-
case scenario of total sunlight blockage and demand peaking,
with appropriate planning, it is possible to develop strategies
that will prevent brownouts and power shortages. Based on
how much Solar PV energy TEP has, it may be important to
develop and implement state-of-the-art, 1-min-scale weather
forecasting, which combined with their current demand fore-
casting methods, will help them identify risky scenarios and
act appropriately. Utility companies should also create 1-s-
scale simulations of the interactions between customer PV
subsystems and the electric power grid in order to investigate
potential instabilities.

The risk analysis approaches discussed in this paper have
some common weaknesses. (1) Publishing the results of a risk
analysis (both internally and externally) in a timely manner is
a vital part of risk analysis. However, the publication cycle is
slow, but policies and data change rapidly. For example, by
the end of 2012 TEP phased out rebates for PV systems and
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the Department of the Interior gave fast-track approval for PV
sites in six Western states (http://solareis.anl.gov/docu-
ments/index.cfm). These changes could not be included in
this paper. (2) It is hard to get time. In the beginning of a risk
analysis, the risk analyst (RA) needs time with the domain
experts to identify and quantify the risks. Near the end, the
RA needs time with the decision makers to explain the risk
analysis. It is hard to schedule such time. RAs don’t have the
clout. (3) It is hard to get relevant data. An RA cannot just,
for example, get on the Internet and ask for data concerning
“Solar panel output fluctuates by more than 60 MW in a
15-min interval due to clouds, thunderstorms, etc.”  However,
if the RA is willing to change his/her design to match what is
available on the Internet, then a googolplex of data are avail-
able. (4) Data that the RA does get are usually fraught with
uncertainty, mistakes, estimated probabilities, and human
mental biases.

In a risk assessment, the RA could spend more and more
time and money getting better and better data, but that would
not make the risk recommendations more precise. Haimes and
Chittester [2005, p. 6] drew an analogy to the Heisenberg
Uncertainty Principle, which states that a person cannot si-
multaneously measure the position and the velocity of a
particle with high precision. Then they a expanded this anal-
ogy with, “ recall Einstein’s statement: ‘So far as the theorems
of mathematics are about reality, they are not certain; so far
as they are certain, they are not about reality.’ Adapting
Einstein’s metaphor to risk assessment and management
translates into: ‘To the extent risk assessment is precise, it is
not real; to the extent risk assessment is real, it is not precise.’”
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