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Abstract. This paper presents a common industry approach to risk analysis, points out 

problems and pitfalls with it, and suggests ways to ameliorate them. Then it summarizes the 

main risks associated with incorporating solar photovoltaic (PV) systems into an existing 

commercial electric power grid. Finally, the paper explains the reason for frequency and 

severity normalization, presents the results of a sensitivity analysis and shows some possible 

unintended consequences of incorporating solar PV systems. 

1. Problem Statement 

Economically viable harvesting of renewable energy is one of the most profound 

challenges of the 21
st
 century. The most promising renewable energy source in the southwest 

United States is solar photovoltaic (PV). However, incorporating solar PV systems into an 

existing electric power grid presents a significant challenge, because of the intermittent and 

diurnal characteristics of the environment. This, and the uncertainty of dealing with the 

unknown, means that evolving such a big complex system is risky. Therefore, a risk analysis is 

a crucial part of the system design. This paper presents a risk analysis of a large-scale grid-tied 

solar PV system for Tucson Electric Power (TEP), the electricity service provider for the 

Tucson Arizona metropolitan area. TEP needs to increase their renewable-energy 

electric-generating capacity in order to comply with the Arizona Corporation Commission’s 

Renewable Energy Standard & Tariff [2006] that requires that by the year 2025, 15% of the 

utility companies’ retail sales must be supplied from renewable-energy sources. Presumably, 

most of this renewable energy will be satisfied with solar PV systems. In this study, we 

analyzed the risks and complications associated with incorporating solar PV systems from the 

perspective of the utility company. 

The United States National Renewable Energy Laboratory estimates the annual 

national theoretical maximum electric energy obtainable from renewable sources as follows 

(units are terawatts): solar PV 155, concentrated solar power 38, wind 15, geothermal 0.04, 

water 0.07, and biomass 0.06 [Lopez, 2012]. The ratio of solar PV to wind is 10. In the 

southwestern United States, the advantage of solar energy is even greater: the ratio of solar PV 

to wind is 22. This is the reason why this paper focuses on solar PV systems. 

2. Definition of Risk 

The world is full of uncertainty and this makes risk an inherent component in the design of any 

system. Risk is an expression of the potential harm or loss associated with an activity executed 

in an uncertain environment. Three hundred and fifty years ago, Arnauld and Nicole wrote that 

risk had at least two components, “Fear of some harm ought to be proportional not only to the 

magnitude of the harm, but also to the probability of the event [Arnauld and Nicole, 1996, p. 

274].”  
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We quantify risk as the product of the frequency of occurrence (or the relative likelihood) 

of a potential failure event and the severity of consequences for each occurrence of that failure 

event, as in Eq. (1) [Bahill and Smith, 2009]. 

        risk frequency of occurance severity of consequences    (1) 

This definition uses the product combining function, although many other combining 

functions have been used [Daniels, Werner and Bahill, 2001]. This product combining function 

of frequency and severity makes intuitive sense. People are familiar with multiplying data; for 

example, multiplication is used in computing a benefit to cost ratio. (A ratio is just 

multiplication by the reciprocal.) The product combining function is used in many different 

realms for example, a person buying a lottery ticket should care about the size of the pot 

divided by the number of people buying tickets; insurance rates on a Corvette are higher than 

for a typical automobile, because the frequency of accidents is higher and it is an expensive car, 

so the monetary loss in an accident is higher: it seems intuitive to multiply the frequency times 

the monetary loss. The product combining function can also have weights of importance, as 

shown in Eq. (2). 

SF wwR F S           (2) 

There are also many other approaches for risk analyses. The approach of this paper has 

been compared to that of Haimes [2009] in Chaves and Bahill [2013]. 

2.1 Frequency of Occurrence 

Of course, a risk analyst would never give a decision maker a single number and say, “This is 

the most important risk.” The risks must be prioritized and discussed with the decision makers. 

The decision makers must understand the plan for managing risk. Figure 1 presents a risk plot, 

using the definition of Eq. (1), that can facilitate these discussions. It is similar to the DoD Risk 

Reporting Matrix [DoD, 2006], common industry approaches [Bahill and Smith, 2009] and the 

INCOSE Handbook [Haskins, 2011, Fig. 5-10]. 
 

 

Figure 1. A typical industry risk chart for some potential failure events explained in 
Table 2. The arrow shows that the biggest risk, risk A, has dropped in severity since 
the last review, due to risk mitigation action, namely installing backup motor-generator 
sets. Uncertainty in the frequency and severity numbers can be shown with ellipses, 



 

 

as is illustrated with risk F. Risk events in the red region are high risk and must be 
managed. Risks in the yellow region are medium risk and should be managed, if it fits 
within the budget. Risks in the green region are low risk and need only to be 
monitored. The curves are iso-risk contours. 

However, the terms relative likelihood and frequency of occurrence are not quite 

synonyms. If we are using historical data for an event, then we use the term frequency of 

occurrence. Otherwise, if we are guessing the future, then we use the term relative likelihood. 

The word relative emphasizes that it is the relationships between risks that are being illustrated. 

The word likelihood is not used in a probabilistic sense, but rather in its dictionary sense to 

indicate the events that are likely to happen. Frequency is used instead of probability, because 

humans evaluate probability poorly: the frequency approach helps humans to partition a set of 

cases into exclusive subsets, which is a mental operation that is performed quite well 

[Gigerenzer, 2002; Bahill and Smith, 2009]. 

The events in Table 2 have uncertainty in both the relative likelihood of occurrence and the 

severity of consequences. However, sometimes we know when an event will occur, so the 

likelihood that the event will occur is 1.0 and we only need to estimate the severity of the 

consequence. For example, assume that you have bet on tails in a coin flipping game and you 

are about to flip the coin. The likelihood that the event will occur is 1.0 and the severity of the 

consequence is that you will lose half the time. Therefore, the risk of losing your bet in the next 

moment is 0.5. Most gambling games are of this nature. 

On the other hand, sometimes there is no uncertainty in the consequence, only uncertainty 

that the event will occur in the specified time interval. For example, assume that you are 

performing an experiment with radium and an alpha particle would ruin your day. In 

radioactive decay of radium-226 into radon-222, we can estimate the likelihood of the event as 
103.7 10  decays/sec-gm . When the event occurs, we know with absolute certainty that the 

consequence will be an alpha particle; therefore, the severity of this consequence is 1.0. 

Therefore the risk of getting an alpha particle is 103.7 10  /sec-gm . If you have one gram of radium 

(about 2210 atoms) and the experiment lasts one second, then the risk is 103.7 10 . 

We can compare these three types of events and consequences {(1) uncertainty in both the 

event and the consequences, (2) uncertainty in only the consequences and (3) uncertainty in 

only the occurrence of the event} as long as the time interval is the same. In a fourth case, the 

likelihood of the event occurring cannot be estimated, for example when dealing with terrorist 

attacks on population centers. 

2.2 Severity of Consequences 

The severity of consequences of a risk event is the perceived damage due to its occurrence. 

Determining severities is an important step, because it allows us to calculate the risks and rank 

them in order to identify the most critical events. Severity values can be derived using 

brainstorming, group decision techniques, expert opinion, historical data, modeling and 

simulation. However, in this study, severity values are subjective and depend on the perception 

of the analyst. Fortunately, it is possible to reduce analyst-induced bias by sharing the resulting 

severity values with system experts and other analysts so that they can validate the severity 

values. 

Analyzing risk severities is a common practice. Insurance companies have developed 

tables to quantify risk so that different risks can be compared. They assess policyholders’ risk 

in order to estimate the total risk of their insured pool and derive the expected payout costs. 

Understanding risk severities allows them to quantify the risk and act accordingly. By 

estimating expected payout costs, insurance companies are able to set the price of insurance 



 

 

premiums so that they almost always generate a profit. (It is only the rare but catastrophic 

events that bankrupt them.) Utility companies also routinely analyze risk severities. If the 

utility company understands the severity of consequences, they will be able to prioritize risk 

mitigation strategies. 

2.2.1 The problem with different ranges. Our risk analysis process makes the range of the 

frequency data the same as the range of the severity data. This guarantees that the risk does not 

depend only on the frequency or the severity. If the event’s frequency and severity ranges were 

different (e.g. frequency had five orders of magnitude, but severity had only one), then it is 

possible that the severities would have no impact on determining the highest risks; risk would 

be dependent only on the frequency data. When the frequency and severity ranges are equal, 

they will have the same weight in the quantification of risk and bias will be eliminated. For 

example, if the frequency data go from 10
-6

 to 10
-1

, then the range has five orders of magnitude 

and thus the severity data should also have a range with five orders of magnitude (e.g., from 1, 

very low, to 10
5
, very high). 

Table 1: The problem with different ranges for 
frequency of occurrence and severity of 
consequences. 
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10
-1

 1 110
-1

 1 10
-1

 6 610
-1

 1 

10
-2

 2 210
-2

 2 10
-2

 5 510
-2

 2 

10
-3

 3 310
-3

 3 10
-3

 4 410
-3

 3 

10
-4

 4 410
-4

 4 10
-4

 3 310
-4

 4 

10
-5

 5 510
-5

 5 10
-5

 2 210
-5

 5 

10
-6

 6 610
-6

 6 10
-6

 1 110
-6

 6 

The two examples in the left and right halves of Table 1 have the same frequency of 

occurrence data, but the severity column in the right half has been turned upside down. The 

resulting risk columns are different, but the risk rank order columns are identical. Severity has 

no effect! 

More generally, let ,  and i i iF S R  and ,  and j j jF S R  be, respectively, the frequency, 

severity and risk data for any two rows of Table 1. Clearly i jR R  if and only if 

i i j jF S F S   , that is, when 
ji

j i

SF

F S
 . For the data of Table 1, the smallest possible value of 

10i

j

F

F
 , when i jF F . The largest possible value of 6

j

i

S

S
 . Since 10 6 , the ratio i

j

F

F
will 

always dominate S, regardless of the order of the rows. 

In general, if two functions are multiplied together and they have different ranges, the one 

with the bigger range has more weight, perhaps secretly. To explicitly weight frequency and 

severity, weights of importance can be used as exponents, as shown in Eq. (2) and the next 

section. 



 

 

2.2.2 Data range is proportional to the weighting exponent. Assume that the frequency (F) 

data extend from 1 to 100, but the severity (S) data only extend from 1 to 10. We then need a 

function that will transform the S data so that they have the same range as the F data. First, let’s 

try an exponential function like ( ) Swf S S , where the weight of importance for severity 

1Sw  . 

If 1Sw   then the S data will extend from 1 to 10. 

If 2Sw   then the S data will extend from 1 to 100.  

If we want the S data to extend from 1 to  , then we want ( ) Swf S S   . The 

original maximum value of S was 10 and now we want it to be  . So we want 

(10) 10

ln10 ln

ln

ln10

0.43ln

Sw

S

S

S

f

w

w

w









 







 

In contrast, for a different set of F and S data, we might need to compress the data range 

of S. We could compress data range of S by using a logarithmic transform, ( ) lnf S S . This is 

how the data of column D of Table 3 were transformed into column H. Note that all of these 

transforms are nonlinear. In summary, for an equation in the form of two exponential functions 

being multiplied together, the exponents are proportional to the data ranges. 

2.2.3 An algorithm for computing severity values. The following algorithm is used for 

computing values for the severity of consequences [Bahill and Smith, 2009]. 

1. Assign a relative likelihood of occurrence to each potential failure event. 

2. Find the failure event that might have the most severe consequences, call its value Sworst. 

3. For each other failure event, ask, “How many of these failures would be equally painful to 

the Worst?” Call this Ni. This can be rephrased as, “Cumulatively, how many of these 

failures would have an equal impact to the Worst?” This step implies that the severity 

values are cardinal numbers on a linear scale. However, experience has shown that this 

technique is also useful with nonlinear scales. Because this step is subjective, numerical 

values for severity and estimated risk cannot be directly compared from one study to the 

next. 

4. Compute the severity of consequences for each failure event as Si = Sworst / Ni 

5. Remove the low-frequency and high-severity failure events and the high-frequency 

low-severity failure events. 

6. Normalize the severity values so that their range equals the range of the likelihood values. 

7. Compute the estimated risk using a combining function [Bahill and Smith, 2009]. 

8. Prioritize the risks to show which are the most important [Botta and Bahill, 2007]. 

Another technique for step 6 is to restrict the likelihood to values in the range 0 to 1, and 

then for each row, assign a scoring function [Daniels, Werner and Bahill, 2001] for the severity 

of consequences. Scoring functions also produce outputs in the range of 0 to 1. Therefore, the 

range for both likelihood and severity will be between zero and one. On the other hand, if you 

use the probability of occurrence and the dollar value of the loss in a risk analysis, you are 

certain to create confusion. 



 

 

2.2.4 Extreme events. Decision makers should be interested in rare but potentially 

catastrophic events. Over the last decade, we have witnessed a few such events. In April 2010, 

a British Petroleum oil well in the Gulf of Mexico exploded and leaked five million barrels of 

oil. The terrorist attacks on the World Trade Towers September 11, 2001 caused severe 

physical and emotional damage. Hurricane Katrina of August 2005 was the costliest natural 

disaster in the history of the United States, probably because so many properties were built 

below sea level: total property damage was $81 billion. These three events are mentioned 

because they indicate that the probability density function for the severity of consequences is 

not Gaussian. The right tail has far more occurrences than a Gaussian distribution would allow. 

Insurance companies and politicians have a hard time dealing with such rare events. The left 

tail of the probability density function for the severity of consequences is also not Gaussian. 

Microsoft, the Internet, Google and Social Networking are much too successful to fit in a 

Gaussian distribution  

To avoid skewing the statistics with extreme events (as explained in section 3.2), events 

with low-frequency but high-severity (such as category 5 hurricanes, volcanic eruptions, 

terrorist attacks and acts of wars) were removed from our numerical computations and have 

been marked in the risk tables with a “0× ” symbol. These rare but potentially catastrophic 

events would have been in the lower-right corners of Figures 1 and 2. The upper-left corners of 

these figures would have contained high-frequency but low-severity events (such as solar PV 

customers connecting to and disconnecting from the electric power grid, birds and airplanes 

casting shadows on the solar panels, and solar corona mass ejections). 

3. Risk Analysis for Solar Photovoltaic Systems 

There are two categories of risk for incorporating solar photovoltaic (PV) systems into a 

commercial electric power grid: risks related to uncontrollable factors such as weather and 

risks related to software, hardware and human error. Although many papers on risk do not 

consider uncontrollable factors or acts of God, because they cannot be predicted, we deem 

them important given that weather risk is one of the greatest sources of uncertainty for solar 

power production. 

Our project started with a search for risks of using renewable energy resources in an electric 

power grid [Bahill, 2010 and 2012]. Then to help expand and solidify the risk descriptions, we 

interviewed TEP managers and directors, academics and project managers of renewable energy 

projects. The information provided by them was summarized and analyzed to determine the 

possible risks. After identifying the risks, risk frequencies were calculated or estimated based 

on the available information. Finally, the risks were prioritized and discussed with the decision 

makers. 

3.1 Description of Identified Risks 

We will now describe the risks that are associated with the operating performance of the 

system. These data come from TEP managers, databases and documents. Our preliminary risk 

analysis indicated that the greatest risk for an electric power grid with solar PV systems was 

weather causing the solar panels to receive less sunlight than expected. This is a crucial factor 

for a self-sustaining PV system, but it is less important for a large-scale system comprised of 

both renewable (solar) and non-renewable resources. This risk can be mitigated by using 

energy storage systems or increasing backup generating capacity. In consequent iterations, this 

risk was modified in order to encompass output energy variability: large changes in solar 

energy output (±60 MW) that would correspond to a solar energy output variation of ±3 sigma 



 

 

in a 15-minute period. This change in energy output could introduce transients onto the electric 

power grid and could produce load shedding. 

Grid related risks are another risk category. These risks include the grid frequency going 

out of the ±0.5 Hz limit, feeder circuits disconnecting and shorts to ground. The first two risks 

are expected to increase as the penetration of solar PV generation increases, because the solar 

systems may introduce transients or voltages that are out of phase with the grid. The frequency 

of occurrence of these failures was obtained from TEP. 

Hardware risks include failures due to component malfunction or external events such as 

lightning or dust. The frequency of failures of PV system hardware such as data acquisition 

systems, junction boxes, PV modules, and general failures due to lightning strikes was based 

on a report of TEP’s experience with the Springerville Generating Station [Moore et al., 2010]. 

Severity for hardware failures went from simple system restarts to complex maintenance 

procedures [Moore et al., 2010]. The severity values and frequencies were estimated based on 

hardware-specific reliability rates (assuming an expected lifetime of 30 years). 

Accidents and human mistakes are the risks with the highest severities given that they can 

harm people; however, based on TEP’s historical record, the occurrence of such events is 

extremely low and thus their frequencies are almost negligible. Other extreme events such as 

terrorist attacks on the Western Power Grid and volcanic eruptions were also considered; 

however, as can be seen in Table 2, the estimated risks for these extreme events were filled 

with our null symbol, 0× , which means that they were excluded from our numerical 

calculations. This is expected to reduce the skewing of numerical calculations that would result 

by including these rare but potentially catastrophic events [Haimes, 2009].  

This paper contains risk analyses with both PV system-specific risks as well as risks 

associated with Tucson Electric Power’s AC electric power distribution grid. The data for the 

distribution grid risks were given to us by Tom Hansen, vice president of TEP in 2008. They 

were then normalized with the frequency of occurrence and the severity having ranges of about 

six orders of magnitude. Since the range for frequency and severity should be about the same 

[Bahill and Smith, 2009] numerical values were assigned to the severities as follows 

Must frequency and severity have the same range? Like most 

systems engineering questions, the best answer is, “It depends.” If 

your customer does not want you to normalize frequency and 

severity, then don’t do it. 

It is important to note that neither frequency of occurrence nor 

severity of consequences should have units of measure. If they 

had units, then the rank order of the risks would depend on those 

units. In other words, risk is a unit less measure. 

Table 2 summarizes the operating performance risks for solar 

PV systems and TEP’s distribution grid. These risks are related to 

the functionality of the system. Failure events in the performance 

category typically result in system downtime and will affect the 

quality and reliability of system operations.  

Table 2 has six columns describing a Potential Failure Event, the Consequences of that 

failure event, the Frequency of Occurrence (or relative likelihood) of the event in the relevant 

environment, the Severity of Consequences for each failure event, the Estimated Risk and 

perhaps a short Identification Tag. The Frequency of Occurrence was based on historical data 

and expert opinion. Estimated Risk was defined as the product of the Frequency of Occurrence 

and Severity of Consequences.  

 

Table 2: Operating performance risks for incorporating solar PV systems into an 
existing commercial electric power grid. These data are also plotted in figure 2. 

Severity  

Description 

Numerical 

Value 

Extreme 1,000,000 

Very High 100,000 

High 10,000 

Medium 1,000 

Low 100 

Very Low 10 

Minuscule 1 
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Physical or cyber 

terrorist attack on 

the Western 

Power Grid  

Load shedding, brownouts, 

blackouts, transportation gridlocks, 

hardware damage, chaos and 

cessation of commerce 

0 10
6
 0×   

Nearby volcanic 

eruption 

Clouds of ash and smoke cover the 

sky blocking sunlight to solar 

panels and reducing solar PV 

power output 

0 10
5
 0×   

Solar panel output 

drops 60 MW in 

15 minutes due to 

clouds, 

thunderstorms, 

etc.  

Power production plummets 

tripping breakers and leaving 

customers without electric power. 

Voltage on the grid drops and 

frequency of coal-fired generators 

might change: transients are 

harmful to big electric generators.  

94.6 based on 

±3 points for 

data collected 

at 15-minute 

intervals for a 

year 

200 18,920 A 

Feeder circuit 

disconnects from 

the substation  

Feeder circuit voltage becomes out 

of phase with the electric power 

grid.  

330 1* 330 B 

Short to ground on 

the distribution 

grid  

Equipment is damaged, 

particularly transformers and 

capacitor banks.  

24 10 240 C 

Western Power 

Grid fails (due to 

other than terrorist 

activities) 

The western United States would 

be without electric power 
0.03 10

4
 300 D 

Lightning strikes 

the system  

Components are damaged and 

electric generating capacity is 

reduced 

0.39 100 39 E 

Grid voltage 

exceeds ±5% 

limits  

Customer service deteriorates. 

Solar PV systems trip off-line. 
24* 1* 24 G 

Transient local 

outages 

Outages on transmission or 

distribution lines trigger shutdown 

of PV systems.  

24 1 24 H 

Solar panels 

accumulate dust 

or other particles  

Efficiency of solar panels 

decreases and power output drops 
2 10 20 I 

Junction box fails  Loss of generated power output  0.27 50 13 J 

Data acquisition 

system fails  

Research and monitoring data 

cannot be read from the solar farm 
0.14 50 7 K 



 

 

PV modules fail Loss of power production capacity  0.38 10 3.8 L 

Grid frequency 

goes out of its 

±0.5 Hz limits  

Small PV systems and big 

generators trip off-line, perhaps 

overloading transmission lines. 

TEP might be fined.  

0.2 50* 10 M 

Software fails 

Software failures are ubiquitous 

and insidious. They can cause a 

myriad of problems.  

2 50 100 N 

Electric storage 

system fails  

Stored energy is lost. Infrastructure 

might be damaged.  
0.7 20* 1.4 O 

*Values marked with an asterisk will increase as the number of solar PV systems increases. 

Estimates are represented with integers or decimals with only one significant figure: 

calculated values are represented with decimal numbers with two or more significant figures. 

The range of magnitudes for Frequency of Occurrence and Severity of Consequences must 

be the same. In Table 2, the frequency of occurrence covers four orders of magnitude 

 1.5 2.5from 10  to 10
 and the severity of consequences also covers four orders of 

magnitude  0 4from 10  to 10 . Low-frequency high-severity risks (such as terrorist attacks and 

volcanic eruptions) and high-frequency low-severity risks (such as customers connecting to 

and disconnecting from the grid) are not included in these calculations. 
 

Figure 2. A log-log risk chart for the data 
of Table 2. The arrows show that in the 
next few years risk G is expected to 
move down and to the right and risk O is 
expected to move to the right. The 
straight lines are iso-risk contours. 

The most interesting points plotted in 

Figure 2 are (1) risk A, that the “solar panel 

output fluctuates by more than 60 MW in a 

15-minute interval,” is the riskiest, (2) risk 

D, that the “Western Power Grid fails,” is in 

the rare but severe corner and (3) risk B, that 

a “feeder circuit disconnects from its 

substation,” is in the common but trifling 

corner. Therefore, our overall advice is to (1) 

apply risk mitigation to risk A, (2) keep an 

eye on risk D and (3) ameliorate risk B. 

Although Risk B is not high risk, inexpensive mitigation would improve the overall reliability 

of the system. Now, please compare Figures 1 and 2. They agree except that risk F, “failure of 

DC to AC inverters,” has been transferred from Table 2 to a table for risks from the consumers’ 

point of view. 

The most common risk graphic used in industry looks like Figure 1: but the qualitative 

descriptions seem logarithmic. For example in response to the question, “How often will this 

failure occur?” the recommended answers are Almost Never = 2 points, Occasionally = 4 

points, Sometimes = 6 points, Frequently = 8 points and Almost Always = 10 points. 



 

 

3.2 Normalizing Frequency and Severity 

Let us now go back to the principle of normalizing frequency and severity so that they have the 

same range. In Table 3, columns A to G and rows 7 to 16 are the biggest risks from Table 2. 

Now we introduce a new technique for computing severity. The severities in column H were 

assigned using a linear scale of 1 to 10 [DoD, 2006; Bahill and Smith, 2009; Haskins, 2011, 

Fig. 5-10]. This will be called the linear technique. The severities of column H were then 

multiplied by the frequencies of column C to estimate the risk given in column I. These 

estimated risks were used to compute the risk rank orders of column J.  

 

Table 3: The biggest operating performance risks from Table 2, with the addition of 
columns H, I and J. 

Row A B C D E F G H I J 
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4    Log-log technique Linear technique 

5 Terrorist attack  Blackouts, chaos 0.01 610  
410  2  10 0.10 11 

6 Volcanic eruption Ash blocks sunlight 0.01 510  
310  3  9 0.09 12 

7 

Solar energy drops 

60 MW in 15 

minutes  

Power production 

plummets 
94.6 200 18,920 1 A 6 568 2 

8 

Feeder circuit 

disconnects from 

substation  

Voltage gets out of 

phase with grid 
330 1 330 4 B 3 990 1 

9 Short to ground Equipment is damaged 24 10 240 6 C 5 120 3 

10 
Western Power Grid 

fails 

Western United States is 

without electric power 
0.03 410  300 5 D 8 0.2 10 

11 
Lightning strikes 

system  
Equipment is damaged 0.39 100 39 7 E 5 2.0 7 

12 
Grid voltage exceeds 

limits  
Service deteriorates. PV 

systems trip off-line. 
24 1 24 8 G 3 72 4 

13 
Transient local 

outages 
PV systems shutdown 24 1 24 9 H 3 72 5 

14 Dust accumulation Generated power drops 2 10 20 10 I 5 10 6 

15 Junction box fails  Generated power drops 0.27 50 14 11 J 4 1.1 8 

16 
Data acquisition 

system fails  

Data cannot be read 

from the solar farm 
0.14 50 7 12 K 4 0.6 9 

Next, we used Excel to calculate the correlation coefficients (r) between frequency, 

severity and estimated risk using our old log-log technique and this new linear technique. The 

results are shown in Table 4. 



 

 

The fourth row of Table 4 shows that for the linear technique the correlation coefficient, r, 

of estimated risk (column I of Table 3) and frequency (column C of Table 3) is 0.964: this is a 

large value, meaning that frequency is dominating the estimated risk calculations. In contrast, 

estimated risk (column I of Table 3) versus severity (column H of Table 3) has an r of only 

-0.21, which means that severity is having little effect on the estimated risk. This difference in 

influence is caused by the mismatch between the range of the frequency data (four orders of 

magnitude) and the range of the severity data (one order of magnitude). 

 

Table 4: Correlation coefficients between frequency, severity and risk. 

Row Technique Data set 
Range, orders 

of magnitude 

Correlation 

coefficient, r, for 

estimated risk 

(col I or E) 

versus frequency 

(col C) 

Correlation 

coefficient, r, for 

estimated risk 

(col I or E) versus 

severity (col H or 
D) 

3      

4 

linear 

10 failure events; 

columns C, H, I and J; 

rows 7 to 16 

frequency= 4 

severity = 1 (C, I) 0.964 (H, I) -0.21 

5 

11 failure events; 

columns C, H, I and J; 

rows 6 to 16 

frequency= 4.5 

severity = 1 (C, I) 0.965 (H, I) -0.27 

6 

12 failure events; 

columns C, H, I and J; 

rows 5 to 16 

frequency = 4.5 

severity = 1 (C, I) 0.965 (H, I) -0.30 

7      

8 

log-log 

10 failure events; 

columns C to F; rows 7 

to 16 

frequency = 4 

severity = 4 (C, E) 0.17 (D, E) -0.08 

9 

11 failure events; 

columns C to F; rows 6 

to 16 

frequency = 4.5 

severity = 5 (C, E) 0.17 (D, E) -0.06 

10 

12 failure events; 

columns C to F; rows 5 

to 16 

frequency = 4.5 

severity = 6 (C, E) 0.10 (D, E) 0.39 

Next, frequency of occurrence for Terrorist Attacks and Volcanic Eruptions were assigned 

non-zero values and put into rows 5 and 6 of Table 3 in order to change the frequency and 

severity ranges. Column C now has a range of 4.5 orders of magnitude and column H still has a 

range of one. Row 6 shows that the correlation coefficient of the linear technique estimated risk 

(column I) versus frequency (column C) is now 0.965. An r of 0.965 is a large value indicating 

that frequency is totally dominating the calculation of risk. 

Data from the log-log technique in row 8 show that the correlation coefficient of estimated 

risk (column E) versus frequency (column C) is 0.17: this is a small value, meaning that 

frequency is not dominating the estimated risk calculations. Furthermore, estimated risk 

(column E) versus severity (column D) has an r of only -0.08, which means that severity is 

having little effect on the estimated risk. These low correlation values, indicate that the 

estimated risk is a combination of frequency and severity and neither one dominates. We note 

that both frequency and severity have a range of four. 

When frequencies for Terrorist Attacks and Volcanic Eruptions were added in rows 5 and 6 

of Table 3, the range of the frequency data (column C) became 4.5 orders of magnitude and the 

range of the severity data (column D) became six. The correlation coefficient of estimated risk 



 

 

(column E) and frequency (column C) decreased from 0.17 to 0.10. The correlation coefficient 

of estimated risk (column E) and severity (column D) increased from -0.08 to 0.39. The range 

for the severity data has become larger than the range for the frequency data and severity is now 

becoming more important than frequency. 

Excel’s CORREL and PEARSON functions are the same. They return a value for r that 

indicates the goodness of a linear fit between two data sets. But what does r mean if the data 

sets are not linearly related? To answer this question, we fit exponential, linear, logarithmic, 

second-order polynomial and power law trend lines to the data sets. Different functions fit 

different data sets better or worse. For example, Table 4, row 4, column 5 shows 0.964r  . 

The functions CORREL, PEARSON, RSQ and the linear trend line from the scatter chart all 

have the exact same number (to fourteen decimal places). However, the power function trend 

line gave 0.995r  . Differences like these were common. We used all five of the Excel 

functions to fit every combination of data sets that we were considering. Functions other than 

the linear function were not useful: using them did not change the conclusions of this paper. 

Investigating these other functions merely ensured that we were not trying to fit (for example) a 

sinusoid with a linear regression line. 

Finally, the most important risks are different for the two severity techniques. The 

log-log technique (columns A to G) indicates that the most serious risks are (in order of 

importance): (1) Solar energy drops 60 MW in 15 minutes, (2) Terrorist attack, (3) Volcanic 

eruption and (4) Feeder circuit disconnecting from the substation. Whereas, the linear 

technique (columns A to C and H to J) indicates that the most serious risks are (in order of 

importance): (1) Feeder circuit disconnecting from the substation, (2) Solar energy output 

drops 60 MW in 15 minutes, (3) Short to ground and (4) Grid voltage exceeds its ±5% limits. 

To quantify this mismatch we note that the correlation coefficient between the log-log 

estimated risk (column E) and the linear estimated risk (column I) is only 0.3. It seems that it is 

time to discuss these results with the customer. 

3.3. The Biggest Risk 

Weather is the most uncontrollable factor for a solar PV system. When clouds appear between 

the solar panels and the sun, there is an immediate and significant drop in power output. What 

would happen if there were a total blockage of the sun (due to total cloud coverage) when the 

system load peaked? There are two important factors to consider: first, in the summer, the 

maximum electric demand typically occurs in the late afternoon and second, during these late 

afternoon hours, electric generating capacity of the solar PV panels has fallen.  

 

Figure 3. Solar PV 
generating capacity and 
retail electric power 
demand projected for a 
typical summer day in 
Tucson in 2025. The 
solar PV generating 
capacity peaks at 600 
MW around noon and 
drops to 25% of its peak 
capacity by 5:30 PM (the 
dashed vertical line).  



 

 

In order to meet the Arizona Corporation Commission, Renewable Energy Standard & 

Tariff [2006], TEP predicts that by 2025 its system will have about 600 MW of utility-scale 

renewable-generating capacity. Assuming that this is all fixed solar PV systems, this would 

produce 600 MW at noon and 150 MW at 5 PM. 

 

Table 5: TEP energy output projections for 2025. Will TEP be able to meet its load 
obligations under the worst conditions? 

Condition 

Peak retail 

load 

obligation, 

MW 

Planning 

reserve, 

MW 

Necessary 

condition 

Conventional 

generating 

capacity, 

MW 

Solar 

generating 

capacity, 

MW 

Equation 

satisfied? 

5 PM, normal 2250 300 ≤ 2400 150 Yes 
5 PM, total cloud 
coverage 2250 0 ≤ 2400 0 Yes 

Noon, normal 2000 300 ≤ 2400 600 Yes 
Noon, total cloud 
coverage 2000 0 ≤ 2400 0 Yes 

Table 5 shows that TEP can meet its load obligations under the worst weather conditions 

(total cloud coverage) during peak summer loads (5 PM). It shows that the peak load in the 

summer at 5 PM plus the planning reserve must be less than or equal to the conventional 

generating capacity plus the solar generating capacity. The other rows show that the load 

obligations can be met at other significant conditions. 

3.4. Quality and Uncertainty of the Data 

Data collection for this paper started with electric distribution grid risks given to us by Tom 

Hansen, vice president of TEP in 2008. These data were supplemented with data from the 

Springerville plant that TEP has been operating since 2000 [Moore, Post, Hansen and Mysak, 

2010]. These databases were further expanded by Excel files given to us by Mike Sheenan 

[2009]. Many of these were annual databases with datapoints every 15 minutes. This was the 

basis of the frequency of occurrence data for the operating performance risks of Table 2. These 

data are reliable, with the exception of terrorist attacks on the Western Power Grid and volcanic 

eruptions, which are of low quality and high uncertainty. 

Another facet of our data collection concerned renewable-energy electric-generating 

systems in general. The professor, three dozen students and eight senior systems engineering 

advisors scoured the Internet in the fall of 2009 searching for risks that might be associated 

with renewable-energy electric-generating methodologies [Bahill, 2010 and 2012]. This gave 

us another risk database. This one was less concerned with the electric distribution grid and 

more concerned with individual hardware and software methodologies. This database was less 

reliable than the other. 

Once we created a risk database, the resulting risks were discussed with managers, 

domain experts, systems experts, academics, and other people that could help verify, quantify, 

add or eliminate risks from the database. Next, we used sensitivity analyses and scenarios of 

potential future failure events to facilitate the completeness of the database. Finally, the risks 

were prioritized and discussed with the decision makers. The risk databases summarized in this 

paper required multiple iterations often in monthly meetings. As time went by and as risk 

management strategies were implemented, risk severities and frequencies were revised so that 

the database would remain a true representation of the existing system.  

In summary, the frequencies of occurrence that were derived from TEP databases are of 

high quality and low uncertainty. Frequencies derived by Internet searches were only included 



 

 

if two or more independent sources were in agreement. Even then it only yielded frequencies of 

moderate quality and uncertainty. Finally, the severities of occurrence were based on human 

judgment. Each person has his own values and biases, so these data must be considered of 

lower quality and higher uncertainty. 

3.5. Sensitivity Analyses  

You should perform a sensitivity analysis anytime you  create a model, write a set of 

requirements, design a system, make a decision, do a tradeoff study, originate a risk analysis, or 

want to discover the cost drivers [Hsu, Bahill and Stark, 1976; Karnavas, Sanchez and Bahill, 

1993; Smith et al. 2008]. A sensitivity analysis of risk analyses is simple and it can be done in 
general terms. In this risk analysis case study, our problem statement is: In a risk analysis, what 
parameters can change the rank order of the most important risks? 

To be general, we will use the definition of Eq. (2) where the frequency and severity have 

weights of importance as exponents. Risk (R) equals Frequency of occurrence (F) raised to the 

power of weight of importance of frequency (
Fw ) times Severity of consequences (S) raised to 

the power of weight of importance of severity (
Sw ), like this, SF wwR F S  . In economics, 

this functional form is called the Cobb-Douglas [1928] production function. Our first step is to 

derive the partial derivatives. 

1S SF Fw ww w F F
F

R w w
S w F S F R

F F F


  

  

1S SF Fw ww w S S
S

R w w
w S F F S R

S S S


  

  

ln lnS Fw w

F

R
S F F R F

w


 


 

ln lnSF ww

S

R
F S S R S

w


 


 

Now the partial derivatives will be multiplied by the normal values of the parameters to 

get the semirelative sensitivity functions [Smith et al. 2008]. In the following equations, the 

NOP  symbol means evaluated at the Normal Operating Point. 
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Note that  is the semirelative sensitivity function of  with respect to 

S

R

w SS R w , whereas 

S (without the tilde) is the severity of the consequences. Let , , ,  and 1F SF S R w w  . Which 



 

 

data set (F or S) is most important? 
0 0

If   then R R

F S F Sw w S S  . This is simply a statement that 

the data set with the bigger weight (bigger data range) is more important. 

Next, which individual failure events are the most important? If the weights of importance 

are the same, then the failure events with the largest sensitivity values are  the greatest risks, 

because the sensitivities are determined by the values for 0R , as shown in the above equations. 

This means that we should spend extra time and effort estimating the frequency and severity of 

the highest ranked risks, which seems eminently sensible [Smith et al., 2008]. Of the failure 

events in Table 2 for which data could be collected, the most important are “Solar energy 

output drops 60 MW in 15 minutes” and “Feeder circuit disconnects from substation.” TEP 

already has good data for the former (a database with a data set every 15 minutes for a year). 

Therefore, they should spend more time and resources getting better data for the Feeder circuit 

failure event. 

3.6. Unintended Consequences 

New systems, strategies, laws or controls often have negative or positive unintended 

consequences. Therefore, it is important that, early in the system lifecycle, the designers try to 

predict what these unintended consequences might be. The systems engineer is responsible for 

the big picture of system development. Hence, the system engineer must search for unintended 

consequences of the system under design [Bahill, 2012]. 

Connecting a solar PV system to an electric power grid could cause problems for the grid. 

For example, presume that an illumination-controlled building is in the state of Selling AC 

Electricity [Bahill, 2010], when clouds suddenly cover the sun. The voltage generated by the 

solar panels will drop as will the illumination in the building. Sensors will sense this drop in 

illumination and will command the lights to produce more illuminance. The lights will draw 

more power from the source. This will produce a bigger voltage drop across the source internal 

impedance, which will further drop the operating voltage. This is a positive feedback loop that 

could cause the electric power grid to become unstable.  

A second problem with clouds blocking the sun is that the PV system would soon deplete 

its small local energy store and would switch to the Buying AC Electricity state [Bahill, 2010]. 

This would increase the operating voltage. This is a negative feedback loop, but it contains a 

significant time delay. Time delays in feedback loops make systems susceptible to instabilities.  

A third problem with clouds blocking the sun is that if the electric power grid voltage drops 

below its ± 5% limits, then most of the local solar PV systems will isolate themselves from the 

grid. This will further decrease the grid voltage. This is a positive feedback loop. Positive 

feedback loops can cause system instability. 

Therefore, to prevent possible system instability, utility companies should create 

one-second resolution simulations of the interactions between clouds, the electric power grid 

and customer solar PV systems [Bahill, 2010]. TEP already has ten-second resolution solar 

generation data and one-minute resolution customer load data. So it seems that they have the 

technology to collect one-second resolution data for these stability simulations. 

Deploying solar PV systems has another interesting possible unintended consequence. 

Solar panels do two things: they absorb solar energy and transform it into electricity, and they 

also reflect solar energy back into the atmosphere. Both of these actions reduce the solar energy 

that hits the ground and is absorbed by the Earth. Therefore, solar panels have the unintended 

consequence of reducing the amount of solar energy absorbed by the Earth and therefore 

contribute to global cooling.  

Solar PV systems are in positive feedback control loops and negative feedback control 

loops with large time delays. Both of these could cause instability on the electric power grid. 



 

 

Bahill [2012] has listed other unintended consequences of installing solar panels into a 

commercial electric power grid. 

Summary 

This paper suggests two important points. First, the frequency and severity data ranges must be 

equal in order to give equal weight to frequency and severity data sets [Bahill and Smith, 

2009]. Second, beware of problems produced by extreme events. To avoid skewing the 

statistics, low-frequency but high-severity events (such as volcanic eruptions and terrorist 

attacks) and high-frequency but low-severity events (such as solar PV customers connecting to 

the electric power grid) should be removed from the numerical computations. 

The risk of clouds blocking the sun and introducing power production output variability is 

the biggest risk in this analysis. Additionally, as solar PV becomes a larger component of an 

electric company’s energy portfolio, it is important to revise the back-up capacity policies and 

consider alternative storage methods in order to reduce the risk of reduced power production 

output during periods with high demand.  

After conducting a what-if analysis, even under the worst-case scenario of total sunlight 

blockage and demand peaking, with appropriate planning, it is possible to develop strategies 

that will prevent brownouts and power shortages. Based on how much solar PV energy TEP 

has, it may be important to develop and implement state-of-the-art, one-minute-resolution 

weather forecasting, which combined with their current demand forecasting methods, will help 

them identify risky scenarios and act appropriately. Utility companies should also create 

one-second-resolution simulations of the interactions between customer PV systems and the 

electric power grid in order to investigate potential instabilities.  

In a risk assessment, the risk analyst could spend more time and money getting more and 

better data, but that would not make the risk recommendations more precise. Haimes and 

Chittester [2005] drew an analogy to the Heisenberg Uncertainty Principle, which states that a 

person cannot simultaneously measure the position and the velocity of a particle with high 

precision. Then they a expanded this analogy with, “recall Einstein's statement: ‘So far as the 

theorems of mathematics are about reality, they are not certain; so far as they are certain, they 

are not about reality.’ Adapting Einstein's metaphor to risk assessment and management 

translates into: ‘To the extent risk assessment is precise, it is not real; to the extent risk 

assessment is real, it is not precise.’” 
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