4 Discovering System Requirements

A. TERRY BAHILL and FRANK F. DEAN

4.1 INTRODUCTION

A requirement is a statement that identifies a capability or function that is needed by a
system in order to satisfy its customer’s needs. A functional requirement defines what,
how well, and under what conditions one or more inputs must be converted into one
or more outputs at the boundary in question in order to satisfy the customer’s needs.
A customer’s need might be to solve a problem, achieve an objective, or satisfy a
contract, standard, or specification.

No two systems have identical requirements. However, there is an identifiable pro-
cess for logically discovering the system requirements throughout the system life cycle
regardless of system purpose, size, or complexity (Grady, 1993). The purpose of this
chapter is to reveal this process.

This chapter explains only a part of the systems requirements process. This chapter
does not discuss (1) commercial requirements management tools such as DOORS,
RTM, Requisite Pro, Vital-Link, Slate, or Excel; (2) tools for modeling systems such
as UML, SysML, and functional decomposition; (3) methods for flowing down require-
ments from the system to subsystems, from subsystems to components, and so on; or
(4) scripts for producing specific reports such as a Requirements Allocation Sheet
(RAS) or a Requirements Verification and Traceability Matrix (RVTM). The terminol-
ogy of this chapter is a generalization of common usage at many companies. But it
does not match any particular company, branch of government, or tool. For example,
we use the term requirements broadly. Some people use the term only for requirements
that are contained in a signed-off system specification.

A set of requirements should use a common language with a restricted vocabulary.
Each project should create a special dictionary on involved computers with a restricted
set of words for use by the spelling checker. Project-specific terms should be defined
in a glossary. Acronyms should be expanded and put in a list.

4.2 STATING THE PROBLEM

Before we can effectively discover and develop requirements, we need a well-defined
and well-stated problem. Stating the problem properly is one of the systems engineer’s

Handbook of Systems Engineering and Management, Second Edition, Edited by Andrew P. Sage and William B. Rouse
Copyright © 2009 John Wiley & Sons, Inc.

205

206 DISCOVERING SYSTEM REQUIREMENTS

most important tasks. Problem stating is more important than problem solving, because
an elegant solution to the wrong problem is less than worthless. The problem must be
stated in a clear, unambiguous manner. The problem statement explains the customer’s
needs, states the goals of the project, defines the business needs, prescribes the system’s
capabilities, delineates the scope of the system, expresses the concept of operations,
describes the stakeholders, lists the deliverables, and presents the key decisions that
must be made.

State the problem in terms of needed capabilities and not in terms of preconceived
solutions. A flood washed out a bridge across the Santa Cruz River near Tucson,
Arizona, and made it difficult for the Indians at Mission San Xavier del Bac to get to
the Bureau of Indian Affairs Health Center. A common way of stating this problem
was: “We must rebuild the bridge across the Santa Cruz River.” However, a better way
would be to say: “The Indians at San Xavier Mission need a convenient way to get to
their health center.”

For examples of stating the problem without reference to specific implementations,
read some U.S. patents. A patent does not protect the system; it protects the idea behind
the system. Here is an excerpt from the patent on the Bat Chooser™, a system that
computes the Ideal Bat Weight™ for individual baseball and softball batters (Bahill
and Karnavas, 1992).

The invention relates to an instrument for measuring a player’s bat speed. Over a number of
swings, the bat speed data can be used to determine the maximum ball speed after contact.
The optimal bat weight is determined. Baseball and softball are examples in which the use
of the instrument would be appropriate. The invention also relates to a process of using the
instrument to obtain data on bat speed, plotting the bat speed data, fitting a best fit curve to
the data, using the best fit curve of physiological data to obtain the ball speed after contact,
plotting the ball speed, determining the maximum-ball-speed bat weight and the optimal bat
weight. It is the coupling of the physiological equations to the conservation of momentum
equations of Physics which is unique.

It is good engineering practice to state the problem in terms of the capabilities
that the system must have or the top-level functions that the system must perform.
However, it might be better to state the problem in terms of the deficiency that must
be ameliorated. This stimulates consideration of more alternative designs.

Example 1

Top-Level Function. The system shall hold together 2 to 20 pieces of 8% by 11-inch,
20 pound paper.
Alternatives. Staple, paper clip, fold the corner, put the pages in a folder.

Example 2

The Deficiency. My reports are typically composed of 2 to 20 pieces of 8% by
11-inch, 20 pound paper. The pages get out of order and become mixed up with
pages of other reports.

Alternatives. Staple, paper clip, fold the corner, put the pages in folders, number
the pages, put them in envelopes, put them in three-ring binders, throw away the
reports, convert them to electronic form, have them bound as books, put them on

STATING THE PROBLEM 207

audio tapes, distribute them electronically, put them on floppy disks, put them
on microfiche, transform the written reports into videotapes.

Do not believe the first thing your customer says. Verify the problem statement
with the customer and expect to iterate this procedure several times. For an excellent
(and enjoyable) reference on stating the problem, see Gause and Weinberg (1990), an
excerpt of which is given in Section 4.4.

4.2.1 Define the Stakeholders

The stakeholders include all the people, organizations, and institutions that are a part
of the system environment because the system provides some benefit to them and they
have an interest in the system. This includes end users, operators, bill payers, owners,
regulatory agencies, victims, sponsors, maintainers, architects, managers, customers,
surrogate customers, testers, quality assurance, risk management, purchasing, and the
environment.

Let us now illustrate some of these stakeholder roles for a commercial airliner,
such as the Boeing 787. The users are the passengers who fly on the airplane. The
operators are the crew who fly the plane and the mechanics who maintain it. The bill
payers are the airline companies, such as United, Southwest Airlines, and so on. The
owners are the stockholders of these companies. The Federal Aviation Administration
(FAA) writes the regulations and certifies the airplane. Among others, people who live
near the airport are victims of noise and air pollution. If the plane were tremendously
successful, Airbus (the manufacturer of a competing airplane) would also be a victim.
The sponsor, in this example, would be the corporate headquarters of Boeing.

However, because systems engineering delivers both a product and a process for
producing it, we must also consider the stakeholders of the process. The users and
operators of the process would be the employees in the manufacturing plant. The
bill payer would be Boeing. The owner would be the stockholders of Boeing. The
regulators would include the Occupational Safety and Health Administration (OSHA).
Victims would be physically injured workers and, according to Deming, workers who
have little control of the output, but who are reviewed for performance (Deming, 1982;
Latzko and Saunders, 1995).

4.2.2 Identify the Audience

Before writing a document, you should identify the audience. For a requirements doc-
ument, the audience is the customer and the system developer including the designers,
producers, and testers.

The customer and the developer have different backgrounds and needs. Therefore,
Wymore (1993) suggests two different documents for these two different groups.
The Customer Requirements Document is a detailed description of the problem in
plain language. It is intended for management, the customer, and engineering. The
Derived Requirements Document is a succinct mathematical description or model of
the requirements as described in the Customer Requirements Document. Its audience
is engineering. Sometimes the derived requirements are referred to as technical, or
design or product, requirements. Each derived requirement must be traceable to a cus-
tomer requirement or a document, such as a vision/mission statement or a concept of
operations.

208 DISCOVERING SYSTEM REQUIREMENTS

Stakeholder needs, expectations, constraints, and interfaces are transformed into
customer requirements. Customer requirements are nontechnical and use the customer’s
vocabulary. Derived requirements are the expression of these requirements in technical
terms that are used for design decisions. An example of this translation is given in the
first QFD chart, which maps the customer desires (whats) into technical parameters
(hows) (Bahill and Chapman, 1993).

4.2.3 Avoid Using the Word Optimal

The word optimal (or optimize) should not appear in the problem statement, because
there is no single optimal solution for a complex systems problem. Most system designs
have many performance and cost criteria. Alternative designs satisfy these criteria to
varying degrees. Moving from one alternative to another often improves satisfaction
of one criterion and worsens satisfaction of another; that is, there will be trade-offs.
None of the feasible alternatives is likely to optimize all the criteria. Therefore, we
must settle for less than optimality.

It might be possible to optimize some subsystems, but when they are intercon-
nected, the overall system may not be optimal. The best possible system will not be
that made up of optimal subsystems. An All Star team may have optimal people at
all positions, but is it likely that such an All Star team could beat the World Champi-
ons? For example, in football a Pro Bowl team is not likely to beat the Super Bowl
champions.

If the requirements demanded an optimal system, data could not be provided to
prove that any resulting system was indeed optimal. A substantial amount of tal-
ent, money, and time could be wasted trying to prove or demonstrate this. Instead,
these resources should be used to design a better system. In general, it can be proved
that a system is at a local optimum, but it cannot be proved that it is at a global
optimum.

Systems engineers design satisfying systems rather than optimized systems (Simon,
1957). To promote reuse they design generalized systems rather than specialized sys-
tems. No complex system is likely to be optimal for all the people, all the time.

Humans are not optimal animals. Shrews are smaller. Elephants are bigger. Cheetahs
can run faster. Porpoises can swim faster. Dolphins have bigger brains. Bats have wider
bandwidth auditory systems. Deer have more sensitive olfaction systems. Pronghorn
antelope have sharper vision. For color vision, raptors have four types of cones, rather
than a human’s three. Humans have not used evolution to optimize these systems.
Humans have remained generalists. The frog’s visual system has evolved much farther
than that of humans: frogs have cells in the superior colliculus that are specialized to
detect moving flies. Leaf cutting ants had organized agricultural societies millions of
years before humans. Although humans are not optimal in any sense, they seem to rule
the world.

If it is required that optimization techniques be used, then they should be applied
only to subsystems and only late in the design process. However, total system perfor-
mance must be analyzed to decide if the cost of optimizing a subsystem is worthwhile.
Furthermore, total system performance should be analyzed over the whole range of
operating environments and trade-off functions, because what is optimal in one envi-
ronment with one trade-off function will probably not be optimal with others.

Because of the rapid rate at which technology is advancing, flexibility is more impor-
tant than optimality. A company could buy a device, spend person-years optimizing its

Ql

WHAT ARE REQUIREMENTS? 209

inclusion into the company’s system, and then discover that a new device is available
that performs better than the optimized system and costs less. Besides optimal, other
deprecated words include minimize, maximize, and simultaneous.

4.3 WHAT ARE REQUIREMENTS?

A requirement is a statement that identifies a capability or function needed by a system
in order to satisfy a customer need. A functional requirement defines what, how well,
and under what conditions one or more inputs must be converted into one or more
outputs at the boundary in question in order to satisfy the customer’s needs. The
Capability Maturity Model Integration (CMMI, 2006) says that a requirement is (1) a
condition or capability needed by a user to solve a problem or achieve an objective or
(2) a condition or capability that must be possessed by a product to satisfy a contract,
standard, or specification. Requirements should state what the system is to do, but they
should not specify how the system is to do it. Section 4.3.1 presents an example of a
requirement.

4.3.1 Example of a Requirement (Sommerville, 1989)

Graphic Editor Facility. To assist in positioning items on a diagram, the user may
turn on a grid in either centimeters or inches, via an option on a control panel.
Initially the grid is off. The grid may be turned on or off at any time during an
editing session and can be toggled between inches and centimeters at any time.
The grid option will also be provided on the reduce-to-fit view, but the number
of grid lines shown will be reduced to avoid filling the diagram with grid lines.

Good Points About This Requirement. It provides rationale for the items: it explains
why there should be a grid. It explains why the number of grid lines should be
reduced for the reduce-to-fit view. It provides initialization information: initially
the grid is off.

Bad Points. The first sentence has more than one component: (1) it states that the
system should provide a grid, (2) it describes the grid units (centimeters and
inches), and (3) it tells how the user will activate the grid. This requirement
provides initialization information for some but not all similar items: it specifies
that initially the grid is off, but it does not specify the units when it is turned on.
Section 4.3.2 shows how this requirement might be improved.

4.3.2 Example of an Improved Requirement (Sommerville, 1989)

The Grid Facility

1. The graphic editor grid facility shall produce a pattern of horizontal and vertical
lines forming squares of uniform size as a background to the editor window.
The grid shall be passive rather than active. This means that alignment is the
responsibility of the user and the system shall not automatically align items with
grid lines.

Rationale. A grid helps the user to create a neat diagram with well-spaced entries.
Although an active grid might be useful, it is best to let the user decide where
the items should be positioned.

Q2

210 DISCOVERING SYSTEM REQUIREMENTS

2. When used in the “reduce-to-fit” mode, the logical grid line spacing shall be
increased

Rationale. If the logical grid line spacing were not increased, the background
would become cluttered with grid lines.

Specification. Eclipse/Workstation/Defs:Section 2.6.

This requirement definition refers to the requirement specification, which provides
details such as units of centimeters and inches and the initialization preferences.

Simple Examples of Requirements on Requirements

Each requirement shall describe only one function.
Requirements shall be unambiguous.
Requirements shall be verifiable.

Requirements shall be prioritized.

The set of requirements shall be complete.

The set of requirements shall be consistent.

44 QUALITIES OF A GOOD REQUIREMENT

What distinguishes a good requirement form a bad one? The IEEE says that “require-
ments must be unambiguous, complete, correct, traceable, modifiable, understandable,
verifiable, and ranked for importance and stability.” Martin Fowler and Michael Fagan
both say that if you design your tests when you write your code, then you will have
fewer defects. Therefore, each requirement should have a description of the verifica-
tion procedure. These qualities and a few dozen others are presented in this section.
As stated in the introduction, statements about requirements cannot be dogmatic. Each
statement has been rightfully violated many times. Many other people have also writ-
ten about the qualities that make a requirement good (Hooks and Farry, 2001; Young,
2001, 20006).

1. Describes What, Not How. There are many characteristics of a good require-
ment. First and foremost, a good requirement defines what a system must do, but
does not specify how to do it. A statement of a requirement should not be a precon-
ceived solution to the problem that is to be solved. To avoid this mistake, ask why the
requirement is needed, then derive the real requirements. For example, it would be a
mistake to require a relational database for the requirements (Hooks and Farry, 2001).
The following requirements state what is needed, not how to accomplish it: “The sys-
tem shall provide the ability to store requirements”. “The system shall provide the
ability to sort requirements”. “The system shall provide the ability to add attributes
to requirements”. It should be noted that because QFD is often used iteratively to
define requirements, the hows in one QFD chart become the whats in the next, pos-
sibly making the above statements confusing. This property could also be confusing
because we say what a system is supposed to do, and then the designers decide how
it should do it. Then this how becomes a what at the next level down, as shown in
Figure 4.1.

QUALITIES OF A GOOD REQUIREMENT 211
One Man's Ceiling is Another Man's Floor

Stakeholder needs ~———3p What

/ How

System features » What

/ How

Requirements » What
/ How

Design specifications ——»p What

/ How

Test procedures » What

How

Figure 4.1 The relationship between whats and hows at different levels. (Copyright © 2004,
A. T. Bahill, from http://www/sie.arizona.edu/sysengt/slides/. Used with permission.)

Requirement writers often fall into the implementation trap, when they forget that
they are writing requirements and begin to think about how to build the system.
Requirement statements should not be made confusing by descriptions of design or
other implementation-specific information. Sometimes, the implementation information
created by requirement writers is of value and should be preserved, but not as require-
ments. Nonrequirement information should be provided as working papers routed to
the design team.

Frequently, requirement writers levy requirements on the function rather than on
the system. For example, “The Sort function shall....” This practice permits a very
convenient sorting of requirements by function. This is all right. However, sometimes
requirement writers mistakenly specify exchanges of information between functions
as requirements. For example, “The Sort function shall notify the Store function....”
Such statements are not requirements, since they do not depend on external stimuli
and generate no results that can be measured at the system boundary. Such language
is appropriate for design documents—not specifications.

2. Atomic (or Unitary or Single-Minded). A requirement should be “atomic,” mean-
ing it is not easily broken into smaller requirements. There should be one concept per
requirement. Complex requirements need to be decomposed into individual require-
ments. Requirements should be decomposed to the point where each statement defines
stimuli and results associated with a single function (one or more stimuli cause a
single result) for the system or component, considered as a black box. If this test can-
not be satisfied, because the requirement addresses more than one function, then the
requirement needs to be decomposed.

3. Allocation. Each requirement should be allocated to a single entity: except for
nonallocated requirements (such as quality of workmanship and electrostatic discharge
protection) that are spread across the whole project, like peanut butter. It is acceptable
to assign two or more requirements to one physical component. However, it would
most likely be a mistake to assign one requirement to two physical components (Bahill
and Botta, 2008).

212 DISCOVERING SYSTEM REQUIREMENTS

4. Unique. A requirement should have a unique label, a unique name, and unique
contents. Avoid repeating requirements. However, some systems engineers say that
the designers do not know what is in the requirements specification. Therefore, they
deliberately repeat critical safety requirements hoping that this will increase the chances
that the designers will notice them.

5. Documented and Accessible. A requirement must be documented (text,
equations, images, databases, etc.) and the documentation must be accessible. In
situations where confidentiality is important, each requirement should clearly indicate
classification status. Only individuals with the appropriate clearance and the need to
know should have access to classified requirements.

6. Identifies Its Owner. A good requirement identifies its owner. The requirement’s
owner must approve of any change in the requirement. This owner could be an individ-
ual or a team. The owner has certain responsibilities such as monitoring the associated
technical performance measures (TPMs) or risk activities. If the owner is part of the
system development team, he/she should know and communicate with the customer’s
representative who is responsible or most knowledgeable about the requirement or the
customer’s representative who generated the high-level goal or capability that led to
this customer requirement. The owner is responsible for helping to define and track the
trade-offs of the requirement with other requirements and for monitoring the trade-off
studies that involve the requirement. The owner is also responsible for ensuring that
the used requirements management tools properly interpret and track the owner’s
requirements.

7. Identifies Its Target. A good requirement identifies the target of the requirement,
that is, for whom it is a requirement (e.g., the system, the process, the company, the
customer). The requirement writer sometimes constructs a requirement levied on the
user of the system and not on the system itself: for example, if the requirements analyst
wrote “The user shall input a start time for message ingest,” then someone would have
to rewrite this as “The system shall enable the user to designate a start time for message
ingest.”

8. Approved. After a requirement is written, revised, reviewed, or rewritten, it must
be approved by its owner. Furthermore, each top-level requirement must be approved
by the customer.

9. Traceable. A good requirement is traceable: it should be possible to trace each
requirement back to its source. See Figure 4.1. A requirement should identify related
requirements (i.e., parents, children, siblings) and requirements that would be impacted
by changes to it. A requirements document should have a tree (or graph) structure and
this structure should be evident, often in the numbering scheme.

10. Necessary. Each requirement should be necessary. Systems engineers should
ask: “Is this requirement really necessary?” “Can the system meet the customer’s real
needs without it?” If yes, then the requirement is not necessary. Avoid overspecify-
ing the system, writing pages and pages that probably no one will ever read. There
are two common types of overspecification: gold plating and specifying unnecessary
things. For example, requiring that the outside of a CPU box be gold-plated is not
a good requirement, because something far less expensive would probably be just as
effective. Also, requiring that the inside of the CPU box be painted pink is probably an
unnecessary request. Overspecification (of both types) is how $700 toilet seat covers

QUALITIES OF A GOOD REQUIREMENT 213

and $25,000 coffeepots were created (Hooks, 1994). Each requirement should include
a statement of its rationale. This might help rule out unnecessary requirements.

Early in the space program, NASA contracted for a pen to be used by astronauts in
space. Each pen had to write upside down, under water, over grease, and at temperatures
of —50 °F to +400 °F. The solution had a sealed cartridge with a sliding float separating
the ink from pressurized nitrogen. It cost them thousands of dollars. (Today you can
buy the Fisher Space Pen for $30.) The Russian solution? Use a pencil.

11. Complete. Each requirement must be complete. All conditions under which the
requirement applies should be stated. It is all right to have a To Be Determined (TBD)
in a requirement. But each TBD should have a scheduled resolution date and should
be tracked in the risk management plan. It is all right to have To Be Reviewed (TBR)
in a requirement. These preliminary values are proposed with the caveat that they be
reexamined at a specific review.

Each individual requirement must be complete and the requirements set must also
be complete. Many times, due to the structure of the requirements set, your computer
can identify incompleteness (Davis and Buchanan, 1984). Putting your requirements
into a Zachman framework will also help identify incompleteness (Bahill et al., 2006).

12. Is Not Written Negatively. The requirement, “Do not use wire with Kapton insula-
tion,” would be very difficult to verify for commercial off-the-shelf (COTS) equipment.

13. Unambiguous. Can the requirement be interpreted in more than one way? If
so, then the requirement should be clarified or removed. Avoid the use of synonyms
(e.g., “The software requires 8 Mbytes of RAM but 12 Mbytes of memory are rec-
ommended”) and homonyms (e.g., “Summaries of disk X-rays should be stored on a
disk.” “Time flies like an arrow and fruit flies like a banana”).

14. Is Not Always Written. It must be noted that all systems will undoubtedly have
many ‘“‘commonsense” requirements that will not be written. This is acceptable as long
as the requirements really are common sense. An exhaustive list of requirements would
take years upon years and use reams of paper, and even then you would probably never
finish.

15. Verifiable. Quantitative values must be given in requirements. A requirement
states a necessary attribute of a system to be designed. The designer cannot design the
system if a magnitude is not given for each attribute. Without quantification, system
failure could occur because (1) the system exceeded the minimum necessary cost due
to overdesign, or (2) it failed to account for a needed capability. Quantitative values
for attributes are also necessary in order to test the product to verify that it satisfies its
requirements.

Each requirement must be verifiable by test, demonstration, inspection, logical argu-
ment, analysis, modeling, or simulation. Qualitative words like low and high should
be (at least roughly) defined. What is low cost to a big corporation and what is low
cost to a small company may be very different. Only requirements that are clear and
concise will easily be testable. Requirements with ambiguous qualifiers will proba-
bly have to be refined before testing will be possible. Furthermore, the value given
should be fully described as, for example, an expected value, a median, a minimum, a
maximum, or the like. A requirement such as “Reliability shall be at least 0.999” is a
good requirement because it is testable, quantified, and the value is fully described as a
minimum. Also, the requirement “The car’s gas mileage should be about 30 miles per
gallon” is a good requirement as it establishes a performance measure and an expected

214 DISCOVERING SYSTEM REQUIREMENTS

value. Moody et al. (1997) present a few dozen metrics that can be used to evaluate
performance requirements.

The verification method and level at which the requirement can be verified should
be determined explicitly as part of the development for each of the requirements. The
verification level is the location in the system where the requirement is met (e.g., the
“system level,” the “segment level,” and the “subsystem level”).

Note that often the customer will state a requirement that is not quantified: for
example, “The system should be aesthetically pleasing.” It is then the engineer’s task
to define a requirement that is quantified, such as “The test for aesthetics will involve
polling two hundred potential users; at least 70% shall find the system aesthetically
pleasing”.

It is also important to make the requirements easily testable. NASA once issued a
request for proposals for a radio antenna that could withstand earthquakes and high
winds. It was stated that the antenna shall not deflect by more than 0.5 degree in spite
of a 0.5G force, 100 knot steady winds, or gusts of up to 150 knots. They expected
bids around $15 million. But all of their bids were around $30 million. NASA asked
the contractors why the bids were so high, and the contractors said testing the system
was going to be very expensive. NASA revised the requirements to “When ‘hit with a
hammer,” the antenna shall have a resonant frequency less than 0.75 Hz”. Then they
got bids between $12 and $15 million (Eb Rechtin, personal communication, 1996).

16. States Its Units of Measurement. “People sometimes make errors,” said
Dr. Weiler of NASA. “The problem here was not the error, it was the failure of
NASA’s systems engineering.... That’s why we lost the [Mars Climate Orbiter]
spacecraft.” One team used English units (e.g., feet and pounds) while the other used
SI units (meters and kilograms) (NASA, 2000).

17. Identifies Applicable States. Some requirements only apply when the system is in
certain states or modes. If the requirement is only to be met sometimes, the requirement
statement should reflect when. There may be two requirements that are not intended
to be satisfied simultaneously, but they could be at great expense.

For example, “The vehicle shall (1) be able to tow a 2000-pound cargo trailer at
highway speed (65 mph); (2) accelerate from O to 60 mph in less than 9.5 seconds.”

It would be possible but expensive to build a car that satisfied both requirements
simultaneously. Similarly, most radios can play AM or FM stations, but not both
simultaneously.

For some systems and requirements it is necessary to specify states and for others
it is not. Botta et al. (2006) explain when observable states are necessary and when
they are not.

Are Your Lights On? However, as with everything, you can take identification of
states too far, as illustrated by the following, which is probably a true story. We first
saw it in Gause and Weinberg (1990).

Recently, the highway department tested a new safety proposal. The department
asked motorists to turn on their headlights as they drove through a tunnel. However,
shortly after exiting the tunnel the motorists encountered a scenic-view overlook. Many
of them pulled off the road to look at the reflections of wildflowers in pristine mountain
streams and snow-covered mountain peaks 50 miles away. When the motorists returned
to their cars, they found that their car batteries were dead, because they had left their
headlights on. So the highway department decided to erect signs to get the drivers to
turn off their headlights.

QUALITIES OF A GOOD REQUIREMENT 215

First they tried “Turn your lights off.” But someone said that not everyone would
heed the original request to turn their headlights on and, for these drivers, it would be
impossible to turn their headlights off.

So they tried “If your headlights are on, then turn them off.” But someone objected
saying that would be inappropriate if it were nighttime.

So they tried “If it is daytime and your headlights are on, then turn them off.” But
someone objected saying that would be inappropriate if it were overcast and visibility
was greatly reduced.

So they tried “If your headlights are on and they are not required for visibility, then
turn them off.” But someone objected saying that many new cars are built so that their
headlights are on whenever the motor is running.

So they tried “If your headlights are on, and they are not required for visibility, and
you can turn them off, then turn them off.” But someone objected. ...

So they decided to stop trying to identify applicable states. They would just alert
the drivers and let them make the appropriate actions. Their final sign said, “Are your
lights on?”

18. States Assumptions. All assumptions should be stated. Unstated bad assumptions
are one cause of bad requirements.

19. Usage of Shall, Should, and Will. A mandatory requirement should be expressed
using the word shall (e.g., “The system shall conform to all state laws”). A trade-off
requirement can be expressed using should (e.g., “The total cost for the car’s acces-
sories should be about 10% of the total cost of the car”). The term will is used to
express a declaration of intent on the part of a contracting agency, to express simple
future tense, and for statement of fact (e.g., “The resistors will be supplied by an
outside manufacturer”) (Grady, 1993).

20. Avoids Certain Words. The words optimize, maximize, and minimize should not
be used in stating requirements, because we could never prove that we had achieved
them. Do not use the word optimize, because you will not be able to prove that a
resulting system is optimal. For the same reason, use the words maximize and min-
imize gingerly. They should not be used in mandatory requirements, but they might
appear in trade-off requirements. Never use the words always and never. Do not use
the word simultaneous because it means different things to different people. To a
physicist, it might mean within a femtosecond, to a computer engineer, on the same
clock cycle, to a paleontologist studying the extinction of the dinosaurs, within the
same millennium. Use of some words are deprecated. To some people, operational
means high-level description of behavior. To others, it means low-level keystroke-like
activities. Generally, you should avoid adverbs.

21. Might Vary in Level of Detail. The amount of detail in the requirements depends
on the intended supplier. For in-house work or work to be done by a supplier with
well-established systems engineering procedures, the requirements can be written at
a high level. However, for outside contractors with unknown systems engineering
capabilities, the requirements might be broken down to a very fine level of detail.

Requirements also become more detailed with time. In the beginning, the require-
ments should describe a generic process that many alternative designs could satisfy.
As time progresses, the problem will become better understood, the acceptable number
of alternatives will decrease, and the requirements should become more detailed.

216 DISCOVERING SYSTEM REQUIREMENTS

22. Contains Date of Approval. The name of the approver and the date of approval
should be included in each requirement.

23. States Its Rationale. Although it is seldom done, it would be nice if each require-
ment stated why it was written and what it was supposed to ensure.

24. Respects the Media. Newspaper journalists quote out of context, and headlines
do not reflect the content of their stories. It is important to write each requirement so
that it cannot spark undue public criticism of your customer or their project.

25. Distinguishes Number. Be careful with modal words such as shall, should, and
will, because they remove number distinction. For example, “Moving vehicles shall be
prohibited on these premises”. This could mean “Moving of vehicles is prohibited” or
“Vehicles that move are prohibited.”

26. Consistent. The set of requirements should not contain contradictory statements
or conditions.

27. Uses Parameters. Using parameters rather than fixed numbers will make require-
ments more reusable. For example, we could write “The radio shall amplify the signal
to produce POWER-OUTPUT between FREQUENCY-RANGE,” where phrases in
capital letters are parameters that could be instantiated to numbers such as 115 watts
and 50 and 5000 Hz.

4.5 CHARACTERIZATION OF REQUIREMENTS

There are many independent, orthogonal characterizations of system requirements. Four
of these are types, sources, expressions, and input—output relationships. A summary
of these characterizations follows.

4.5.1 Types of Requirements

There are two types of system requirements: mandatory and trade-off, as illustrated
in Figure 4.2. The trade-off requirement is: “The bridge deck should be at the same
level as the road surface, within 95% is acceptable”. And the mandatory requirement
is: “The bridge deck shall stretch from bank to bank (95% is not acceptable).”

Mandatory Requirements

1. Specify the necessary and sufficient capabilities that a system must have in order
to be acceptable;

2. Use the words shall and must, although the use of must is now deprecated;

et

Are passed or failed with no in between (do not use scoring functions); and
4. Should not be included in trade-off studies.

The following is a typical mandatory requirement: “The system shall not violate
federal, state, or local laws”. After identifying the mandatory requirements, systems
engineers propose alternative candidate designs, all of which satisfy the mandatory
requirements. Trade-off requirements are then evaluated to determine the best
designs.

CHARACTERIZATION OF REQUIREMENTS 217

100%
95%
Bridge
Road Road
(a)
Bridge
Road Road

T
95% 100%

(b)

Figure 4.2 Trade-off (a) and mandatory (b) requirements. (Copyright © 1995, A. T. Bahill,
from http://www/sie.arizona.edu/sysengt/slides/. Used with permission.)

Tradeoff Requirements

1. State conditions that would make the customer happier and are expressed with the
words shall or perhaps should (often a significant reward or incentive is attached
to how well a performance or trade-off requirement is satisfied);

2. Should be described by scoring (utility) functions (Daniels et al., 2001) (see
Fig. 4.4) or measures of effectiveness;

3. Should be evaluated with multicriterion decision-making techniques, because
none of the feasible alternatives is likely to optimize all the criteria; and

4. There will be trade-offs among these requirements (Smith et al., 2007).

The following is a typical trade-off requirement: “Dinner should have items from each
of the five food groups: grains, vegetables, fruits, milk, and meat.”

Figure 4.3 shows an example of such a trade-off in the investigation of alternative
laser printers. Many printers were below and to the left of the circular arc. They were
clearly inferior and were dismissed. Three printers lay on the circular arc: they were
the best. No printers were in the infeasible region above and to the right of the circular
arc. The question now becomes: “Which of these three printers is the best?” With the
present data, there is no answer to that question. The customer will have to say which
trade-off requirement (or evaluation criterion) is more important before an answer can
be obtained. Moving from one alternative to another will improve at least one criterion
and worsen at least one criterion; that is, there will be trade-offs. An arc like this (or
a surface when there are more than two criteria) is called a Pareto optimal contour.

4.5.1.1 Relationships Between Mandatory and Trade-off Requirements Sometimes
there is a relationship between mandatory and trade-off requirements: a mandatory

218 DISCOVERING SYSTEM REQUIREMENTS

1.00 -

0.75

0.50

Cost (1/k$)

0.25

L Il
0 5 10 15 20

0.00 :

Pages per Minute

Figure 4.3 A typical trade-off between trade-off requirements.

Amount of RAM (Mbytes)

1.0
0.8 A
0.6
0.4

Score

0.2
0.0

T
6 7 8 9 10 11 12 13
Input Value

Figure 4.4 A scoring function for the amount of random access memory (RAM).

requirement might be an upper or lower threshold of a trade-off requirement. For
example, for one computer program 8 Mbytes of random access memory (RAM) is
required, but 12 Mbytes is preferred. But sometimes it will be better to let the mandatory
requirement be the baseline value for a trade-off requirement.

4.5.1.2 Scoring Functions Scoring (utility) functions reflect how well each require-
ment has been met (Daniels et al., 2001). An input value is put into the scoring function
and a normalized output score is returned. Higher scores make the customer happier.
The use of scoring functions allows different criteria to be compared and traded off
against each other (See Fig. 4.4). In other words, scoring functions allow apples to be
compared to oranges and nanoseconds to be compared to billions of dollars. A simple
program, written by Tom Rogers, that creates graphs such as these is available free at
http://www.sie.arizona.edu/sysengr/slides/SSF.zip. It is called the Wymorian Scoring
Function tool.

Kano (1993) described three types of requirements: dissatisfiers (mandatory), satis-
fiers (trade-off), and delighters, which go beyond what the customer expects.

4.5.2 There Are Many Sources of Requirements

We have just analyzed requirements by dividing them into two types: trade-off and
mandatory. We will now dissect requirements according to their source. That is, where

CHARACTERIZATION OF REQUIREMENTS 219

do requirements come from? We might have called this section “Categories of Require-
ments” or a “Requirements Taxonomy.”

In this section, we list more than two dozen sources of requirements. However,
Wymore (1993) says that only the first six sources are necessary: input—output, tech-
nology, performance, cost, trade-off, and system test. He says all of the other sources
can be put into one of these six. Grady (1993) says we should have only five sources:
functional, performance, constraints, verification, and programmatic. He thinks that
most of our sources are constraints. The EIA-632 Standard on Systems Engineering
says there are only three: functional, performance, and constraints. Project managers
say that there are only three: cost, schedule, and performance (Kerzner, 1995). The Uni-
fied Modeling Language (UML) says that there are three categories of requirements:
functional requirements, nonfunctional performance requirements, and supplemental
requirements that are spread throughout the system. We leave it to the reader to decide
whether our list of sources can be condensed.

4.5.2.1 Functions Functional requirements describe the functions that the system
must provide (e.g., “Amplify the input signal”).

4.5.2.2 Input-Output Most functional requirements describe an input—output rela-
tionship. The amplify function could be stated as “The ratio of the output to the input at
10 kHz shall be +20 dB.” Wymore (1993) maintains that functional requirements are a
subset of input—output requirements. A well-stated input—output requirement describes
a function. The above input—output requirement describes the function “Amplify the
input signal.” The functional requirement, “The system shall fasten pieces of paper,”
is covered by the input—output requirement, “The system shall accept 2 to 20 pieces
of 8% by 11 inch, 20-pound paper and secure them so that the papers cannot get out
of order.” One function of an automobile is to accelerate. The input is torque (perhaps
developed with an engine) and the output is a change in velocity.

4.5.2.3 Technology The technology requirement specifies the set of components—
hardware, software, and bioware—that is available to build the system. The technology
requirement is usually defined in terms of types of components that cannot be used,
that must be used, or both. For example, Admiral Rickover required that submarine
nuclear reactor instrumentation be done with magnetic amplifiers. Your purchasing
department will often be a source of technology constraints.

4.5.2.4 Performance Performance requirements include quantity (how many, how
much), quality (how well), coverage (how much area, how far), timeliness (how
responsive, how frequent), and readiness (reliability, availability). Functional require-
ments often have associated performance requirements: for example, “The car shall
accelerate from 0 to 60 mph in 6.5 seconds or less.” Performance is an attribute of
products and processes. Performance requirements are initially defined through require-
ments analyses and trade studies using customer need, objective, and/or requirements
statements.

4.5.2.5 Cost There are many types of cost, such as labor, resources, and mone-
tary cost. Examples of cost requirement are: “The maximum purchase price shall be
$10,000” and “The maximum total life cycle cost shall be $18,000.”

220 DISCOVERING SYSTEM REQUIREMENTS

4.5.2.6 Trade-off Trade-offs between performance and cost are defined as the differ-
ent relative value assigned to each factor. A simple trade-off might add the performance
and cost criteria with associated weights; for example, the performance criterion may
have a weight of 0.6, and the cost criterion may be given a weight of 0.4 (Wymore,
1993). However, the trade-off should not be limited to performance and cost: there are
many other criteria that should be included in the trade-off.

The trade-off requirement is a description of how the data in a trade-off study are
going to be combined (Daniels et al., 2001). The summation of weighted scores (Botta
and Babhill, 2007) is one example.

Alternative rating = Weight

preformance x Scor €performance + Weightcost X Scorecost

+ Weight ;g x Scoreris
Another example is the benefit—cost ratio:

BeneﬁtWtBeneﬁt

Benefit—cost ratio = i
enefit—cost ratio = Wiraio Costicon

4.5.2.7 System Test Early in the design process, it should be stated how the final
system will be tested. The purpose of the system test is to verify that the design and
the system satisfy the requirements. For example, in an electronic amplifier, a 3-mV,
10-kHz sinusoid will be applied to the input, and the ratio of output to input will be
calculated.

Currently, we find systems that can be tested and diagnosed over the Internet or over
phone lines. A copy machine that does faxes is hooked up to the phone line. Therefore,
the supplier could easily query or diagnose the machine on a regular basis over the
phone system. The supplier could monitor use and provide just-in-time service for
toner and paper. Implementing such testing involves a trade-off of cost with customer
convenience and service. This type of testing is great for equipment at remote or
unmanned sites.

4.5.2.8 Built-in Self-Test New designs should require that the system test itself. It
should perform built-in self-tests (BiST) upon request and whenever it is not servicing
one of its actors. Personal computers do built-in self-tests every time they are turned
on: the problem is that most people never turn them off.

4.5.2.9 Company Policy Company policy might create requirements. Learjet Inc.
has stated, “We will make the airframe, but we will buy the jet engines and the elec-
tronic control systems”. Raytheon should require that all missiles have the capability
of being disabled by the Pentagon. (This would prevent Stinger missiles from shooting
down our airplanes.) Or, “Our company will not deliver anything to the customer that
we are unable to test.”

4.5.2.10 Business Practices Corporate business policies might require work break-
down structures, PERT charts, quality manuals, environmental safety and health plans,
or a certain return on investment.

CHARACTERIZATION OF REQUIREMENTS 221

4.5.2.11 Systems Engineering Systems engineering might require that every trans-
portable memory device (e.g., floppy disk, Zip, Jaz, Bernoulli, CD ROM, or memory
stick) have a Readme file that describes the author, date, contents, software program,
and version (e.g., Visio 2003 or Excel 2003).

4.5.2.12 Project Management Performance, cost, and schedule are natural require-
ments to come from project managers. This might include rewards for early finish and
penalties for schedule overruns.

Access to source code for all software might be a project management requirement.
It takes time and money to install new software. This investment would be squandered
if the supplier went bankrupt and the customer could no longer update and maintain
the system. Therefore, most customers would like to have the source code. However,
few software houses are willing to provide source code, because it might decrease
their profits and complicate customer support. When there is any possibility that the
supplier might stop supporting a product, the source code should be provided and
placed in escrow. This source code remains untouched as long as the supplier supports
the product. But if the supplier ceases to support the product, the customer can get the
source code and maintain the product in-house. Therefore, placing the source code in
escrow can be a requirement.

4.5.2.13 Marketing The marketing department wants features that will delight the
customer. Kano (1993) calls them exciters. They are features that customers did not
know they wanted. In the 1970s, IBM queried customers to discover their personal
computer (PC) needs. No one mentioned portability, so IBM did not make it a require-
ment. Compaq made a portable PC and then a laptop, dominating those segments
of the market. In the 1950s, IBM could have bought the patents for Xerox’s pho-
tocopy machine. But they did a market research study and concluded that no one
would pay thousands of dollars for a machine that would replace carbon paper. They
did not realize that they could delight their customers with a machine that provided
dozens of copies in just minutes. The United States Air Force did not know that
they wanted a stealth airplane until after the engineers explained that they could do it
for the F-117.

4.5.2.14 Manufacturing Processes Sometimes we might require a certain manu-
facturing process or environment. We might require our semiconductor manufacturer
to have a Class 10 clean room. Someone might specify that quality function deploy-
ment (QFD) be used to help elicit customer desires (although this would be in bad
form, because it states how not what). Recently, minimization of the waste stream has
become a common requirement. Annealing swords for a certain time and at a certain
temperature could be a requirement.

4.5.2.15 Design Engineers Design engineers impose requirements on the system.
These are the “build to,” “code to,” and “buy to” requirements for products and “how
to execute” requirements for processes. These are often called derived requirements,
because the design engineers derive them from the customer requirements.

4.5.2.16 Reliability Reliability could be a performance requirement, or it could be
broken out separately. It could be given as a mean time between failures or as an

222 DISCOVERING SYSTEM REQUIREMENTS

operability probability. But, it should be testable: for example, do not say “The system
shall be available 99.9% of the time,” rather say “The system shall be available 99.9%
of the time in a one week test period.”

4.5.2.17 Safety Some requirements may come from safety considerations. These
may state how the item should behave under both normal and abnormal conditions.

4.5.2.18 The Environment Concern for the environment will produce requirements,
such as forbidding the use of chlorofluorocarbons (CFCs) or trichloroethylene (TCE).

4.5.2.19 Ethics Ethics requires physicians to obtain informed consent before exper-
imenting on human subjects.

4.5.2.20 Intangibles Sometimes the desires of the customer will be hard to quantify
for intangible items such as aesthetics, national or company prestige (e.g., putting a
man on the moon in the Apollo project), ulterior motives such as trying to get a foot
in the door using a new technology (e.g., the stealth airplanes), or starting business in
a new country (e.g., China).

4.5.2.21 Common Sense Many requirements will not be stated because they are
believed to be common sense. For example, characteristics of the end user are seldom
stated. If we were designing a computer terminal, it would not be stated that the end
user would be a human with two hands and ten fingers. Common sense also dictates
that “Computers shall pass diagnostic tests after being stored for 24 hours at 70 °C
(163 °F).” Furthermore, we do not write that there can be no exposed high voltage
conductors on a personal computer, but it certainly is a requirement. Many of these
requirements can be found in de facto standards.

4.5.2.22 Laws or Standards Requirements could specify compliance with certain
laws or standards, such as the National Electrical Code, local building codes, EIA-632,
ISO-9000, IEEE 1220, ISO-15288, or level 3 CMML.

4.5.2.23 The Customer Some requirements are said to have come from the cus-
tomer, such as statements that define the expectations of the system in terms of mission
or objectives, environment, constraints, and measures of effectiveness. These require-
ments are defined from a validated needs statement (Customer’s Mission Statement),
from acquisition and program decision documentation, and from mission analyses.

4.5.2.24 Legacy Requirements Sometimes the existence of previous systems cre-
ates requirements. For example, “Your last system was robust enough to survive a long
trip on a dirt road, so we expect your new system to do the same.” Many new com-
puter programs must be compatible with COBOL, because so many COBOL business
programs are still running. Could you read data archived on a 5 % inch floppy disk?
Legacy requirements are often unstated.

4.5.2.25 Existing Data Collection Activities If an existing system is similar to the
proposed new system, then existing data collection activities can be used to help

CHARACTERIZATION OF REQUIREMENTS 223

discover system requirements, because each piece of data that is collected should be
traceable to a specific system requirement, as shown in Figure 4.1. Often it is difficult
to make a measurement to verify a requirement. It might be impossible to meet the
stated accuracy. Trying to make a measurement to verify a requirement might reveal
more system requirements.

4.5.2.26 Human Abuse Systems should be required to withstand human abuse,
such as standing on a computer case or spilling coffee on the keyboard. Systems
should prevent human error; for example, “Are you sure you want to delete that file?”
Systems should ameliorate human error if it does occur (e.g., online real-time spell
checking).

4.5.2.27 Political Correctness The need to be politically correct mandates many
(often expensive) requirements.

4.5.2.28 Material Acceptance You must write requirements describing how raw
materials, parts, and commercial off-the-shelf items will be inspected when they are
received.

4.5.2.29 Other Sources There are many other sources of system requirements, such
as human factors, the environment (e.g., temperature, humidity, shock, vibration, etc.),
the end user, the operator, potential victims, management, company vision, future
expansion, schedule, logistics, politics, the U.S. Congress, public opinion, business
partners, past failures, competitive intelligence, liability, religion, culture, government
agencies (e.g., DoE, DoD, OSHA, FAA, EPA), availability, maintainability, com-
patibility, service, maintenance, field support, warrantees, need to provide training,
competitive strategic advantage, time to market, time to fill orders, inventory turns,
accident reports, deliverability, reusability, future expansion, politics, society, stan-
dards compliance, standards certification (e.g., ISO 9000), effects of aging, the year
2000 problem, user friendly, weather (e.g., must be installed in the summer), secu-
rity as in government classification, security as in data transmission, it must fit into a
certain space, secondary customer, retirement, and disposal.

4.5.3 There Are Many Ways to Express Requirements

For some purposes, the best expression of the requirements will be a narrative in which
words are organized into sentences and paragraphs. Such documents are often called
operational concept descriptions or use case models. But all descriptions in English
will have ambiguities, because of both the language itself and the context in which
the reader interprets the words. Therefore, for some purposes, the best description of
a system will be a list or string of shall and should statements. Such a list would be
useful for acquisition or acceptance testing. However, it is still very difficult to write
with perfect clarity so that all readers have the same understanding of what is written.
Other modalities that can be used instead of written descriptions include:

e A model
e A prototype
e A user’s manual

224 DISCOVERING SYSTEM REQUIREMENTS

o Input—output trajectories

e Sequence diagrams

e Use cases

o Computer requirements databases

The big advantage of nonverbal expressions is that they can be rigorous and exe-
cutable. This helps point out contradictions and omissions. Natural language expres-
sions can be ambiguous. Does “turn up the air conditioner,” mean turn up the thermostat
(making the room warmer), or turn up the air conditioning power (making the room
colder)? Nonverbal expressions also allow you to perform a sensitivity analysis of the
set of requirements to learn which requirements are the real cost drivers (Karnavas
et al., 1993).

A systems engineering design process that is gaining popularity is model-based sys-
tems engineering (Wymore, 1993). In this process, the systems engineer first develops
a model of the desired system. The model can then be run to demonstrate the desired
system behavior. Thus, the model also captures the requirements.

4.5.3.1 A Prototype Expresses Requirements A publicly assessable prototype can
express the system requirements, as they are currently understood. This technique
is very popular in the software community, where a computer can be placed in the
building lobby. Of course, many functions of the final system will not be implemented
in the prototype; instead, there will be a statement of what the functions are intended to
do. A publicly assessable prototype is easy to update, and it helps everyone understand
what the requirements are.

The purpose of building a prototype is to reduce project risk. Therefore, the first
functions that are prototyped should be (but usually are not) the most risky functions
(Eb Rechtin, personal communication; Botta and Bahill, 2007).

4.5.3.2 Consider Bizarre Alternatives During concept exploration, encourage con-
sideration of bizarre alternatives. Studying unusual alternatives leads to a better and
deeper understanding of the requirements by both the systems engineer and the design
engineer. Explore unintended paths through the system workflow. Document unin-
tended functions performed by the system. Investigate unintended uses of the sys-
tem. Studying models and computer simulations will also help you understand the
requirements. Concept exploration is one of the most fruitful phases in requirements
discovery.

4.5.3.3 Preparing the Users Manual Flushes Out Requirements The users manual
should be written by future users early in the system design process (Shand, 1994).
This helps get the system requirements stated correctly and increases user “buy in.”

4.5.4 Input and Output Trajectories

Arguably, the best way to describe the desired behavior of a system and thereby dis-
cover system requirements is to create typical sequences of events (or scenarios) that
the proposed system will go through. Typically, a sequence of input values as a function
of time (called an input trajectory) is described and an acceptable system behavior is
given. Sometimes this system behavior is given as a sequence of output values (called

CHARACTERIZATION OF REQUIREMENTS 225

an output trajectory). Dozens, or perhaps hundreds (but hopefully not thousands), of
these trajectories will be needed for a complete description of the system. Such descrip-
tions of input and output behavior as a function of time have been called behavioral
scenarios, strings, trajectories, threads, operational scenarios, logistics, interaction dia-
grams, and sequence diagrams. The alternate flows help you recognize and deal with
unintended as well as intended inputs.

4.5.4.1 Sequence Diagrams A sequence diagram for an automated teller machine
(ATM) is shown in Figure 4.5. The basis of these diagrams is to list the system’s
objects (or components) along the top of the diagram. Then, with time running from
top to bottom, list the messages or commands that are exchanged between the objects
(Object Management Group, 2007). Alternatively, the arrows can be labeled with data

sd ATM/

P10 0o 0O

Customer Card Reader Graphical User Card Transaction
! Interface Handler

cardinserted

validate (c'ard Code)

: i |Time runs
i from top to|
! request PIN bottom
=" |
PIN code?
e] i i
type Code (PIN) o i
i validate (PIN)_ |
| —
| | invalid PIN |
faulty PIN L
g: PIN code? i
t e (PIN i 5
ype Coi e (PIN) . |
i validate (PIN)_ i
i . invalid PIN__
faulty PIN
E: PIN code? i
t C :d PIN H i
ype Code (PIN) > i
| validate (PIN)_ i
i seize Card
or]

S,

Figure 4.5 Sequence diagram for an incorrect personal identification number (PIN) sequence
of events. (Copyright © 2007, A. T. Bahill, from http://www/sie.arizona.edu/sysengt/slides/.
Used with permission.)

226 DISCOVERING SYSTEM REQUIREMENTS

that are exchanged between the components or the functions that are performed. These
ATM examples were derived using object-oriented modeling. This technique relies
on collecting a large number of sequence diagrams. This collection then describes
the desired system behavior. Additional scenarios can be incrementally added to the
collection. Sequence diagrams are easy for people to describe and discuss, and it is
easy to transform them into a system design.

Wrong PIN Input Sequence

1. The Customer inserts a bankcard; the Card Reader sends the card’s information to
the Card Transaction Handler, which detects that the card is valid (if no message
is returned, the card is assumed valid).

2. The Card Transaction Handler instructs the Graphical User Interface (GUI) to dis-
play a message requesting the customer’s Personal Identification Number (PIN).

3. The GUI requests the PIN and the customer types in his/her PIN, which is then
passed to the Card Transaction Handler.

4. The Card Transaction Handler checks if the PIN is correct. In this scenario, it is
not, and the GUI is instructed to inform the customer that the PIN is invalid.

5. The customer is then asked to input his/her PIN again and step 4 is repeated.

6. If the customer has not supplied the correct PIN in three attempts (as is the case
in this scenario), the Card Reader is instructed to keep the card and the session
is terminated.

Sequence diagrams were first published by Richard Feynman (1949). Feynman dia-
grams are a visual way of expressing what is happening. He created them because they
are simpler than their accompanying equations.

4.5.4.2 Input—Output Relationships Wymore (1993) shows the following six tech-
niques for writing input—output relationships. These techniques have different degrees
of precision, comprehensibility, and compactness.

1. For each input value, produce an output value. For example, multiply the input
by 3:
output(t+1) = 3 * input(t)

2. For each input string, produce an output value. For example, compute the average
of the last three inputs:

output(t+1) = (input(t—2) + input(t—1) + input(t))/3

3. For each input string, produce an output string. For example, collect inputs and
label them with their time of arrival:

For an input string of 1, 1, 2, 3, 5, 8, 13, 21, the
output string shall be (1,1), (2,1), (3,2), (4,3), (5,5),
(6,8), (7,13), (8,21). All strings are finite in length.

4. For each input trajectory, produce an output trajectory. For example, collect inputs
and label them with their time of arrival:

Q3

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 227

For an input trajectory of 1, 1, 2, 3, 5, 8, 13, 21,

the output trajectory would be (1,1), (2,1), (3,2), (4,3),
(5,5), (6,8), (7,13), (8,21) ... A trajectory may be
infinite in length.

5. For each state and input, produce a next state and next output. For example,
design a Boolean system where the output is asserted whenever the input bit
stream has an odd number of one. This Odd Parity Detector can be described as:

Z1 = (Sz1, 1z1, 0Z1, NzZ1, RZ1), where

SZ1 = {Even, 0dd},/* The 2 states are named Even and 0dd. */
171 {0, 1},/* A 0 or a 1 can be received on this input
port. */

0z1 = {0, 1},/* The output will be 0 or 1. */

NzZ1 = {((Even, 0), Even),/* If the present state is Even and
the input is 0, then the next state will be Even. */

((Even, 1), 0dd), ((0dd, 0), Odd), ((Odd, 1), Even)},

RZ1 = {(Even, 0), (0dd, 1)}/* If the state is Even the
output is 0, if the state is 0dd the output is 1. */

6. Most of this chapter has focused on using qualitative descriptions, which includes
words, sentences, paragraphs, blueprints, pictures, and schematics.

4.6 THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT
PROCESS

The requirements process shown in Figure 4.6 should be interpreted figuratively not lit-
erally: it only contains major flows. It shows 16 tasks, so there should be 16! feedback
paths. For example, use cases cannot be written without information about the stake-
holders, customer needs, and a problem statement; verification and validation cannot
be done without knowledge of the requirements.

The first steps in discovering system requirements are identifying the stakeholders,
understanding the customers’ needs, stating the problem, and identifying the needed
capabilities of the system.

4.6.1 Identify Stakeholders

The first step in developing requirements is to identify the stakeholders. The term
stakeholder includes anyone who has a right to impose requirements on the system.
This includes end users, operators, maintainers, bill payers, owners, regulatory agencies,
victims, and sponsors. All facets of the stakeholders must be kept in mind during
system design. For example, in evaluating the cost of a system, the total life-cycle
cost and the cost to society should be considered. Frequently, the end user does not
fund the cost of development. This often leads to products that are expensive to own,
operate, and maintain over the entire life of the product, because the organization
funding development saves a few dollars in the development process. Therefore, it
is imperative that the systems engineer understands this conflict and exposes it. The
sponsor and user can then help trade off the development costs against the cost to

228 DISCOVERING SYSTEM REQUIREMENTS

®
v |
Identify stakeholders | | Develop
v use case
»| [[Understand customer needs | [model
s v
= | State the problem | Verification
o and
:-; [Discover requirements |&—— | Validation
= \ 4
.§ | Clarify requirements | Define
9 evaluation
criteria
VY v
«—No Manage

requirements

A 4

Manage
risk
| Decompose requirements | y
Manage the
| Allocate requirements | requirements
v process

| Derive requirements |

| Prioritize requirements |
< v v v v v h 4

<

Y

Project i i
No Ovér? Yes There is a multitude of

unshown feedback loops.

Figure 4.6 The requirements process. (Copyright © 2006, A. T. Bahill, from http://www/sie.
arizona.edu/sysengr/slides/. Used with permission.)

use and maintain. Total life-cycle costs are significantly larger than initial costs. For
example, in one of their advertisements, Compaq proclaimed that “80% of the lifetime
cost of your company’s desktops comes after you purchase them.” In terms of the
personal computer, if total life-cycle costs were $5000, purchase cost would have been
$1000 and maintenance and operation $4000.

For large or complex systems, it is important that the systems engineer understands
the role of each of the major stakeholders and their motivations, interests, constraints,
and outside pressures.

4.6.2 Understand Customer Needs

The system design must begin with a complete understanding of the customers’ needs.
If the sponsor, owner, and user are different, then the systems engineer must know and
understand the needs of each. For a rental car agency, the sponsor could be corporate
management, the owner of the cars could be the local airport office, and the user could
be the customer renting the car. Each of these three has needs; some are common
and some are unique. The information necessary to begin a design usually comes
from the mission statement, the concept of operation, business model, preliminary

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 229

studies, and specific customer requests. Usually the customer is not aware of what is
needed. Systems engineers must enter the customer’s environment, discover the details,
and explain them. Flexible designs and rapid prototyping facilitate identification of
details that might have been overlooked. Talking to the customer’s customer and the
supplier’s supplier can also be useful. This activity is frequently referred to as mission
analysis.

It is the systems engineer’s responsibility to ensure that all information concerning
the customer’s needs is collected. The systems engineer must also ensure that the
definitions and terms used have the same meaning for everyone involved. Several direct
interviews with the customer are necessary to ensure that all of the customer’s needs are
stated and that they are clear and understandable. The customer might not understand
the needs; he/she may be responding to someone else’s requirements. Often, a customer
will misstate his/her needs; for example, a person might walk into a hardware store
and say he needs a half-inch drill bit. But what he actually needs is a half-inch hole
in a metal plate, and a chassis-punch might be more suitable.

During the first half of the 20th century, the Indian and Harley Davidson motorcycle
manufacturers were fierce competitors. Then during World War II, the U.S. Army
asked for a 500-cc motorcycle. Indian made one for them. Harley Davidson thought
that the Army would not be satisfied with a 500-cc motorcycle, so they built a 750-cc
motorcycle. Since then, have you heard of an Indian motorcycle?

4.6.3 State the Problem

What is the problem we are trying to solve? Answering this question is one of the
systems engineer’s most important and often overlooked tasks. An elegant solution to
the wrong problem is less than worthless.

Early in the process, the customer frequently fails to recognize the scope or mag-
nitude of the problem that is to be solved. The problem should not be described
in terms of a perceived solution. It is imperative that the systems engineer help the
customer develop a problem statement that is completely independent of solutions
and specific technologies. Solutions and technologies are, of course, important; how-
ever, there is a proper place for them later in the systems engineering process. It
is the systems engineer’s responsibility to work with the customer, asking the ques-
tions necessary to develop a complete picture of the problem and its scope. The U.S.
Air Force did not know that they wanted a stealth airplane until after the engineers
showed that they could do it. During concept exploration, encourage consideration of
bizarre alternatives. This will help you understand the requirements better. Likewise,
studying models and computer simulations will help you understand the requirements.
Understanding the requirements is one of the most fruitful phases in requirements
discovery.

Defining what the system is supposed to do could be done in terms of a hierarchy
of functions. But recently it is being stated in terms of a hierarchy of capabilities the
system must have.

4.6.4 Develop Use Case Models

Modern system design is usually use case based. The use cases capture the required
functional behavior of the system. A use case is an abstraction of a required behavior

230 DISCOVERING SYSTEM REQUIREMENTS

of a system. A use case produces an observable result of value to the user. A typical
system will have many use cases, each of which satisfies a goal of a particular user.
Each use case describes a sequence of interactions between one or more users and
the system. A use case narrative is written in a natural language. It is written as a
sequence of steps with a main success scenario and alternate flows. This sequence of
interactions is contained in a use case report and the relationships between the system
and its users are portrayed in use case diagrams. Development of requirements from
the use case models is explained in detail in the last section of this chapter.

4.6.5 Discover Requirements

The systems engineer must consult with the customer to discover the system require-
ments. The systems engineer must involve the customer in the process of defining,
clarifying, and prioritizing the requirements. It is prudent to involve users, bill pay-
ers, regulators, manufacturers, maintainers, and other key stakeholders in the process.
Requirements are discovered or elicited: they are not given to you. It takes work to
find out what the requirements are.

Next, systems engineering must discover the functions that the system must perform
in order to satisfy its purpose. The system functions form the basis for dividing the
system into subsystems. QFD is useful for identifying system functions (Bahill and
Chapman, 1993; Bicknell and Bicknell, 1994).

Although this makes it sound as if requirements are transformed into functions with
a waterfall process, that is not the case. The requirements process is highly iterative and
many tasks can and should be done in parallel. First, we look at system requirements,
then at system functions. Then we reexamine the requirements and then reexamine
the functions. Then we reassess the requirements and again the functions, and so
on. Identifying the system’s functions helps us to discover the system’s behavioral
requirements.

For each requirement that is discovered, ask yourself why the requirement is needed.
This will help you to write the rationale for the requirement, it will help you to prioritize
the requirements, and it might help you to negotiate with the customer to eliminate
some requirements.

4.6.6 Clarify Requirements

The systems engineer must consult with the customer to ensure that the requirements
are correct and complete and to identify the trade-off requirements. As with all systems
engineering processes, this process is iterative. The customer should be satisfied that
if the requirements are met, then the system will do what it needs to do. This should
be done in formal reviews with the results documented and distributed to appropriate
parties. These reviews ensure that all the requirements have been met, ensure that
the system satisfies customer needs, assess the maturity of the development effort,
allow recommending start of the next phase, and facilitate approval to committing
additional resources. The systems engineer is responsible for initiating and conducting
these reviews.

The system requirements must be reviewed with the customer many times. At a
minimum, requirements should be reviewed at the end of the modeling phase, after test-
ing the prototypes, before commencement of production, and after testing production
units.

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 231

It is the job of the systems engineer to push back on the customer. The systems
engineer should try to get requirements removed or relaxed. Perform a sensitivity
analysis on the requirements set to determine the cost drivers. Then show the cus-
tomer how cost can be reduced and performance enhanced if certain requirements are
changed. The requirements process should be a continual interactive dialogue with the
stakeholders.

The main objectives of these reviews are to find missing requirements, eliminate
unneeded requirements, ensure that the requirements have been met, and verify that
the system satisfies customer needs. At these reviews, trade-offs will usually have
to be made among performance, schedule, and cost. Additional objectives include
recommending whether to proceed to the next phase of the project and commit-
ting additional resources. The results and conclusions of the reviews should be doc-
umented. Again, the systems engineer is responsible for initiating and conducting
these reviews.

The following definitions of the most common reviews, based on Sage (1992) and
Shishko and Chamberlain (1995), might be useful. No company uses these exact names
and reviews. But most companies use similar names and reviews. They are arranged
in chronological order. Although these definitions are written with a singular noun,
they are often implemented with a collection of reviews. Each system, subsystem,
sub-subsystem, and so on will be reviewed and the totality of these constitutes the
indicated review.

Mission Concept Review (MCR) (a.k.a. the Mission Definition Review and the Alter-
nate System Review). This is the first formal review. It examines the mission
objectives, candidate architecture, top-level functional requirements, measures of
effectiveness, interfaces, alternative concepts, and anticipated risks.

System Requirements Review (SRR). This shows that the product development team
understands the mission and the system requirements. It confirms that the sys-
tem requirements are sufficient to meet mission objectives. It ensures that the
performance and cost evaluation criteria are realistic, and that the verification
plan is adequate. It inspects the requirements flow-down plan. It checks that the
selected requirements tracking and management tool is appropriate. It assesses
the reasonableness of the risk analysis. At the end of SRR, requirements are
placed under configuration management. Changing requirements after SRR will
adversely affect schedule and cost.

In the beginning of a project, requirements can be kept in a word document.
However, eventually it will be more convenient to move them to a database. In
the proposal phase and up through the SRR, the requirements might be kept in an
Excel spreadsheet. As the number of requirements exceeds 100, most programs
will transfer the requirements to a requirements-specific database.

System Functional Review. This examines the proposed system architecture, the
proposed system design, and the allocation of functions to the major subsystems.
It reviews information sharing, interface definitions and interface limitations such
as security blocks. It also ensures that the verification and risk mitigation plans
are complete.

Preliminary Design Review (PDR). This demonstrates that the preliminary design
meets all the system requirements with acceptable risk. The design model is
presented. System development and verification tools are identified, and the work

232 DISCOVERING SYSTEM REQUIREMENTS

breakdown structure is examined. Full-scale engineering design begins after this
review.

Critical Design Review (CDR). This verifies that the design meets the requirements.
The CDR examines the system design in full detail, inspects interface control doc-
uments, ensures that technical problems and design anomalies have been resolved,
checks the technical performance measures, and ensures that the design maturity
justifies the decision to commence manufacturing and coding. Few requirements
should be changed after this review.

Test Readiness Review (TRR). This is conducted for each hardware and software
configuration item prior to formal test. It determines the readiness and complete-
ness of test procedures and their compliance with test plans and descriptions. It
inspects test equipment and facilities. It analyses performance predictions.

Production Readiness Review (PRR). For some systems, there is a long phase when
prototypes are built and tested. At the end of this phase, and before production
begins, there is a production readiness review. The systems engineer is responsi-
ble for designing the product and also the process for producing it. This review
primarily inspects the requirements for the production system.

Total System Test (TST). At the end of manufacturing and integration, the system is
tested to verify that it satisfies its requirements. Technical performance measures
are compared to their goals. The results of these tests are presented at the System
Acceptance and Operational Readiness Reviews.

Figure 4.7, based on the IBM Rational Unified Process and Bahill and Daniels
(2003), shows the timing of some of these reviews within the total system life cycle.
The amount of black ink associated with each activity indicates the amount of time,
effort, and money that is consumed.

At various points in the system life cycle and for various reasons, the following
reviews are often conducted: Startup Review, Software Specification Review, Test
Readiness Review, Peer Reviews, Expert Reviews, and Integration Readiness Review.

At these reviews, it is important to ask why each requirement is needed. This
can help eliminate unneeded requirements. It can also help reveal the requirements
behind the stated requirements. It may be easier to satisfy the requirements behind the
requirements, than the stated requirements themselves.

4.6.7 Decompose Requirements

Requirements decomposition breaks down a requirement into two or more requirements
whose total content is equivalent to the content of the original one—just expressed
more explicitly or in more detail. The resulting requirement replaces the decomposed
requirement, which becomes obsolete, or at least it need not be verified. When a written
requirement is compound, it must be decomposed. Here is an example of requirement
decomposition. The customer requirement, “When an empty coffeepot is placed in the
coffee machine, the camera system shall transmit a digital image to the server” can be
decomposed into the following functional requirements:

1. The system shall sense when an empty coffeepot is being placed in the coffee
machine.

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 233

Life-Cycle Phases

T T T ™ o ;
. g . . . " peration,
Activities Incer)tlon:EIab?mﬂon: Construction :Transrtlon: Retirement &
: I ! | I | Replacement
Requirements M- I I
l Time
| | | | e
| | | |
| | |
Analysis| | |
] |
Design		
Implementation		
T		
	;	
Verification A: :“'—‘ — —		
o ti —
pera !ons Iter. Iter.:lter. : I g | ilter. | Iter.
lterations| #1 | #2 | #3 | : X (#n-1i #n

Reviews M%R SQR P%R C%R A A Tﬁ? A 'I%I' A A A

Figure 4.7 Timing of the major reviews. (Copyright © 2006, A. T. Bahill, from http://www/
sie.arizona.edu/sysengt/slides/. Used with permission.)

2. The system shall trigger the camera when an empty coffeepot is placed in the
coffee machine.

3. The system shall transmit digital images to the server.
Stipulation: Empty coffeepot means one containing less than 6 fluid ounces.

Then the original requirement can be deleted.
If the requirements are organized in a Zachman framework (Babhill et al., 2006), then
any requirement that spans two or more columns is a candidate for decomposition.

4.6.8 Allocate Requirements

Each functional requirement should be allocated to a particular physical component
(Bahill and Botta, 2008). Allocate requirements to hardware, software, bioware, test,
and interface components. Allocation is done early in the system life cycle and at a high
level in the requirements hierarchy. Allocation affects the architecture. We allocate the
system requirements. Allocation is not as important for derived requirements, because
their allocation just goes along with their parents’ allocation and the architecture is
already set before we derive most of these requirements.

4.6.9 Derive Requirements

Derived requirements arise from constraints, consideration of issues implied but not
explicitly stated in the customer requirements, factors introduced by the selected

234 DISCOVERING SYSTEM REQUIREMENTS

architecture, the design, and the developer’s unique business considerations. Unlike
decomposed requirements, the statements of the derived requirements are different
from those of the original requirements. Consequently, the original requirements do
not become obsolete.

For example, the U.S. Marine Corp’s landing craft must have a range of at least 25
nautical miles so that the mother craft can launch from over the horizon. The maximum
duration of a trip from the mother craft to the beach is 1 hour, because trips of over an
hour will make most people too seasick to function effectively. Therefore, a derived
requirement is “The landing craft shall have a minimum speed of 25 knots.”

Design engineers often derive requirements from the customer requirements. Here
is a longer example of deriving requirements. A teenage boy might express the cus-
tomer needs statement this way: “Hey, Dad, We need speakers in the car that will
make your insides rumble during drum solos.” The father would translate this into
the performance requirement: “For bass frequencies, we need 110 dB of sound out-
put.” Then, the systems engineer would convert this into the functional requirement:
“Amplify the radio’s output to produce 115 watts in the frequency range 20 to 500 Hz.”
Finally, after a trip to the audio shop, the design engineer would transform this into the
design requirement: “Use Zapco Z100S1VX power amplifiers with JL. Audio 12 W1-8
speakers.” But this looks like a waterfall process, whereas the requirements process is
concurrent and iterative.

4.6.10 Prioritize Requirements

Requirements should be prioritized (Botta and Bahill, 2006, 2007). (1) If the project
is budget constrained, prioritization will help you decide which requirements should
be implemented and which should be candidates for elimination. (2) If the project
is time constrained, prioritization will help you decide which requirements should
be implemented first. Often the product is delivered in phases. At each delivery, the
system must have testable functionality. Prioritization helps you choose the functions
to implement in each phase. (3) Prioritizing scenarios and identifying benefits, costs,
and dependencies will help create the system architecture. (4) Prioritization improves
customer satisfaction by increasing the likelihood that the customer’s most important
requirements are implemented and delivered first. Customers like to see their funds
being used effectively and wisely. (5) Prioritization will allow you to spend more time
and effort reducing risks associated with hard technical problems and key performance
parameters. (6) You might want to assign your best people to the highest priority
requirements. (7) Prioritizing requirements will help you to manage requirements creep.
If requirements being added are high priority, then they may displace some low-priority
requirements. (8) Prioritizing requirements will reduce discussion time at meetings and
reviews. (9) Prioritizing requirements will help identify the high-priority requirements
for which you should create technical performance measures, which is a topic in the
next section.

4.6.11 Define Evaluation Criteria

Evaluation criteria are used to judge the different designs. Each evaluation criterion
must have a fully described unit of measurement. Units of power could be horsepower,
for example, and units of cost could be dollars (or inverse dollars if it is desirable to

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 235

consistently have “more is better” situations). Suppose an evaluation criterion were
acceleration; then the unit of measurement could be seconds taken to accelerate from
0 to 60 mph. The units of measurement can be anything, as long as they measure the
appropriate criteria, are fully described, and are used consistently for all designs. The
value of an evaluation criterion describes how effectively a trade-off requirement has
been met. For example, the car went from 0 to 60 in 6.2 seconds. These values are the
ones put into the scoring functions, as shown in Figure 4.4, to give the requirements
scores, which are in turn used to perform trade-off studies (Smith et al., 2007). Such
measurements are made throughout the development of the system.

4.6.11.1 Definitions for Quantitative Measurements Evaluation criteria, measures,
and technical performance measures (TPMs) are all used to quantify system per-
formance. These terms are often used interchangeably, but a distinction is useful.
Evaluation criteria are used to quantify requirements. Measures are used to help
manage a company’s processes. TPMs are used to mitigate risk during design and
manufacturing.

Performance, schedule, and cost evaluation criteria show how well the system
satisfies its requirements (e.g., in this test the car accelerated from 0 to 60 in 6.2
seconds). Criteria are often called measures of performance, measures of effectiveness,
or figures of merit. Such measurements are made throughout the evolution of the
system: based first on estimates by the design engineers, then on models, simulations,
and prototypes, and finally on the real system. Criteria are used to quantify system
requirements; however, they are also used to help select among alternative designs in
trade-off studies, where criteria are traded off: that is, going from one alternative to
another increases the value of one criterion while decreasing another.

Measures (which are often confused with metrics) are usually related to the process,
not the product. Therefore, they do not always relate to specific system requirements.
Rather, some measures relate to the company’s mission statement and subsequent goals.
As an example, a useful measure is the percentage of requirements that change after
the System Requirements Review.

Measure. A measure indicates the degree to which an entity possesses and exhibits
a quality or an attribute. A measure has a specified method, which when executed
produces values (or metrics) for the measure.

Metric. A measured, calculated, or derived value (or number) used by a measure
to quantify the degree to which an entity possesses and exhibits a quality or an
attribute.

Measurement. A value obtained by measuring, which makes it a type of metric.

Technical performance measures (TPMs) are tools that show how well a system is
satisfying its requirements or meeting its goals. TPMs provide assessments of the prod-
uct and the process through design, modeling, breadboards, prototypes, implementation,
and test. For the rest of this section, we only discuss TPMs.

4.6.11.2 Technical Performance Measures Technical performance measures are
tools that show how well a system is satisfying its requirements or meeting its goals
(Oakes et al., 2006). TPMs provide assessments of the product and the process through
design, implementation, and test. They assess the product and its associated process,

236 DISCOVERING SYSTEM REQUIREMENTS

but they are primarily for the product. TPMs are used to (1) forecast values to be
achieved through planned technical effort, (2) measure differences between achieved
values and those allocated to the product, (3) determine the impact of these differences,
and (4) trigger optional design reviews.

TPMs are critical technical parameters that a project monitors to ensure that the
technical objectives of a product will be realized. Typically, TPMs have planned values
at defined time increments, against which the actual values are plotted. Monitoring
TPMs allows trend detection and correction and helps identify possible performance
problems prior to incurring significant cost or schedule overruns.

The purpose of TPMs is to (1) provide visibility of actual versus planned perfor-
mance, (2) provide early detection or prediction of problems requiring management
attention, (3) support assessment of the impact of proposed changes, and (4) help
manage risk.

The method for measuring the data for the TPM will vary with life-cycle phase. In
the beginning, you will use data from legacy systems, blue-sky guesses, and approxi-
mations. Then you can derive data from models and simulations. Later, you will collect
data from prototypes. Finally, you will measure data on rudiments of the real system.
Even the planned values might not be known at the beginning of the project. The
original estimates will be refined by modeling and simulation.

Attributes that could be TPMs for some systems include reliability, maintainability,
power required, weight, throughput, human factors, response time, complexity, avail-
ability, accuracy, image processing rate, achieved temperature, requirements volatility,
speed, setup time, change over time, and calibration time.

4.6.11.3 Characteristics of TPMs TPMs should be created for requirements that
satisfy all of the following criteria:

1. High-priority requirements that impact mission accomplishment, customer satis-
faction, cost or system usefulness.

2. High-risk requirements that have high probability of not being met. And if they
are not met, there is a high probability of project/system failure and great conse-
quences of failure.

3. Requirements where the desired performance is not currently being met. The
causes may include the use of new or unproven technology, imposition of addi-
tional constraints (e.g., a drastic increase in the number of users), or an increase
in the performance target.

4. Requirements where the performance is expected to improve with time, where
progress toward a goal is expected.

5. Requirements where the performance can be controlled.

6. Requirements where the program manager is able to trade off cost, schedule,
and performance. If TPMs exceed their thresholds and indicate imminent cost
overruns or failure to meet performance goals, then the associated requirements
should be renegotiated with the customer. Occasionally, TPMs indicate that
performance needs are being greatly exceeded, often because of innovative
approaches, advances in technology, or materials. This is important to recognize
because resources and trade-offs can be redirected to other critical areas or
requirements.

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 237

TPMs require quantitative data to evaluate how well the system is satisfying its
requirements. Gathering such data can be expensive. Because of the expense, not all
requirements have TPMs, just the high-priority requirements. As a rule of thumb, less
than 1% of requirements should have TPMs: each program might have half a dozen
TPMs.

o TPMs should reveal the state of health of the project.
e TPMs should be important.
e TPMs should be relevant.

e TPMs should be relatively easy to measure, analyze, interpret, and communicate
with upper management.

o Performance should be expected to improve with time.

o If the measure crosses its threshold, corrective action should be known.

o The measured parameter should be controllable. If the project team cannot change
the measured parameter, then do not measure it. For example, in the design of a
home air conditioning system, the outside air temperature would be an important
design input, but a terrible TPM.

e Management should be able to trade off cost, schedule, and performance.
e TPMs should be documented.
o TPMs should be tailored for the project.

The TPMs can be displayed with graphs, charts, diagrams, figures, or frames, for
example, statistical process control charts, run charts, flow charts, histograms, Pareto
diagrams, scatter diagrams, check sheets, PERT charts, Gantt charts, line graphs, pro-
cess capability charts, and pie charts.

As an example, let us consider the design and manufacture of solar ovens. In many
societies, particularly in Africa, many women spend as much as 50% of their time
acquiring wood for their cooking fires. To ameliorate this sink of human resources,
people have been designing and building solar ovens. Let us now examine the solar
oven design and manufacturing process that we followed in a freshman engineering
design class at the University of Arizona.

First, we defined a TPM for our design and manufacturing process. When a loaf of
bread is finished baking, its internal temperature should be 95 °C (203 °F). To reach
this internal temperature, commercial bakeries bake the loaf at 230 °C (446 °F). As
initial values for our oven temperature TPM, we chose a lower limit of 100 °C, a goal
of 230 °C, and an upper limit of 270 °C. The tolerance band shrinks with time as
shown in Figure 4.8.

In the beginning of the design and manufacturing process, our day-by-day mea-
surements of this metric increased because of finding better insulators, finding better
glazing materials (e.g., glass and Mylar), sealing the cardboard box better, aiming at
the sun better, and so on.

At the time labeled “Design Change-1,” there was a jump in performance caused
by adding a second layer of glazing to the window in the top of the oven. This was
followed by another period of gradual improvement as we learned to stabilize the two
pieces of glazing material.

At the time labeled “Design Change-2,” there was another jump in performance
caused by a design change that incorporated reflectors to reflect more sunlight onto the

238 DISCOVERING SYSTEM REQUIREMENTS

A
Oven Temperature °F

U .
520 er Limit of Tolerance Bang
n

445 Goal

375

212 T T

Design Design Change in
Change -1Change -2 Requirements
A A A A A
Milestones and Reviews Completion
of Project
Time

Figure 4.8 Illustration for a technical performance measure.

window in the oven top. This was followed by another period of gradual improvement
as we found better shapes and positions for the reflectors.

But, in this case, it seemed that we might not attain our goal. Therefore, we reevalu-
ated the process and the requirements. Bread baking is a complex biochemical process
that has been studied extensively: millions of loaves have been baked each day for
the last 4000 years. These experiments have revealed the following consequences of
insufficient oven temperature:

1. Enzymes are not deactivated soon enough, and excessive gas expansion causes
coarse grain and harsh texture.

2. The crust is too thick, because of drying caused by the longer duration of baking.

3. The bread becomes dry, because prolonged baking causes evaporation of moisture
and volatile substances.

4. Low temperatures cannot produce carmelization, and crust color lacks an appeal-
ing bloom.

After consulting some bakers, our managers decided that 190 °C (374 °F) would
be sufficient to avoid the above problems. Therefore, the requirements were changed
at the indicated spot and our TPM was then able to meet our goal. Of course, this
change in requirements forced a review of all other requirements and a change in
many other facets of the design. For example, the duration versus weight tables had
to be recomputed.

If sugar, eggs, butter, and milk were added to the dough, we could get away with
temperatures as low as 175 °C (347 °F). But we decided to design our ovens to match
the needs of our customers, rather than try to change our customers to match our
ovens.

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 239

Database Register

Figure 4.9 Linkages of the TPM module. (Copyright © 2004, A. T. Bahill, from
http://www/sie.arizona.edu/sysengt/slides/. Used with permission.)

We have stated earlier that when it appears that a TPM cannot be met, the program
manager must readjust performance requirements, cost, and schedule. In this example,
we renegotiated the requirements.

If the TPM is being displayed with a graph, then the graph might contain the
goal, upper and lower thresholds, planned values, and actual values. In Figure 4.8, the
planned values were coincident with the lower limit and were not called out separately.

The requirements management module should have an attribute named TPM. The
name of each TPM should be entered in the attribute field of the appropriate requirement
and this should be linked to the TPM Module as shown in Figure 4.9. Each TPM should
also be put in the project’s Risk Register and be evaluated monthly.

Each TPM must be linked to a requirement (or a work breakdown structure element),
have quantitative values, have a risk level, and have a priority. You should only create
TPMs for requirements where you can take action to cause a change in the quantity
or result being measured.

In summary, TPMs are used to identify and track performance requirements that are
program critical. TPMs are used to establish the appropriate design emphasis and design
criteria and identify levels of technical risk. TPM are collected and tracked against
project design objectives in the project’s risk register. TPMs should be created for
high-priority requirements that impact mission accomplishment, customer satisfaction,
system usefulness, and where performance improves with time, where performance can
be controlled, and where management can trade off cost, schedule, and performance.

4.6.12 Manage Requirements

The purpose of requirements management is to (1) track and control requirements,
requirement changes, and reallocations, (2) establish system requirements traceabil-
ity to lower level design requirements and verifications (See Fig. 4.1), (3) establish
traceability and capture allocations to hardware, software, interfaces, and humans, and
(4) detect, identify, quantify, and direct attention to scope or requirements creep.

Requirements must be under configuration control. Commercial requirements tools
such as DOORS and RequisitePro help perform this function. When a defect report is
written and a change in requirements is suggested as a solution, the suggested change
must be submitted to a change control board. If the change control board approves of
the change, then the requirements are updated at the next baseline change.

4.6.13 Verify and Validate Requirements

Verification and validation are not synonyms! Because these terms are often confused,
let us examine the following dictionary definitions:

verify, v.z. 1. to prove to be true by demonstration, evidence or testimony; confirm; sub-
stantiate. 2. to test or check the accuracy or correctness of, as by investigation, comparison
with a standard, or reference to the facts.

240 DISCOVERING SYSTEM REQUIREMENTS

validate, v.7. to prove to be valid.

valid, adj. 1. having legal force; properly executed and binding under law. 2. well-grounded
on principles or evidence; able to withstand criticism or objection, as an argument; sound.
3. effective, effectual, cogent. 4. logic correctly derived or inferred according to the rules of
logic. Valid applies to that which cannot be objected to because it conforms to law, logic,
the facts, etc.

Verify means to prove that it is true by testing. Validate means to prove that it conforms
to law, logic, and the facts, that it is sound, effective, and cogent.

Validating a System. Building the right system: making sure that the system does
what it is supposed to do. Validation determines the correctness and completeness
of the product and ensures that the system will satisfy the actual needs of the
customer.

Verifying a System. Building the system right: ensuring that the system complies
with its requirements and conforms to its design.

Validating Requirements. Ensuring that the ser of requirements is correct, complete,
and consistent, that a model can be created that satisfies the requirements, that
a real-world solution can be built that satisfies the requirements, and that it can
be verified that such a system satisfies its requirements. If systems engineering
discovers that the customer has requested a perpetual motion machine, the project
should be stopped.

Verifying Requirements. Proving that each requirement has been satisfied. Verifica-
tion can be done by logical argument, inspection, modeling, simulation, analysis,
test, or demonstration.

Verification and Validation. MIL-STD-1521B (and most systems engineers) and
DoD-STD-2167A (and most software engineers) used the words verification
and validation in almost the opposite fashion (Grady, 1994). To add further
confusion, ISO-9000 tells you to verify that a design meets the requirements
and to validate that the product meets requirements. NASA has a different
spin. It says that verification consists of proving that a system (or a subsys-
tem) complies with its requirements, whereas validation consists of proving that
the total system accomplishes its purpose (Shishko and Chamberlain, 1995). In
the Capability Maturity Model Integration (CMMI), validation (VAL) is sys-
tem validation, verification (VER) is requirements verification, and requirements
development (RD) Specific Goal 3 covers requirements validation. So, at the
beginning of the system development project, it is necessary that the project
team and customer representatives all agree on the definitions of verification and
validation.

4.6.13.1 System Validation and Verification System validation artifacts can be col-
lected at the following discrete events: white papers, trade-off studies, phase reviews,
life-cycle reviews, red team reviews, SRR, PDR, CDR, and field test.

System validation artifacts that can be collected continuously throughout the life
cycle include results of modeling and simulation and a count of the number of oper-
ational scenarios (use cases) modeled. Detectable system validation defects include
mismatches between the model/simulation and the real system.

THE REQUIREMENTS DEVELOPMENT AND MANAGEMENT PROCESS 241

A sensitivity analysis can reveal validation errors. If a system is very sensitive to
parameters over which the customer has no control, then it may be the wrong system
for that customer. If the sensitivity analysis reveals the most important parameter and
that result is a surprise, then it may be the wrong system. If a system is more sensitive
to its parameters than to its inputs, then it may be the wrong system or the wrong
operating point. If the sensitivities of the model are different from the sensitivities of
the physical system, then it may be the wrong model.

Validation defects can be detected at inspections: the role of Tester should be given
an additional responsibility— validation. Tester should read the vision statement and
the concept of operation and specifically look for such system validation problems.

Systems are primarily verified at Total System Test. Sensitivity analyses can also be
used to help verify systems. In a manmade system or a simulation, unexpected excessive
sensitivity to any parameter is a verification mistake. Sensitivity to interactions should
definitely be flagged and studied: such interactions may be unexpected and undesirable.

4.6.13.2 Requirements Validation and Verification Validating requirements means
ensuring that the set of requirements is correct, complete, and consistent, a model that
satisfies the requirements can be created, and a real-world solution can be built and
tested to prove that it satisfies the requirements. If the requirements specify a perpetual
motion machine, the project should be stopped.

Here is an example of an invalid requirements set for an electric water heater
controller:

If 70° < Temp < 100°, then output 3000 watts
If 100° < Temp < 130°, then output 2000 watts
If 120° < Temp < 150°, then output 1000 watts
If 150° < Temp, then output 0 watts

This set of requirements is incomplete: What should happen if Temp < 70°? They are
inconsistent: What should happen if Temp = 125°? They are ambiguous, because units
are not given: Are those temperatures in degrees Fahrenheit or Centigrade?

Detectable requirements validation defects include incomplete or inconsistent sets of
requirements or use cases, anything that does not trace to top-level customer require-
ments (vision), and test cases that do not trace to use cases scenarios.

Validation defects can be detected at inspections: the role of Tester should be given
an additional responsibility— validation. Tester should read the vision statement and
concept of operations (ConOps) and specifically look for such requirements validation
problems.

Each requirement is verifiable by (ordered by increasing cost) logical argument,
inspection, modeling, simulation, analysis, test, or demonstration. Here are dictionary
definitions for these terms.

Logical argument: A series of logical deductions.

Inspection: To examine carefully and critically, especially for flaws.
Modeling: A simplified representation of some aspect of a system.
Simulation: Execution of a model, usually with a computer program.
Analysis: A series of logical deductions using mathematics and models.

Q4

Qs

242 DISCOVERING SYSTEM REQUIREMENTS

Test: Applying inputs and measuring outputs under controlled conditions (laboratory
environment).

Demonstration: To show by experiment or practical application (flight or road test).
Some sources say demonstration is less quantitative than test. Demonstrations
can be performed on electronic breadboards, plastic models, stereolithography
models, prototypes made in the laboratory by technicians, preproduction hardware
made in the plant using developmental tooling and processes, and production
hardware using full plant tooling and production processes.

Here are some examples of requirements verification. “The probability of receiving
an incorrect bit on the telecommunications channel shall be less than 1073.” This
requirement can be verified by laboratory tests or demonstration on a real system. “The
probability of loss of life on a manned mission to Mars shall be less than 1073.” This
certainly is a reasonable requirement, but it cannot be verified through test. It might be
possible to verify this requirement with analysis and simulation. “The probability of
the system being canceled by politicians shall be less than 1073.” Although this may
be a good requirement, it cannot be verified with normal engineering test or analysis.
It might be possible to verify this requirement with logical arguments.

The Hammer of Verification was used to verify that a pope was dead and not just
sleeping. The Cardinal Chamberlain whacked the corpse on the forehead with the
hammer. This verification technique was last used on Leo XIII in 1903.

There is a trade-off between the cost of verifying a requirement and the value
that verification adds. Good enough is often a forgotten concept in our rush to six
sigma. Creative people can always see another feature or a better way. There is a
time to send the creativity to the next project and get on with the implementation
of the current project. We have seen many examples where enormous amounts of
money were spent developing complex computer models for verification that predicted
system performance criteria to several significant digits. Whereas a reasonable pro-
totype and simple measurements demonstrated that the performance requirement was
exceeded by plus 25% or minus 15%. Usually we only need to demonstrate that
the requirement is met or exceeded. We do not have to determine the exact level to
high accuracy.

Traditional requirements verification is done by the test organization during the
testing phase. However, this is costly and ineffective for dealing with the scale and
complexity of modern systems. Built-in self-test and automated regression testing are
better alternatives.

4.6.14 Manage Risk

Identifying and mitigating project risk is the responsibility of management at all levels
in the company (Bahill and Karnavas, 2000; Smith and Bahill, 2007). Each item that
poses a threat to the cost, schedule, or performance of the project must be identified
and tracked. The following information should be recorded for each identified risk:
name, description, type, origin, probability, severity, impact, identification number,
identification date, work breakdown structure element number, risk mitigation plan,
responsible team, needed resolution date, closure criteria, principal engineer, status,
date, signature of team leader. Forms useful in identifying and mitigating risk are
given in Chapter 17 of Kerzner (1995), Section 4.10 of Grady (1994), and Chapter 3
of this handbook. For the solar oven project, we identified the following risks:

FITTING THE REQUIREMENTS PROCESS INTO THE SYSTEMS ENGINEERING PROCESS 243

1. Insufficient internal oven temperature was a performance risk. Its origin was
Design and Manufacturing. It had high probability and high severity. We mitigated
it by making it a technical performance measure, as shown in Figure 4.8.

2. High cost of the oven was a cost risk. Its origin was the Design process. Its
probability was low, and its severity was medium. We mitigated it by computing
the cost for every design.

3. Failure to have an oven ready for testing posed a schedule risk. Its origin was
Design and Manufacturing. Its probability was low, but its severity was very high.
We mitigated this risk by requiring final designs 7 days before the scheduled test
date and a preproduction unit 3 days in advance.

Models (or computer simulations) are often used to reduce risk. Low-risk portions
of the system should be modeled at a high level of abstraction, whereas high-risk
portions should be modeled with fine resolution.

4.6.15 Manage the Requirements Process

The requirements process of Figure 4.6 should be tailored for each project. This tai-
loring will accommodate special schedule and cost constraints of the project and will
incorporate customer specific needs. All of these changes should be studied to see
if they would yield improvements in the company’s standard requirements process.
This task of continually monitoring a process, in order to make changes to improve
the process, is arguably the most important task of any process. But this task is often
forgotten when the process is designed.

4.7 FITTING THE REQUIREMENTS PROCESS INTO THE SYSTEMS
ENGINEERING PROCESS

The Requirements Discovery Process of Figure 4.6 is one subprocess of the Systems
Design Process shown in Figure 4.10.

Systems engineering is a fractal process. (This metaphor was created by Bill Nick-
ell at Sandia Laboratories in 1994.) There is a vertical hierarchy. It is applied at
levels of greater and greater detail: it is applied to the system, then to the subsys-
tems, then to the components, and so on. It is applied to the system being designed,
to the enterprise in which the system will operate, and to the enterprise developing
the system. The enterprise developing the system grows and expands as the system
development process matures. Then the system development enterprise goes through
a metamorphosis as the process moves into the production and verification phases.
The system development enterprise is not a static organization, rather it is a living
organism that grows and undergoes dramatic changes during system development. The
systems engineering process is also applied horizontally. It is applied to alternative
1, then to alternative 2, then to alternative 3, and so on. It is applied to component
1, component 2, component 3, and so on. This process is recursive and iterative, and
much of it is done in parallel. This concept is shown in a poster that is available at
http://www.sie.arizona.edu/sysengr/fractal.gif.

The fact that Discover Requirements (Fig. 4.6) is a subprocess in the System Design
Process (Fig. 4.10) and that the System Design Process is a subprocess in the Systems

244 DISCOVERING SYSTEM REQUIREMENTS

.
Redesign [«
| edestan |

Describe Concept-1,

Write Use Y Define Subsystems & Ly Evaluate
Cases Y Interfaces,

Customer
Needs

Designs
Create Design
— Dlgcover — Describe Concept-2,
Requirements }
Define Subsystems &
>
Interfaces,
i te Desi
N Deflpe Create Design
Functions
Describe Concept-3,
Define Subsystems &
— Ds.\:elip L™ Interfaces,
rehitecture Create Design

Figure 4.10 The system design process tailored for the preliminary design phase. (Copyright ©
2002, A. T. Bahill, from http://www/sie.arizona.edu/sysengt/slides/. Used with permission.)

System Design
Customer A 9
Process Applied to
Needs .)
Preliminary Designs

Redesign

Redesign

System Design
Process Applied
to Models

Evaluate
Models

Redesign

System Design
Process Applied
to Prototypes

Evaluate
System

Design, Produce
and Verify System

System
Outputs

Figure 4.11 The design portion of the systems engineering process.

Engineering Process of Figure 4.11 illustrates the hierarchical nature of systems engi-
neering. We will now try to explain the repetitive aspect of the Systems Engineering
Process. In Figure 4.11, the System Design Process is applied to preliminary designs,
models, and prototypes and to the real system. However, this process is not a waterfall.
Each of the loops will be executed many times. Execution of the Redesign loop in the
upper left is very inexpensive and should be exercised often. Execution of the Redesign
loop in the lower right is expensive but should be exercised. Whereas, execution of the
Redesign loop from the lower right all the way back to the upper left is very expensive
and should seldom be exercised.

Figure 4.11, of course, only shows a part of the Systems Engineering Process. It
omits logistics, maintenance, risk management, reliability, project management, docu-
mentation, and so on.

Although it seems that the Systems Design Process has been applied like a cookie
cutter to the four phases—preliminary designs, models, prototypes, and the real

RELATED ITEMS 245

system—the emphasis should be different in each application. In the preliminary
design phase, the emphasis should be on discovering requirements and defining
functions, with some effort devoted to alternative concepts. In the modeling phase,
the emphasis should be on describing, analyzing, and evaluating alternative concepts,
with some effort devoted to rewriting requirements and redefining functions. In the
prototype phase, the emphasis should be on evaluating the prototype, modeling
the highest cost or highest risk components, with some effort devoted to rewriting
requirements, redefining functions, (and if there are multiple prototypes) describing
alternatives, and analyzing alternative concepts. And finally, when applied to the real
system, the emphasis should be on evaluating the system. When the System Design
Process is applied in the four phases, the inputs and outputs are unique and different
for each phase and must be carefully labeled accordingly. For the preliminary design
phase, the input is the customer request and the output is the candidate designs. For
the modeling phase, the input is candidate designs and the output is models and
modeling results that are the inputs for the prototype phase, and so on.

4.8 RELATED ITEMS

1. Requirements Have Attributes. The following are common attributes of require-
ments: priority, rationale, status, risk level, owner, cost, revision, date requested,
associated TPM, effort, date approved, difficulty, trace to (req), stability, trace from
(req), origin, and assigned to (person).

2. Requirements on Whom? Requirements usually describe or constrain the system
being designed. In designing an ATM machine we might write “The ATM machine
shall dispense cash within 10 seconds.” But this might impose a requirement on the
central bank: “The central bank shall confirm the account and balance within 5 seconds
of request.” This requires the definition of system boundaries. The importance of this
is that requirements on other entities are not requirements on your system. Statements
like “The pilot shall ...” are operation statements, not requirements (Hooks and Farry,
2001). Having identified the target for each requirement, gather all of the requirements
that are not requirements on your system and move them to a separate document.

3. Product or Process. Requirements can describe the product or the process for
producing the product (Abadi and Bahill, 2003). Product configuration items include
product processing, system management, framework, database, catalog processing,
hardware, and software. Example process requirements include the following

“DOORS shall be used to manage requirements.”

“IBM Rational Rose shall be used for design.”

“The project shall hold the phase reviews described in a certain document.”

UML support tools like Rose and Enterprise Architect call the process documents the
Business Model.

4. Requirements Versus Constraints. A requirement allows more than one design
option (trade-off requirements). A constraint leaves no options (mandatory require-
ments). A mandated algorithm, database, or technology would be a constraint.

5. High-Level Requirements. The system’s high-level requirements are contained
in the Mission Statement, the Concept of Operations, and the Business Model. But
we should not call them requirements. They lack the formality of requirements. They

246 DISCOVERING SYSTEM REQUIREMENTS

should be called goals or capabilities. Then the term requirements can be reserved
for formal requirements like the ones that are typically in a requirements database.
The high-level documents describe the environment the system will operate in and the
architecture of the system.

6. Requirements Versus Goals. The Mission Statement, Concept of Operations, and
Business Model contain goals, objectives, features, and capabilities. Formal require-
ments are contained in the Specific Requirements Sections of the Use Cases, Supple-
mentary Requirements Specification, and Tradition Requirements Specification (e.g., a
DOORS requirements database).

7. Concept of Operations Versus Operation Concept Description. The Concept of
Operations (ConOps) describes the mission of an enterprise and its component sys-
tems. It gives a broad outline describing a series of operations that the systems will
go through. It states what the systems must do and how they fit into the enterprise.
It may include business process models. It is usually supplied by the government or
the customer. The Operational Concept Description (OCD) is a lower-level description
of how an individual system is to be used. It is usually written by the contractor.
It is a Contract Deliverable Requirements List (CDRL) validation item. It contains
text, uses cases, and diagrams. But when the prime contractor’s Operational Con-
cept Description is given to a subcontractor, it becomes the subcontractor’s Concept
of Operations.

8. External Versus Internal. Some engineers characterize requirements as external
and internal. External requirements are driven by customer need; internal requirements
are driven by company practices and resources. For example, a systems development
company might require certain processes or technologies be used in meeting customer
requirements. Some customers will selct a supplier/system developer based on the
supplier’s internal processes and controls. The customer has confidence the supplier’s
processes and controls will deliver a quality product.

9. Requirements Versus Specifications. A requirements definition set, which we usu-
ally call the requirements, describes the functions the systems should provide, the
constraints under which it must operate, and the rationale for the requirements. It
should be written in plain language. It is intended to describe the proposed system
to both the customer and the designers. It should be broad so that many alternative
designs fit into its feasibility space.

The requirements specification, which we usually call the specification or the spec,
provides a precise description of the system that is to be built. It should have a formal
format and might be written in a technical language. It is intended to serve as the basis
of a contract between Purchasing and Manufacturing. It should narrow the feasibility
space to a few points that describe the system to be manufactured.

The set of requirements determines the boundaries of the solution space. The spec-
ifications define a few solutions within that space. The requirements say what; the
specifications say how.

10. Grouping of Requirements. Requirements should be organized into categories,
subcategories, and so forth. Requirements that are correlated should be grouped
together. Suppose a young couple wants to buy a new car. The man says his
most important requirement is horsepower and the woman says her most important
requirement is gas mileage. Although these are conflicting requirements, with a
negative correlation, there is no problem. Their decision of what car to buy will

REQUIREMENTS VOLATILITY 247

probably be based on a trade-off between these two requirements. Now, however,
assume there is another couple where the woman says her only requirement is safety
(as measured by safety claims in advertisements), but the man says his most important
requirements are lots of horsepower, lots of torque, low time to accelerate 0 to 60
mph, low time to accelerate 0 to 100 mph, low time for the standing quarter mile,
large engine size (in liters), and many cylinders. Assume the man agrees that the
woman’s requirement is more important than his. So they give safety the maximum
importance value of 10, and they only give his requirements importance values of
3 and 4. What kind of a car do you think they will buy? The man’s requirements
should have been grouped into one subcategory, and this subcategory should have
been traded off with the woman’s requirement. In summary, similar, but perhaps
dependent, requirements ought to be grouped together into subcategories.

11. Requirements Hierarchy. Grouping the requirements into categories helps to put
the requirements into a hierarchy. The requirements database should have a tree-like
structure. It should link parent—child relationships and identify siblings. It is very
important that requirements at different levels be treated separately (Bahill et al., 2007).

4.9 REQUIREMENTS VOLATILITY

It is not possible to get all of the requirements correctly, up front. Requirements
are emergent. Customers believe in the “I’ll know it when I see it” maxim. Cus-
tomers’ priorities change with time. Once low-level requirements are satisfied, then
other requirements become high priority. However, requirements volatility per se is
not bad: requirements volatility is a good thing. It means you are doing your job of
deriving, clarifying, and evolving requirements.

Throughout the design process the requirements will change. Don’t whine or com-
plain about it. Design your system so that changing requirements will affect as few
subsystems as possible. The following principles (from Bahill and Botta, 2008) will
help with changing requirements:

¢ State what not how.

o Use hierarchical, top—down design.

e Work on high-risk items first.

¢ Use evolutionary development.

o Understand your enterprise.

¢ Employ rapid prototyping.

o Develop iteratively and test immediately.
o Create modules.

¢ Create libraries of reusable objects.

e Use open standards.

o Design the interfaces.

o Control the level of interacting entities.
o Identify things that are likely to change.
o Write extension points.

e Group data and behavior.

Q6

248 DISCOVERING SYSTEM REQUIREMENTS

o Use data hiding.

¢ Do not allow undocumented functions.

o List functional requirements in the use cases.
o Allocate each function to only one component.
o Write a glossary of relevant terms.

e Provide observable states.

o Produce satisfying designs.

e Do not optimize early.

e Maintain an updated model of the system.

e Develop stable intermediates.

¢ Design for testability.

o Envelope requirements.

o Create design margins.

¢ Design for evolvability.

e Build in preparation for buying.

o Create a new design process.

o Change the behavior of people.

Traceability helps manage change. Business needs drive customer needs that produce
user needs that demand system features that engineers implement, test, and document
(See Fig. 4.1). Such tracing helps ensure that when a requirement is changed, related
requirements also reflect change. For example, if the customer no longer needs a
solution for a particular part of a problem, then certain features, requirements, and
tests can be eliminated.

Using requirements traceability will help you to (1) verify that the system does what
it is supposed to do, (2) ensure that the system does only what it is supposed to do,
(3) assess impact of change, (4) find related requirements, and (5) test related require-
ments. The basic strategy is to trace system requirements into derived requirements,
then trace requirements into designs, then trace requirements into test procedures, and
finally trace requirements into documented plans.

4.10 INSPECTIONS

To detect mistakes, software code, use cases, and requirements are now being regularly
inspected. Several engineers are each given 250 lines of code or text to study. (The
exact number of lines varies with the type of material and the phase in the system
life cycle.) Each inspector records how much time he/she spent and how many lines
he/she inspected. Each inspection lasts 2 hours. At the inspection there is a chair, a
recorder, the author, and several inspectors. Each inspector points out mistakes he/she
found. The criticality of each mistake is determined and it is assigned to a particular
person for action. Formal inspections such as these provide a wealth of data for the
metrics analysis group. Inspections save time and money and increase performance.
Each defect caught at an inspection takes, on average, 3 person-hours to correct. Each
defect caught in integration takes about 20 person-hours to correct. Each defect caught
postdelivery takes about 40 person-hours to correct.

A HEURISTIC EXAMPLE OF REQUIREMENTS 249
4.11 A HEURISTIC EXAMPLE OF REQUIREMENTS

Earlier, we discussed several ways to express requirements, such as narratives, shall
and should statements, and computer models. Here is another example, one that uses
formal logic notation. LaPlue et al. (1995) state that a requirement should contain (1) the
description of a system function and its output, (2) the name of the system that accepts
this output, (3) conditions under which the requirement must be met, (4) external
inputs associated with the requirement, and (5) all conditions that determine if the
system output is correct. The authors have organized this into a standard template:

The system shall (function)
for use by (users),
if (conditions),
using (inputs),
where (conditions).

The (function) is usually of the form (verb) (output)
They offer the following example.

Requirements for an Automated Teller Machine

3.0 Transaction Requirements
3.1 Related to the ATM User
3.1.1 Produce Receipt
3.1.2 Dispense Cash
The ATM shall dispense cash
o for use by the ATM user
o if the ATM user requested a withdrawal
e and if the Central Bank verified the account and PIN
e and if the Central Bank validated the withdrawal amount

e and if the ATM cash on hand is greater than or equal to the cash
requested

o using the Withdrawal Validation Message from the Central Bank and
the Account Verification Message from the Central Bank and the With-
drawal Request from the user

e where the amount of cash produced equals the amount requested
o and where the cash is dispensed within 10 seconds of the receipt of the
Withdrawal Validation Message from the Central Bank
3.1.3 Eject Card

3.1.3.1 Eject bank card at end of session
The ATM shall eject the bank card
o for use by the ATM user
o if the ATM user has inserted a bank card
o and if the ATM user has requested termination of session
¢ using the Bank Card and the Terminate Request

o where the Bank Card is ejected within 1 second of the receipt
of the Terminate Request

250 DISCOVERING SYSTEM REQUIREMENTS

3.1.3.2 Eject unreadable cards
The ATM shall eject the bank card

o for use by the ATM user

e if the ATM user has inserted a bank card

o and if the bank card does not contain a valid code
e using the bank card

o where the code reading and validation is as specified in Bank
Card Specifications, Section w.x.y

3.1.4 Produce Error Messages
3.2 Related to the Central Bank

3.2.1 Verify Account Message
The ATM shall produce the Verify Account Message

o for use by the Central Bank

e if the ATM user has entered a PIN

o and if the bank card contains a readable code
e using the bank card and user-entered PIN

e where the content and format is as specified in the Central Bank Inter-
face Specification, Section x.y.z

e and where the message is issued within 1 second of the final digit of
the PIN

This example shows many of the features of good requirements that were men-
tioned in this chapter. The numbering scheme manifests the tree structure of this set
of requirements: parent, child, and sibling relationships are clear. References are made
to the specifications. In each requirement, the customer is identified: for example, the
ATM user and the Central Bank. Many sequence diagrams were used to elicit these
requirements. Performance evaluation criteria are given, they are specified as maximum
values, units are given, and they are testable: for example, cash must be dispensed
within 10 seconds. The requirements state what, not how: for example, “The ATM
shall dispense cash.” The requirements identify applicable states with the conjunctive
if clauses. The word choice is correct. It is unfortunate that there is no provision for
the rationale.

4.12 THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS

So far, this chapter has followed traditional industry practices for requirements. But
it has not presented a process for actually capturing the requirements (Section 4.6.5
was vague). Modern system design is now use case based. The use cases capture
the required functional behavior of the system. So then, why not use the use cases
to capture the requirements? The following presentation of this hybrid process for
capturing requirements is based on Daniels and Bahill (2004).

We start this section with a description of a use case and an example. A use case is
an abstraction of a required behavior of a system. A use case produces an observable
result of value to an actor. An actor is the role that a user (or some other object) plays
with respect to the system. A typical system will have many use cases, each of which

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 251

satisfies a goal of a particular actor. Each use case describes a sequence of interactions
between one or more actors and the system. A use case narrative is written in a natural
language. It is written as a sequence of numbered steps with a main success scenario
and alternate flows. This sequence of interactions is contained in a use case report and
the relationships between the system and its actors are portrayed in use case diagrams.
Here is an extremely simple example of a use case for the status-monitoring portion of
a heating, ventilation, and air conditioning (HVAC) system for a typical Tucson house
(Bahill and Daniels, 2003).

Name: Display System Status.
Brief Description: Indicate the health of the HVAC system.
Added Value: Home owner knows if the system is working properly.
Scope: An HVAC controller for a Tucson house.
Primary Actor: Home owner.
Frequency: Typically once a day.
Main Success Scenario
1. Home owner asks the system for its status.
2. Each component in the system reports its status to the Controller.
3. The system accepts this information and updates the System Status display.
4. Home owner observes the System Status [exit use case].
Alternate Flows
Specific Requirements
Functional Requirements
1. Each component shall report its status to the Controller.
2. The system shall display the System Status.

Nonfunctional Requirement: The System Status shall be displayed within 2 seconds
of request.

Author: Terry Bahill.
Last Changed: June 20, 2007.

Use cases can be used to derive traditional requirements. A traditional require-
ments specification, which provides imperative textual statements, serves as the primary
means for systems engineers to bound and communicate system capabilities and con-
straints. However, in recent years the popularity of documenting software requirements
with use cases has increased dramatically, with use case-based analysis becoming the
foundation of modern software analysis techniques. Due to the success of the use case
approach in the software community, systems engineers have started using use cases as
a tool to document system requirements (Bahill and Daniels, 2003). Using a common
methodology for requirements elicitation helps align systems engineers and software
engineers, allowing for an easier transition from system and subsystem requirements
into software requirements. We think that the combination of shall-statement require-
ments and use case modeling techniques provides a complementary and synergistic way
to document and communicate relevant information to effectively design, develop, and
manage complex systems. We believe that the resultant quality and clarity of knowledge
gained through the combination of two methodologies, use cases and shall-statement
analysis, is worth the time spent.

252 DISCOVERING SYSTEM REQUIREMENTS

This section assumes a rudimentary knowledge of use cases. Many references are
available to introduce unfamiliar readers to use cases (Armour and Miller, 2001; Bahill
and Daniels, 2003; Cockburn, 2001; Daniels and Bahill, 2004; Kulak and Guiney, 2000;
Leffingwell and Widrig, 2000; Overgaard and Palmkuvist, 2005).

4.12.1 Why Write a Requirements Specification?

Requirements are documented so that the characteristics of the to-be system can be
discussed and analyzed by engineers and stakeholders to facilitate a shared clear
vision of the proposed system. Systems engineers and architects use the requirements
set to ensure system and enterprise-wide coverage of capabilities and characteristics.
Implementation engineers use the agreed-upon requirements set to derive additional
requirements and develop subcomponents that contribute to a system that meets those
requirements. Program managers track requirements volatility to measure and moni-
tor risks associated with requirements creep and redefinition. Customers sign off on
requirements during acceptance testing to ensure that the capabilities offered by the
system meet their needs and intent. It is clear that gathering, discussing, and deriving
requirements is an essential step in the engineering process to ensure that the system,
once built, actually satisfies the stakeholders’ needs.

4.12.2 Problems with Traditional Requirements

A traditional requirements specification attempts to document the imperative func-
tionality and constraints of a system by enumerating each requirement using “shall”
notation through which individual capabilities and constraints are expressed (e.g., “The
system shall ...”). The requirements set is typically structured according to functional
areas, and each requirement is attributed, possibly traced to and traced from other
requirements. Shall statements are used to describe different types of requirements
such as functional, performance, security, reliability, availability, and usability.

However, if the requirements specification consists solely of shall-statement require-
ments, then for even a moderately complex system, the requirements set can become
unwieldy, containing hundreds or thousands of requirements. This by itself is not a
problem, as modern systems are very complex and often need this level of detail to
avoid ambiguity. The problem is that documenting the requirements as a set of dis-
crete and disembodied shall statements without context makes it difficult for the human
mind to comprehend the set and fully interpret the intent and dependencies of each
requirement. This makes it hard to detect redundancies and inconsistencies. In short,
large shall-statement requirement specifications make it difficult for engineers and cus-
tomers to really understand what the system does! Because there is no straightforward
way to assimilate the requirements set, requirements are often misinterpreted, redun-
dant, and incomplete (Bahill and Henderson, 2005), which can result in inferior, overly
expensive systems and ultimately dissatisfied stakeholders.

4.12.3 Use Cases

Use cases have been accepted by the software community as a requirements gathering
and documentation tool that captures system requirements through generalized, struc-
tured scenarios that convey how the system operates to provide value to at least one of

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 253

the system’s actors. The primary reason why use cases have become a popular method
is the simple and intuitive way in which the system’s behavior is described. Use case
models are designed to serve as a bridge between stakeholders and the technical com-
munity. Through a use case model, stakeholders should be able to readily comprehend
how the system helps them fulfill their goals. Simultaneously, engineers should be able
to use the same information as a basis for designing and implementing a system that
executes the use cases.

A set of use cases (collectively referred to as the use case model) should describe
the fundamental value-added services that users and other stakeholders need from the
system (Adolph and Bramble, 2003). Use cases can be thought of as a structured,
scenario-based method to develop and represent the behavioral requirements for a
system. The use case approach subscribes to the notion that each system is built to
support its environment or actors—be it human users or other systems. Use cases, by
definition, describe a series of events that, when completed, yield an observable result
of value to a particular actor (Jacobson et al., 1995). The fundamental concept is that
systems designed and developed from use cases will better support their users.

Ultimately, use cases have been shown to be a simple and effective tool for spec-
ifying the behavior of complex systems (Jacobson et al., 1995). Therefore, it is no
surprise that systems engineers have started using this method for documenting and
communicating requirements.

4.12.4 The Difficulty

Although use cases solve some of the problems with specifying requirements when
contrasted with the shall-statement method, there are issues with applying use cases to
solve systems engineering problems. There are a few possible reasons for these issues:

Use cases don’t look like a traditional requirements specification.
Use cases feel somewhat vague.
Use cases do not contain all of the requirements.

el

The completeness of a set of use cases is sometimes difficult to assess, especially
for unprecedented complex systems.

Other contributing factors result because older systems engineers and customers do
not have much experience with use cases. Systems engineers have been accustomed
to developing traditional requirement specifications. Use cases were a departure from
the past. It is our belief that use cases will soon be commonplace. Until then, it is
important to educate customers and systems engineers on the use case concepts and
the fact that employing use cases into the overall systems engineering process will
help reduce risk and increase the probability of delivering the system expected by the
customer.

Additionally, the UML specifications (Object Management Group, 2007) do not
provide much guidance on applying use cases. Many authors, including Cockburn
(2001), Armour and Miller (2001), and Bahill and Daniels (2003), have improved
on the available literature and give good practical direction on applying use cases.
The IBM Rational Unified Process provides detailed guidance on practical methods
to employ use cases in both systems and software engineering projects (Jacobson
et al., 1999).

254 DISCOVERING SYSTEM REQUIREMENTS

4.12.5 Strengths and Weaknesses

Use case modeling has shown strengths in many areas of requirements capture. The
dialogue between the system and the actor that is expressed in a use case’s sequence
of events explains clearly how a system reacts to stimuli received by the system’s
actors. What engineers typically do not realize is that the actual functional requirements
are embedded in the sequence of events. In other words, a use case describes the
requirements. Whenever a use case’s sequence of events indicates that the system
performs some function, a functional requirement has been imposed on the system.
Each use case is chock full of functional requirements (possibly multiple requirements
per sentence!) when viewed this way. By design, the requirements are an integral part
of a use case’s natural language story.

A use case’s strength is also its weakness. To keep use cases simple, readable,
and manageable, they can only tell a fraction of the complete story without becoming
unwieldy and difficult to understand (Cockburn, 2001). Use cases alone were not meant
to capture all of the requirements. A use case is very good at capturing the functional
requirements for a system in an understandable and unthreatening way. However, shall
statements, diagrams, tables, equations, graphs, pictures, pseudocode, state machine
diagrams, sequence diagrams, use case diagrams, statistics, or other methods must still
be used to capture additional requirements and add richness to provide a sufficient level
of detail to adequately characterize a system. All of these artifacts may be related to a
use case, but they are typically not expressed directly into a use case’s natural language
story. In some instances, use cases are not the best method to express a system’s
functional requirements. For example, systems that are algorithmically intense and do
not have much interaction with their environment may be better described using some
other method—although use cases can be used in these cases too (Cockburn, 2001;
Jacobson, 2000).

To summarize, use cases excel on being understandable, at the expense of being
potentially ambiguous. Shall-statement requirements are typically very well defined and
often stand alone, where individual capabilities are expressed in a rather abstract way,
out of context with the rest of the system’s characteristics. The use of shall-statement
requirements alone makes it more difficult for engineers and stakeholders to assess
one requirement in a virtual sea of disjointed capabilities. Shall statements are very
good at precise expression, while use cases are good at communicating requirements
in context. This tension promotes the need for a combined use case—shall-statement
approach, where the system’s behavior is documented precisely and understandably in
the same way that it is derived—by analyzing all of the discrete, end-to-end interactions
between actor and system that ultimately provide some value to an actor.

4.12.6 Hybrid Requirements Capture Process

The Specific Requirements section of a use case report was originally intended to cap-
ture the nonfunctional requirements, which are typically performance requirements on
a particular use case step, using shall-statement notation. Daniels and Bahill (2004)
proposed using the Specific Requirements section to capture not only nonfunctional but
also functional requirements specified in the use case using shall-statement notation.
When the shall-statement requirements are captured in this way, they retain their con-
text since they can readily be traced to the use case sequence of events from which they

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 255

were derived. Using this approach, the understandability of the use case is balanced
by the razor-sharp precision of shall statements.

Engineers will also discover requirements that do not fit nicely within the con-
text of one use case, but rather they characterize the system in general. These global
requirements should be put into a separate Supplementary Requirements Specification
using shall-statement notation. The Supplementary Requirements Specification is inde-
pendent of the use case model and is intended to contain all of those requirements
that do not apply cleanly to any single use case. Requirements that describe physical
constraints, security (physical security, antitampering and information assurance), qual-
ity, reliability, safety, usability, supportability requirements, or adherence to standards,
for example, are good candidates for inclusion in the Supplementary Requirements
Specification. These types of requirements are typically not local to a specific use
case. The hybrid process described in this section includes the use of a Supplementary
Requirements Specification for capturing these classes of requirements.

The use case model (which contains the individual use case reports) together with the
Supplementary Requirements Specification constitutes a way to completely document
a system’s requirements in an exact, yet understandable manner. In many cases, this
alone will be satisfactory for specifying the requirements. However, some customers
may still dictate that a traditional shall-statement specification be developed. We discuss
this in the next section.

Table 4.1 uses some of the qualities of good requirements to compare and contrast
the three requirement-gathering methods presented so far: shall statements, use cases,
and the hybrid process using both use cases and shall statements. Each technique is
given a rating from 1 to 3 for each quality (3 being the best) to assess how well the
technique promotes requirements best practices. We believe that the hybrid process
encompasses the strengths of each technique and excels in each quality.

Necessary. The use case method excels here. Since use cases are driven by actor
needs, each use case represents a set of capabilities that are of value to the
system’s stakeholders. It is hard to determine whether a shall-statement require-
ment is necessary without considering the entire requirements set and additional
documentation. The hybrid process, due to its use case-driven foundation, rates
highly.

Verifiable. Since shall-statement requirements are concise and discrete, they are, in
principle, easier to verify than a use case that can dish out multiple require-
ments in a single sentence. The hybrid process retains the discrete nature of the
shall-statement requirements, which makes them easier to verify.

TABLE 4.1. Rating the Requirements Methods

Quality Shall-Statement Method Use Cases Hybrid Process
Necessary 1 3 3
Verifiable 3 1 3
Unambiguous 3 2 3
Complete 2 3 3
Consistent 1 2 3
Traceable 2 2 3

256

DISCOVERING SYSTEM REQUIREMENTS

Unambiguous. Shall-statement requirements are more likely to be unambiguous,

because they can be written much more tersely and precisely. Use cases, due
to their narrative format, are not as well suited to the same accuracy in expres-
sion. The context provided by a use case helps remove some of the ambiguity.
The hybrid process takes the best of both worlds—context with use cases, and
freedom to use more precise wording with shall statements.

Complete. A use case is structured in terms of basic and alternative paths, giving a

clear understanding of when a requirement applies, and when it does not. Since
use cases are generated by considering the needs of all of the system’s actors, it
is much less likely that requirements will be missed. Use cases are an excellent
way to help ensure that the requirements set is complete. It is difficult to deter-
mine whether a shall-statement requirement set is complete without referencing
the entire documentation. But many times, due to the structure of the require-
ments set, you can look for incompleteness (Davis and Buchanan, 1984). The
hybrid process retains the use case method’s excellence in complete requirements
description.

Consistent. Use cases typically deal with one goal at a time and therefore it is

easier to separate requirements and reduce the risk of conflicting with other
requirements. However, neither method alone excels at ensuring a consistent
requirements set. The hybrid process, using the supplementary specifications,
provides a mechanism to extract requirements that apply across use cases and
specify them in one place. This helps maintain the consistency across the
set and reduces duplicity. We do admit that requirements extracted from use
case narratives may need to be refined and aggregated into a comprehensive,
nonredundant set of system functional requirements for formal, high-ceremony
projects.

Traceable. Use cases, through their actor-driven derivation, are easily traced to

higher-level actor goals. However, it is not as straightforward to allocate specific
use case requirements to the system components. Shall statements can be traced
through a numbering scheme as parent—child requirements. The hybrid process
retains the traceability to actor goals through use cases and allows the shall
statements to be allocated to system components. The use of object models such
as sequence diagrams in the hybrid specification helps allocate responsibilities
and requirements to the components of the system.

4.12.7 Hybrid Process Defined

There are many methods for gathering requirements. For complex systems, we believe
that a combined use case and shall-statement approach should be employed to capture
a system’s requirements. Use cases provide understandability, context, and direct trace-
ability to actor needs and interfaces. Shall-statement requirements add the precision
necessary to completely and unambiguously specify the system. With any approach,
early and frequent interview and review iterations should be conducted with the stake-
holder community to ensure that their concerns and desires are addressed.
The hybrid process for capturing requirements proceeds as follows.

1.

Using the system vision statement, the concept of operations (ConOps), descrip-
tion of needed system capabilities, and interviews with the customer, develop a

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 257

business model to understand how the system under design fits into the overall
enterprise. The business model provides context for the system and can profoundly
increase the quality of later analysis. Jacobson et al. (1995) presents a practical
methodology for defining business models using use case and object-oriented
techniques.

2. Discover the system’s actors and their goals with respect to the system under
design. The business model is a valuable input in accomplishing this task. Define
the system architecture.

3. Use the actor goals to sketch out the use case reports, concentrating on use case
names and brief descriptions.

4. Iterate on the important or architecturally significant use cases, filling out more
and more detail in the reports and capturing alternative sequences of events,
preconditions, and postconditions.

5. Extract the functional requirements from each use case’s Brief Description, Added
Value, and flow of events and document them in the Specific Requirements
Section of the use case report, or the Supplementary Requirements Specification
if they apply to many use cases. Ensure that traceability is maintained.

6. In each use case report, document the nonfunctional requirements, typically per-
formance, in the Specific Requirements section as they apply to each use case.

7. In parallel with steps 5 and 6, develop a Supplementary Requirements Specifica-
tion to capture system-wide requirements that do not fit cleanly into individual
use case reports.

8. Iterate on the use case set to ensure consistency and completeness as the program
progresses.

If a traditional requirements specification (shall-statement requirements only) is to be
developed, combine the requirements documented in each use case report’s Specific
Requirements section, along with the Supplementary Requirements Specification, to
generate the traditional requirements specification. This should be primarily a simple
copy and paste operation. Figure 4.12 shows this Hybrid Requirements Process. Most
of this figure is derived from the standard UML use case process. The new task is
Extract functional requirements, which is highlighted.

Extract
functional
requirements

Vision, Develop Define Write Capture Use Case
ConOps & business ¥ actors & |—®{ use case —® nonfunctional Requirements
Capabilities model architecture reports requirements Specification

7'y
Develop
supplementary
y requirements

Revise (4

Figure 4.12 The hybrid process for capturing requirements in use cases. (Copyright © 2004,
A. T. Bahill, from http://www/sie.arizona.edu/sysengr/slides/. Used with permission.)

258 DISCOVERING SYSTEM REQUIREMENTS

Step 5 above “Extract functional requirements” is really what this section is about
and therefore deserves more attention. As mentioned before, a use case describes the
functional requirements. Wherever in a use case’s sequence of events, a system capa-
bility or function is called out, for example, “The system finds...,” or “The system
sends...,” or “The system checks. ..,” or “The system displays. ..,” functional require-
ments are being imposed on the system. Step 5 above is about scanning through the
use case’s sequence of events and extracting out all such statements of behavior, as
well as derived requirements that are not explicitly stated. These extracted and derived
requirements can then easily be translated into the shall-statement requirements, for
example, “The system shall find...,” “The system shall send...,” “The system shall
check...,” “The system shall protect....” This is where the precision comes in and
where shall statements excel. Using natural language, as advocated with use cases to
make them accessible by everyone, it is often difficult to be precise and easy to under-
stand at the same time. Extracting functional requirements and incorporating derived
requirements in this way allows for precise statements of capability without disrupting
the narrative unfolding within a use case. The fact that these shall-statement require-
ments were extracted from and traced to use cases (very likely to a specific use case
step) provides higher confidence that they actually satisfy a real need from the actor’s
perspective—this is where use cases excel. Use cases also make the functional require-
ments derivation process straightforward. It is relatively easy to scan the use case’s
text and find functional requirements, thus providing a catalyst for identifying other
categories of requirements.

What we are left with is a shall-statement representation of the requirements con-
tained in a use case, which can then be made more precise than the use case narrative.
Since these requirements are traceable back to the use case narrative, we can always
go back and get the context from which it was derived. We cannot stress enough that
it is critical that the stakeholders be involved as much as possible in the use case
generation and validation activities to ensure that the resulting specification is driven
by their needs. Use cases make this easier.

Individual requirements, use cases, and the traceability and attributes of each should
be managed in a requirements management tool. We recommend selecting tools that
allow free-form text-based specification for documenting use cases and shall statements
in addition to an underlying repository for storing and manipulating the requirements
as database records. This allows use of analysis tools such as trend analysis, trace
matrices, and reports, while keeping the use cases and requirements in user-friendly
document format. As requirements are changed in the document, the database should
automatically be kept in synch, and vice versa; if the database is updated, the document
is synchronized accordingly.

The UML class diagram given in Figure 4.13 shows how use case, requirement,
and specification concepts are related. For a given system, a Use Case Requirements
Specification contains one Use Case Model and one Supplementary Requirements
Specification. A Use Case Model contains one or more Use Case Reports. Each
Use Case Report contains one or more Sequences of Events (one main sequence of
events, and zero or more alternative sequences), as well as one Specific Requirements
section. The sequence of events within the Use Case Report contains the informal
functional requirements for that use case, while the Specific Requirements section con-
tains the nonfunctional requirements and the formal functional requirements extracted
from the Sequence of Events. The Functional Requirements trace to steps in the

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 259

Use Case
Requirements
Specification
1 1
Use Case Model Supplementary
r'y Requirements
Specification

0 * 1 * A
UML Diagrams — » =
Use Case Report

Other Sections Sequence of Specific
Events Requirements
| T Section
E.g. brief trace ¥
description, VL 1.
preconditions, (1. 0..*
FesiEImaAient, Functional Nonfunctional
rules, etc. . !
Requirements Requirements
1.% 0.*
1 . '*
2 : 1.

System Wide
Traditional Requirements Specification 4 | Requirements

Figure 4.13 UML class diagram depicting the components and interrelationships of a hybrid
requirements specification. Lines with arrowheads are generalizations. Lines with diamond heads
are aggregation relationships. The numbers represent multiplicities. (From J. Daniels, and A. T.
Bahill, (2004). Hybrid process combines traditional requirements and use cases. Syst. Eng.
7(4):303-319. Copyright © 2004. Reprinted with permission of John Wiley & Sons, Inc.)

Sequence of Events. The Functional Requirements part of Figure 4.13 is the bridge
between the behavior of the system and the Traditional Requirements Specification. It
helps systems engineers to get the requirements right. Most of Figure 4.13 is derived
from the standard UML use case process. The new parts, which are highlighted, are
the Functional Requirements and their relationship to the Traditional Requirements
Specification.

The Supplementary Requirements Specification contains system-wide requirements
that do not fit nicely within the Sequence of Events or Specific Requirements section
of one of the use cases. A Traditional Requirements Specification can be generated by
combining the Functional Requirements and Nonfunctional Requirements from each
Use Case Report along with the system-wide requirements from the Supplementary
Requirements Specification.

In a traditional systems engineering environment, Test Procedures are detailed and
sequential. Sometimes they look like a use case Sequence of Events. The Requirements
Specification may have hundreds of requirements and it paints a picture of the system
being designed. It is usually written before the test procedures, but it might not bear
a close resemblance. The Design Model captures the architecture and the interfaces.
What do these three views of the system have in common? In our hybrid process,

260 DISCOVERING SYSTEM REQUIREMENTS

Mission
Statement
/' v\
Ve N
Traces to Traces to
2 N
Concept of Business
Operations Model
v P 4
~ ey
Traces to Tracesto
N
Use Case
Requirements
Specification
PE4 A A S
- | S
Traces to Traces to Traces to
_- s I ~ -
— I ~
Procedures Specification Model

Figure 4.14 The ancestry model for system documentation. (From J. Daniels and A. T.
Bahill, (2004). Hybrid process combines traditional requirements and use cases. Syst. Eng.
7(4):303-319. Copyright © 2004. Reprinted with permission of John Wiley & Sons, Inc.)

they have a common ancestor: the Use Case Requirements Specification, as shown in
Figure 4.14.

A human, a chimpanzee, and an orangutan have a common ancestor. Archeologists
studying primate evolution have never seen this missing link, but they have a good
idea what it would look like. Tracing ancestors has been a big research effort over the
last few centuries: it evidentially is a useful scientific method. Continuing with this
analogy, the Use Case Requirements Specification is the missing link in the traditional
systems engineering process. Its place is shown in Figure 4.14.

The Mission Statement, Concept of Operations, and Business Model contain goals,
objectives, capabilities, features, constraints, and top-level functions. The formal
requirements are contained in the Specific Requirements sections of the Use Cases,
the Supplementary Requirements Specification, and the Traditional Requirements
Specification.

4.12.8 Hybrid Process Example

Here we give a simple example of a use case and a use case diagram (Figure 4.15)
that helps illustrate the concepts presented in this section. This example is based
on the Microwave Oven Software Product Line Case Study given in Gomaa (2004),
which contains some very nice use case modeling examples. This one was selected
due to its simplicity. Two other examples of implementing this hybrid process for
capturing requirements are available at the Umpire’s Assistant (2005) and the Spin
Coach (2006).

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 261

Initiator = Cook >
Food
Cook Microwave Oven System Timer

Figure 4.15 Use case diagram for a microwave oven system. (Copyright © 2004, A. T. Bahill,
from http://www/sie.arizona.edu/sysengt/slides/. Used with permission.)

Use Case Name: Cook Food.

Brief

Description: This use case describes the user interaction and operation of

a microwave oven. Cook invokes this use case in order to cook food in the
microwave.

Added Value: Food is cooked.
Scope: A microwave oven.

Primary Actor: Cook.

Supporting Actors: Timer.

Preconditions: The microwave is waiting to be used.

Main
1.

AN

8.
9.

Success Scenario

Cook opens the microwave oven door, puts food into the oven, and then closes
the door.

Cook specifies a cooking time.

System displays entered cooking time to Cook.

Cook starts the system.

System cooks the food and continuously displays the remaining cooking time.

Timer indicates that the specified cooking time has been reached and notifies
the system.

System stops cooking and displays a visual and audio signal to indicate that
cooking is completed.

Cook opens the door, removes food, and then closes the door.
System resets the display [exit use case].

Alternate Flows

4a.
4b.
4c.

Sa.

5b.

If Cook attempts to start the system without closing the door, then the system
will not start.

If Cook attempts to start the system without placing food inside, then the
system will not start.

If Cook enters a cooking time equal to zero, then the system will not start.

If Cook opens the door during cooking, the system will stop cooking. Cook
can either close the door and restart the system (continue at step 5), or Cook
can cancel cooking.

Cook cancels cooking. The system stops cooking. Cook may start the system
and resume at step 5. Alternatively, Cook may reset the microwave to its
initial state (cancel timer and clear displays).

Author: Hassan Gomaa.
Last Changed: October 23, 2004.

262

DISCOVERING SYSTEM REQUIREMENTS

Specific Requirements

Functional Requirements

Req. F1: The system shall provide a mechanism for Cook to enter a cooking
time [from step 2].

Req. F2: The system shall be capable of displaying the cooking time entered by
Cook [from step 3].

Req. F3: The system shall cook food using microwave radiation [from step 5].

Req. F4: The system shall be capable of calculating and displaying the remaining
cooking time [from step 5].

Req. F5: The system shall interface with a timer mechanism such that the system
is stopped when the timer elapses [from step 6].

Req. F7: The system shall emit an audible signal when the timer has elapsed
[from step 7].

Req. F8: The system shall indicate visually when the timer has elapsed [from
step 7].

Req. F9: The system shall be capable of determining whether the oven door has
been closed [from step 1a].

Req. F10: The system shall not start, if the system detects that the door is open
[from step 4a].

Req. F11: The system shall be capable of determining if food has been placed
in the oven [from step 4b].

Req. F12: The system shall not start, if the system detects that no food has been
placed in the oven [from step 4b].

Req. F13: The system shall stop running if the oven door is opened while the
system is running [from step 5a].

Req. F14: The system shall provide a mechanism to cancel a cooking time entered
by Cook [from steps 5a and 5b].

Req. F15: The system shall stop running if the cooking time is canceled while
the system is running [from steps 5a and 5b].

Nonfunctional Requirements

Req. N1: The system shall allow Cook to enter the cooking time in less than five
keystrokes [refinement of Req. F1, obtained from stakeholder interviews].

Req. N2: The cooking time displayed by the system shall be visible to a person
with 20/20 vision standing 5 feet from the oven in a room with a luminance
level between 0 and 100 foot-candles [refinement of Req. F2, obtained from
stakeholder interviews].

Req. N3: The system shall raise the temperature of food in the oven such that
temperatures at two distinct locations in the food are different by less than 10%
[refinement of Req. F3, obtained from stakeholder interviews where stakehold-
ers desire even cooking of food].

Req. N4: The system shall update the remaining cooking time display every
second [refinement of Req. F4].

Req. N5: The audible signal emitted by the oven shall have an intensity level of
80 decibels £ 2 decibels [refinement of Req. F7, obtained from stakeholder
interviews].

THE HYBRID PROCESS FOR CAPTURING REQUIREMENTS 263

Req. N6: The system shall detect food items weighing at least 0.05 ounce and
with a volume of at least 1 cubic inch [refinement of Req. F11, obtained from
stakeholder interviews].

Req. N7: The system shall comply with Section 1030 of Title 21—Food and
Drugs, Chapter [—Food and Drug Administration, Department of Health and
Human Services, Subchapter J: Radiological Health [refinement of Req. F3,
specifies required compliance with health standards].

Req. N8: The system shall provide a minimum of 14%-in width x 8%-in. height x

15%—in. depth inside cooking area volume [from step 1, obtained from stake-
holder interviews].

Req. N9: The cooking time shall be adjustable between 1 second and 90 minutes
[refinement of Req. F1, obtained from stakeholder interviews].

4.12.9 Hybrid Process Summary

Use case models and traditional shall-statement requirements are synergistic specifi-
cation techniques that should be employed in a complementary fashion to best com-
municate and document requirements. Are use cases requirements? Not exactly—they
are a vehicle to discover requirements. The requirements are actually embedded within
the use case’s textual description, making use cases a container for the requirements.
How do use cases relate to a traditional requirements specification? Use cases provide
context for requirements that are documented using shall-statement notation in a tradi-
tional requirements specification. These shall-statement requirements can be extracted
from a use case’s narrative. Where are the requirements actually documented? We
suggest that the requirements be documented using the requirements specification
structure illustrated in Figure 4.13. This structure includes (1) a Use Case Model
for capturing requirements that are associated with individual use cases and (2) a
Supplementary Requirements Specification for capturing system-wide requirements.
The specific contribution of the Daniels and Bahill (2004) paper was the introduc-
tion of a Functional Requirements part to the Specific Requirements section. This
Functional Requirements part contains the functional requirements written in formal
shall-statement language. A problem with the hybrid process is that it produces spe-
cific, low-level, design requirements. We do not know if these can be abstracted to
high-level customer requirements or goals. This section has shown an example illustrat-
ing the hybrid process for combining use case models with traditional shall-statement
requirements.

System design often starts with the use cases. Then, as shown in this section, the
requirements can be elicited in the use cases. Sequence diagrams can be drawn to
solidify the use case models. Then classes will be formed. The functional requirements
help the designer to identify the functions or operations of each class. Finally, the
relationships between classes are defined. This now produces a model on which the
system can be designed.

In summary, the hybrid requirements process captures shall-statement requirements
in the use case Sequences of Events. These functional requirements are put in the Spe-
cific Requirements section of the Use Case Report. These functional requirements can
also be put into the class diagrams and a requirements database to support traditional
specs and tracing.

Q7

Q8

Q9

264 DISCOVERING SYSTEM REQUIREMENTS
4.13 CONCLUSION

Customer dissatisfaction, cost overruns, and schedule slippage are often caused by poor
requirements that are produced by people who do not understand the requirements pro-
cess. This chapter provides a high-level overview of the system requirements process
and explains types, sources, and characteristics of good requirements. System require-
ments, however, are seldom stated by the customer. Therefore, this chapter shows ways
to help you work with your customer to discover the system requirements. It explains
terminology commonly used in the requirements development field, such as verifica-
tion, validation, technical performance measures, and the various design reviews. It
also presents the hybrid process for capturing requirements in use cases. Developing
executable models is often a part of the requirements process.

ACKNOWLEDGMENTS

Rob Culver and Bill Wuersch at BAE Systems in San Diego contributed ideas
about requirements. Matt Bishop at Boeing in Seattle made suggestions for this
chapter. An earlier version of this chapter is available at http://www.sie.arizona.edu/
sysengr/requirements.

REFERENCES

Abadi, C. D., and Bahill, A. T. (2003). The difficulty in distinguishing product from process.
Syst. Eng. 6(2):108—-115.

Adolph, S., and Bramble, P. (2003). Patterns for Effective Use Cases. Reading, MA: Addison-
Wesley.

Armour, F., and Miller, G. (2001). Advanced Use Case Modeling. Reading, MA: Addison-
Wesley.

Bahill, A. T., and Botta, R. (2008). Fundamental principles of good system design. Eng. Manage.
J. XeX-X.

Bahill, A. T., and Chapman, W. L. (1993). A tutorial on quality function deployment. Eng.
Manage. J. 5(3):24-35.

Bahill, A. T., and Daniels, J. (2003). Using object-oriented and UML tools for hardware design:
a case study. Syst. Eng. 6(1):28-48.

Bahill, A. T., and Henderson, S. J. (2005). Requirements development, verification and validation
exhibited in famous failures. Syst. Eng. 8(1):1-14.

Bahill, A. T., and Karnavas, W. J. (1992). Bat Selector. U. S. Patent 5,118,102.

Bahill, A. T., and Karnavas, W. J. (2000). Risk analysis of a pinewood derby: a case study.
Syst. Eng. 3(3):143—-155.

Bahill, A. T., Botta, R., and Daniels, J. (2006). The Zachman framework populated with baseball
models. J. Enterprise Archit. 2(4):50—68.

Bahill, A. T., Szidarovszky, F., Botta, R., and Smith, E. D. (2007). Valid models require defined
levels. Int. J. Gen. Syst. X:X-X.

Bicknell, K. D., and Bicknell, B. A. (1994). The Road Map to Repeatable Success: Using QFD
to Implement Change. Boca Raton, FL: CRC Press.

Booch, G., Rumbaugh, J., and Jacobson, L. (2005). The Unified Modeling Language User Guide.
Reading, MA: Addison-Wesley.

Q10
Ql1

Q12

QI3

Ql4

REFERENCES 265

Botta, R., and Bahill, A. T. (2006). A prioritization process. In: Proceedings of 16th Annual
International Symposium of INCOSE, Orlando, FL, July 9-13.

Botta, R., and Bahill, A. T. (2007). A prioritization process. Eng. Manage. J. September:X—X.

Botta, R., Bahill, Z., and Bahill, A. T. (2006). When are observable states necessary? Syst. Eng.
9(3):228-240.

Chapman, W. L., Bahill, A. T., and Wymore, W. (1992). Engineering Modeling and Design.
Boca Raton, FL: CRC Press.

Chapman, W. L., and Bahill, A. T. (1996). Design modeling and production. In: The Engineering
Handbook (R. C. Dorf, ed.), pp. 1732—1737. Boca Raton, FL: CRC Press.

Cockburn, A. (2001). Writing Effective Use Cases. Reading, MA: Addison-Wesley.

Daniels, J., and Bahill, A. T. (2004). Hybrid process combines traditional requirements and use
cases. Syst. Eng. 7(4):303-319.

Daniels, J., Werner, P. W., and Bahill, A. T. (2001). Quantitative methods for tradeoff analyses.
Syst. Eng. 4(3):190-212.

Davis, R., and Buchanan, B. G. (1984). Meta-level knowledge. In: Rule-Based Expert Systems,
The MYCIN Experiments of the Stanford Heuristic Programming Project (B. G. Buchanan
and X. Short liffe, eds.), pp. 507-530. Reading, MA: Addison-Wesley.

Deming, W. E. (1982). Out of the Crisis. Cambridge, MA: MIT Center for Advanced Engineering
Study.

Feynman, R. (1949). Space—time approach to quantum electrodynamics. Phys. Rev., 76:769—
789.

Gause, D. C., and Weinberg, G. M. (1990). Are Your Lights On? How to Figure Out What the
Problem Really Is. New York: Dorset House Publishing.

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Reading, MA: Addison-Wesley.

Grady, J. O. (1993). System Requirements Analysis. New York: McGraw-Hill.

Grady, J. O. (1994). System Integration. Boca Raton, FL: CRC Press.

Hooks, I. (1994). Writing good requirements. In: Proceedings NCOSE, pp. 197-203.

Hooks, I. F., and Farry, K. A. (2001). Customer-Centered Products: Creating Successful Products
Through Smart Requirements Management. New York: AMACOM.

Jacobson, 1., (2000). Use Cases in Large-Scale Systems, Road to the Unified Process. Cambridge,
UK: Cambridge University Press.

Jacobson, 1., Ericsson, M., and Jacobson, A. (1995). The Object Advantage: Business Process
Reengineering with Object Technology. Reading, MA: Addison-Wesley.

Jacobson, 1., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process.
Reading, MA: Addison-Wesley.

Kano, N. (1993). Special issue on Kano’s methods for understanding customer-defined quality,
Center of Quality Management Journal Vol. 2, No. 4, Fall 1993 (PDF - 350k).

Karnavas, W. J., Sanchez, P., and Bahill, A. T. (1993). Sensitivity analyses of continuous
and discrete systems in the time and frequency domains. /IEEE Trans. Syst. Man Cybern.
SMC-23:488-501.

Kerzner, H. (1995). Project Management: A Systems Approach to Planning, Scheduling, and
Controlling. New York: Van Nostrand Reinhold.

Kulak, D., and Guiney, E. (2000). Use Cases: Requirements in Context. Reading, MA:
Addison-Wesley.

Leffingwell, D., and Widrig, D. (2000). Managing Software Requirements. Reading, MA:
Addison-Wesley.

Q15

Q16

266 DISCOVERING SYSTEM REQUIREMENTS

LaPlue, L., Garcia, R. A., and Rhodes, R. (1995). A rigorous method for formal requirements
definition. In: Systems Engineering in the Global Market Place, Proceedings of the Fifth
Annual Symposium of the National Council on Systems Engineering, July 22-26, St. Louis,
pp. 401-406.

Latzko, W. J., and Saunders, D. M. (1995). Four Days with Dr. Deming. Reading, MA:
Addison-Wesley.

Martin, J. (1996). Systems Engineering Guideline. Boca Raton, FL: CRC Press.

Moody, J. A., Chapman, W. L., Van Voorhees, F. D., and Bahill, A. T. (1997). Metrics and Case
Studies for Evaluating Engineering Designs. Upper Saddle River, NJ: Prentice Hall PTR.

NASA. (2000). Mars Program Independent Assessment Team Summary Report. Washington,
DC: NASA. March 14, 2000.

Oakes, J., Botta, R., and Bahill, A. T. (2006). Technical performance measures. In: Proceedings
of 16th Annual International Symposium of INCOSE, Orlando, FL, July 9-13, 2006.

Object Management Group (OMG). (2007). UML Resource Page. Available at http://www.
uml.org.

Overgaard, G., and Palmkvist, K. (2005). Use Cases: Patterns and Blueprints. Reading, MA:
Addison-Wesley.

Rechtin, E., and Maier, M. (1996). Systems Architecting. Boca Raton, FL: CRC Press.
Sage, A. P. (1992). Systems Engineering. Hoboken, NJ: Wiley.

Shand, R. M. (1994). User manuals as project management tools. /EEE Trans. Prof. Commun.
37:75-80, 123-142.

Shishko, R., and Chamberlain, R. G. (1995). NASA Systems Engineering Handbook, SP-6105.
Simon, H. A. (1957). Models of Man: Social and Rational. Hoboken, NJ: Wiley.

Smith, E. D., and Bahill, A. T. (2007). Risk analysis. In: Proceedings of 17th Annual Interna-
tional Symposium of INCOSE, San Diego, CA, June 24-28.

Smith, E. D., Son, Y. J., Piattelli-Palmarini, M., and Bahill, A. T. (2007). Ameliorating mental
mistakes in tradeoff studies. Syst. Eng. 10(3):222-240.

Sommerville, 1. (1989). Software Engineering. Reading, MA: Addison-Wesley.
Spin Coach (2006). Available at http://www.sie.arizona.edu/sysengr/sie554/SpinCoach.doc.

Umpire’s Assistant (2005). Available at http://www.sie.arizona.edu/sysengr/sie577/Umpires
Assistant.doc.

Wymore, W. (1993). Model-Based Systems Engineering. Boca Raton, FL: CRC Press.
Young, R. R. (2001). Effective Requirements Practices. Reading, MA: Addison-Wesley.

Young, R. R. (2006). Criteria of a good requirement. Available at http://www.ralphyoung.
net/artifacts/CriteriaGoodRequirement.pdf.

Q1.
Q2.
Q3.
Q4.
Q5.
Q6.
Q7.
Q8.
Qo.

Q10.
Ql1.
Q12.
Q13.
Ql4.
QI5.
Ql6.

Queries in Chapter 4

not in Refs
2001 in Refs OK?
Do this correct as wymore’s sixth technique?
OK?
No 1995 Grady
Ok?
volume & pages?
volume & pages?
not cited

pages? Volume?

not cited

not cited

not cited

not 2003? See p. 318

not cited

not cited

