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Discovering System Requirements

4.1. Introduction

No two systems are exactly alike in their requirements. However, there is a uniform and identifiable process for logically discovering the system requirements regardless of system purpose, size, or complexity (Grady, 1993). The purpose of this chapter is to reveal this process.

Problem formulation. What is the problem that this chapter solves? Many engineers are confused about system requirements. These engineers cannot answer these questions. Who is responsible for writing requirements? Who uses them? What are they? When should they be written? Where do they come from? Why are they written? How are they written? How are they organized? And How are they discovered?

Solution requirements. What are the requirements for this chapter? It should answer the who, what, when, where, why and how questions. It should provide examples. It should explain existing nomenclature. And it should present a process for discovering requirements.

This chapter presents the philosophy and terminology used by the New Mexico Weapons Systems Engineering Center at Sandia National Laboratories for discovering system requirements. Other organizations may use different procedures and terminology. However, we think a consensus is developing in the Systems Engineering community. It is hoped that this chapter is consistent with that consensus. Like Systems Engineering in general, the statements in this chapter are not dogmatic. Each statement has been rightfully violated many times (see for example Martin, 1995). However, these statements are generalizations of good engineering practices.

This chapter only explains a part of the systems requirements process. Large projects should use a computer tool to help write, decompose and maintain system requirements. Many such computer tools are commercially available (see the INCOSE Proceedings). Each project design team will select a specific tool and then provide training for it. Because such training is tool specific, this chapter will not discuss such tools. Another part of the requirements process is modeling the proposed system. Dozens of tools are available (Bahill, et al., 1998: INCOSE, 1998); two recently popular ones are object-oriented design and functional decomposition (Bharathan, Poe, & Bahill, 1995; chapter 25 of this handbook). This chapter does not discuss tools for modeling systems, because of the sheer magnitude of the task.

4.2. Stating the Problem

Stating the problem is one of the Systems Engineer’s most important tasks. The problem must be stated in a clear, unambiguous manner.

State the problem in terms of what the world would be like if the problem did not exist, and not in terms of preconceived solutions. In 1982, a flood washed out a bridge across the Santa Cruz River and made it difficult for the Indians at Mission San Xavier del Bac to get to the Bureau of Indians Affairs Health Center. A common way of stating this problem was “We must rebuild the bridge across the Santa Cruz River.” However, a better way would be to say, “The Indians at San Xavier Mission do not have a convenient way to get to their health center.”

It is good engineering practice to state the problem in terms of the top-level function that the system must perform. However, it is better to state the problem in terms of the deficiency that must be ameliorated. This stimulates consideration of more alternative designs.

Example 1
	Top-level function:
	The system shall hold together 2 to 20 pieces of 8½ by 11-inch, 20 pound paper.

	Alternatives:
	stapler, paper clip, fold the corner, put the pages in a folder


Example 2
	The deficiency:
	My reports are typically composed of 2 to 20 pieces of 8½ by 11-inch, 20 pound paper. The pages get out of order and become mixed up with pages of other reports.

	Alternatives:
	stapler, paper clips, fold the corner, put the pages in folders, number the pages, put them in envelopes, put them in three-ring binders, throw away the reports, convert them to electronic form, have them bound as books, put them on audio tapes, distribute them electronically, put them on floppy disks, put them on microfiche, transform the written reports into videotapes.


Do not believe the first thing your customer says. Verify the problem statement with the customer, and expect to iterate this procedure several times. For an excellent (and enjoyable) reference on stating the problem, see Gause and Weinberg (1990).

4.2.1 Do Not Use the Word Optimal
The word optimal should not appear in the statement of the problem, because there is no single optimal solution for a complex systems problem. Most system designs have several performance and cost criteria. Systems Engineering creates a set of alternative designs that satisfies these performance and cost criteria to varying degrees. Moving from one alternative to another will usually improve at least one criterion and worsen at least one criterion, i.e., there will be trade-offs. None of the feasible alternatives is likely to optimize all the criteria (Szidarovszky, Gershon, & Duckstein, 1986). Therefore, we must settle for less than optimality.

It might be possible to optimize some subsystems, but when they are interconnected, the overall system may not be optimal. The best possible system may not be that made up of optimal subsystems. An all-star team may have optimal people at all positions, but is it likely that such an all-star team could beat the world champions? For example, a Pro Bowl football team is not likely to beat the Super Bowl champions.
Humans are not optimal animals. Shrews are smaller: Elephants are bigger. Cheetahs can run faster. Porpoises can swim faster. Dolphins have bigger brains. Bats have wider bandwidth auditory systems. Deer have more sensitive olfaction systems. Pronghorn antelope have sharper vision. Man has not used evolution to optimize these systems. Man has remained a generalist. The frog’s visual system has evolved much farther than man’s: Frogs have cells in the superior colliculus that are specialized to detect moving flies. Leaf Cutting ants had organized agricultural societies millions of years before humans. Although humans are not optimal in any sense, they seem to rule the world.

If the system requirements demanded an optimal system, data could not be provided to prove that any resulting system was indeed optimal. In general, it can be proven that a system is at a local optimum, but it cannot be proven that it is at a global optimum.

If it is required that optimization techniques be used, then they should be applied to subsystems. However, total system performance must be analyzed to decide if the cost of optimizing a subsystem is worthwhile. Furthermore, total system performance should be analyzed over the whole range of operating environments and trade-off functions, because what is optimal in one environment with one trade-off function will probably not be optimal with others.

Because of the rapid rate at which technology is advancing, flexibility is more important than optimality. A company could buy a device, spend person-years optimizing its inclusion into their system, and then discover that a new device is available that performs better than the optimized system and costs less.

4.2.2 Define the Customer

The term customer includes anyone who has a right to impose requirements on the system. This includes end users, operators, bill payers, owners, regulatory agencies, victims, sponsors, etc. Some people prefer the term stakeholder to customer. Let us now illustrate some of these customer roles for a commercial airliner, such as the Boeing 777. The users are the passengers that fly on the airplane. The operators are the crew that fly the plane and the mechanics that maintain it. The bill payers are the airline companies, such as United, TWA, etc. The owners are the stockholders of these companies. The Federal Aviation Administration (FAA) writes the regulations and certifies the airplane. Among others, people who live near the airport are victims of noise and air pollution. If the plane were tremendously successful, McDonnell Douglas (the manufacturer of a competing airplane) would also be a victim. The sponsor, in this example, would be the corporate headquarters of Boeing.

However, because Systems Engineering delivers both a product and a process for producing it, we must also consider the customer of the process. The users and operators of the process would be the employees in the manufacturing plant. The bill payer would be Boeing. The owner would be the stockholders of Boeing. Occupational Safety and Health Administration (OSHA) would be among the regulators. Victims would include physically injured workers and, according to Deming, workers who have little control of the output, but who are reviewed for performance (Deming, 1982: Latzko & Saunders, 1995).

4.2.3 Identify the Audience

Before writing a document, you should identify the audience. For a requirements document, the audience is the client and the designers.

System requirements communicate the customer’s needs to the technical community that will design and build the system, and therefore they must be understandable by both. One of the most difficult tasks in creating a system is communicating with all subgroups within both groups (IEEE P1233).

The client and the designers have different backgrounds and needs. Wymore (1993) suggests two different documents for these two different groups: The Operational Need Document for the client and the System Requirements Document for the design engineers. 

“The Operational Need Document is a detailed description of the problem in plain language. It is intended for management, the customer and systems engineering.... The Systems Requirement Document is a succinct mathematical description or model of the...requirements as described in the Operational Need Document. Its audience is systems engineering.” (Chapman, Bahill, & Wymore, 1992)

Sometimes these are referred to as customer requirements and technical requirements, respectively.
4.3. What Are Requirements?
Requirements are the necessary attributes defined for a system before and during design. The customer’s need is the ultimate system requirement from which all other requirements flow (Grady, 1993). In addition, requirements are statements that identify the essential needs of a system in order for it to have value and utility. Requirements may be derived or based upon interpretation of other stated requirements to assist in providing a common understanding of the desired characteristics of a system. Finally, requirements should state what the system is to do, but they should not specify how the system is to do it. Section 4.3.1 presents an example of a requirement.

4.3.1. Example of a Requirement (Sommerville, 1989)

The graphic editor facility. To assist in positioning items on a diagram, the user may turn on a grid in either centimeters or inches, via an option on a control panel. Initially the grid is off. The grid may be turned on or off at any time during an editing session and can be toggled between inches and centimeters at any time. The grid option will also be provided on the reduce-to-fit view, but the number of grid lines shown will be reduced to avoid filling the diagram with grid lines.

Good points about this requirement: It provides rationale for the items: it explains why there should be a grid. It explains why the number of grid lines should be reduced for the reduce-to-fit view. It provides initialization information: initially the grid is off.

Bad points: The first sentence has three different components: (1) it states that the system should provide a grid, (2) it gives detailed information about grid units (centimeters and inches), and (3) it tells how the user will activate the grid. This requirement provides initialization information for some but not all similar items: it specifies that initially the grid is off, but it does not specify the units when it is turned on. Section 4.3.2 shows how this requirement might be improved.

4.3.2 Example of An Improved Requirement (Sommerville, 1989)

4.3.2.1 The Grid Facility

4.3.2.1.1 The graphic-editor grid facility shall produce a pattern of horizontal and vertical lines forming squares of uniform size as a background to the editor window. The grid shall be passive rather than active. This means that alignment is the responsibility of the user and the system shall not automatically align items with grid lines.

Rationale: A grid helps the user to create a neat diagram with well-spaced entries. Although an active grid might be useful, it is best to let the user decide where the items should be positioned.

4.3.2.1.2 When used in the “reduce-to-fit” mode, the logical grid line spacing should be increased.

Rationale: If the logical grid line spacing were not increased, the background would become cluttered with grid lines.

Specification: Eclipse/Workstation/Defs:Section 2.6

This requirement definition refers to the requirement specification, which provides details such as units of centimeters and inches and the initialization preferences.

4.4. Characterizations

There are many orthogonal characterizations of system requirements. Four of these are types, sources, expressions or modalities, and input-output trajectories. A summary of these characterizations follows.

4.4.1 Two Types of Requirements

There are two types of system requirements: mandatory and preference.

Mandatory requirements:

(1)
specify the necessary and sufficient conditions that a minimal system must have in order to be acceptable and are usually expressed with shall and must,

(2)
are passed or failed (do not use scoring functions), and

(3)
must not be susceptible to trade-offs between requirements.

The following is a typical mandatory requirement: “The system shall not violate federal, state or local laws.” After mandatory requirements have been identified, Systems Engineers propose alternative candidate designs, all of which satisfy the mandatory requirements. Preference requirements are then evaluated to determine the “best” designs.

Preference requirements:

(1)
state conditions that would make the customer happier and are often expressed with should and want,

(2)
should use scoring functions (Chapman, et al., 1992) to produce figures of merit (see Figure 4.2), and

(3)
should be evaluated with a multicriteria decision technique (Szidarovszky, et al., 1986) because none of the feasible alternatives is likely to optimize all the criteria, and there will be trade-offs among these requirements.

Figure 4.1 shows an example of such a trade-off in the investigation of alternative laser printers. Many printers were below and to the left of the circular arc. They were clearly inferior and were dismissed. Three printers lay on the circular arc: they were the best. No printers were above and to the right of the circular arc. The question now becomes Which of these three printers is the best? With the present data, there is no answer to that question. The customer will have to say which preference requirement (or figure of merit) is more important before an answer can be obtained. Moving from one alternative to another will improve at least one criterion and worsen at least one criterion, i.e. there will be trade-offs. An arc like this (or a surface when there are more than two criteria) is called a Pareto Optimal contour. 




Figure 4.1. A typical trade-off between preference requirements.

Sometimes there is a relationship between mandatory and preference requirements in which a mandatory requirement might be a lower threshold of a preference requirement. For example, for one computer program, 8 Mbytes of RAM are required, but 12 Mbytes are preferred.

A scoring function is used to give a system a normalized score that reflects how the requirement has been met for each criterion. The value of the figure of merit, using the example of Mbytes of RAM, is put into the scoring function and a normalized score is returned. The use of scoring functions allows different criteria to be compared and traded off against each other. In other words, scoring functions allow apples to be compared to oranges and nanoseconds to be compared to billions of dollars.




Figure 4.2. A scoring function for the amount of RAM.

4.4.2 There Are Many Sources of Requirements

In this section, we list two dozen sources of requirements. However, Wymore (1993) says that only the first six sources are necessary: Input-Output, Technology, Performance, Cost, Trade-off, and System Test. He says all of the other sources can be put into one of these six. Grady (1993) says we should have only five sources: Functional, Performance, Constraints, Verification and Programmatic. He thinks that most of our sources are constraints. The EIA-632 Standard on Systems Engineering says there are only three: Functional, Performance, and Constraints. Project managers say that there are only three: Cost, Schedule and Performance (Kerzner, 1995). We leave it to the reader to decide whether or not our list of sources can be condensed.

4.4.2.1 Input-Output

Perhaps the most common requirements relate the inputs of the system to its outputs. For example, an input-output requirement for an electronic amplifier could be stated as “The ratio of the output to the input at 10 kHz shall be +20 dB.” Wymore (1993) maintains that functional requirements are a subset of input-output requirements. A well-stated input-output requirement describes a function. The above input-output requirement describes the function “Amplify the input signal.” The functional requirement “The system shall fasten pieces of paper” is covered by the input-output requirement “The system shall accept 2 to 20 pieces of 8½ by 11 inch, 20-pound paper and secure them so that the papers cannot get out of order.” One function of an automobile is to accelerate. The input is torque (perhaps developed with an engine) and the output is a change in velocity.

4.4.2.2 Technology

The technology requirement specifies the set of components -- hardware, software and bioware -- that is available to build the system. The technology requirement is usually defined in terms of types of components that cannot be used, that must be used, or both. For example, Admiral Rickover required that submarine nuclear instrumentation be done with magnetic amplifiers. Your Purchasing Department will often be a source of technology constraints.

4.4.2.3 Performance

Performance requirements include quantity (how many, how much), quality (how well), coverage (how much area, how far), timeliness (how responsive, how frequent), and readiness (ability, MTBF). System functions often map to performance requirements. For example, “The car shall accelerate from 0 to 60 mph in 7 seconds or less.” Performance is an attribute of products and processes. Its requirements are initially defined through requirements analyses and trade studies using customer need, objective, and/or requirements statements (MIL-STD-499B).

4.4.2.4 Cost

There are many types of cost, such as labor, resources, and monetary cost. An example cost requirement would be that the purchase price cannot be more than $10,000, and the total life cycle cost cannot exceed $18,000.

4.4.2.5 Trade-off
Trade-off between performance and cost is defined as the different relative value assigned to each factor. For example, the performance figures of merit may have a weight of 0.6, and the cost figures of merit may be given a weight of 0.4.

4.4.2.6 System Test

The purpose of the system test is to verify that the design and the system satisfy the requirements. For example, in an electronic amplifier, a 3-mV, 10-kHz sinusoid will be applied to the input, and the ratio of output to input will be calculated.

4.4.2.7 Company Policy

Company policy is another way of stating requirements. For example, Learjet Inc. has stated, “We will make the airframe, but we will buy the jet engines and the electronic control systems.”

4.4.2.8 Business Practices

Corporate business policies might require Work Breakdown Structures, PERT Charts, Quality Manuals, Environmental Safety and Health Plans, or a certain return on investment.

4.4.2.9 Systems Engineering

Systems or Software Engineering might require that every transportable disk (e.g., floppy or Bernoulli) have a Readme file that describes the author, date, contents, software program, and version (e.g., Word 7.0 or Excel 4.0).

4.4.2.10 Project Management

Access to source code for all software might be a project management requirement. It takes time and money to install new software. This investment would be squandered if the supplier went bankrupt and the customer could no longer update and maintain the system. Therefore, most customers would like to have the source code. However, few software houses are willing to provide source code, because it might decrease their profits and complicate customer support. When there is any possibility that the supplier might stop supporting a product, the source code should be provided and placed in escrow. This source code remains untouched as long as the supplier supports the product. But if the supplier ceases to support the product, the customer can get the source code and maintain the product in-house. Therefore, placing the source code in escrow can be a requirement.
4.4.2.11 Marketing

The marketing department wants features that will delight the customer. Kano calls them exciters. They are features that customers did not know they wanted. In the 1970’s, IBM queried customers to discover their personal computer (PC) needs. No one mentioned portability, so IBM did not make it a requirement. Compaq made a portable PC and then a laptop, dominating those segments of the market. In the 1950's, IBM could have bought the patents for Xerox’s photocopy machine. But they did a market research study and concluded that no one would pay thousands of dollars for a machine that would replace carbon paper. They did not realize that they could delight their customers with a machine that provided dozens of copies in just minutes.

4.4.2.12 Manufacturing Processes

Sometimes we might require a certain manufacturing process or environment. We might require our semiconductor manufacturer to have a Class 10 clean room. Someone might specify that Quality Function Deployment (QFD) be used to help elicit customer desires (although this would be in bad form, because it states how not what). Recently, minimization of the waste stream has become a common requirement. Annealing of swords for a certain time and at a certain temperature could be a requirement. 

4.4.2.13 Design Engineers
Design engineers impose requirements on the system. These are the “build to,” “code to,” and “buy to” requirements for products and “how to execute” requirements for processes. These are often called derived requirements, because the design engineers derive them from the customer requirements.
4.4.2.14 Reliability

Reliability could be a performance requirement, or it could be broken out separately.

4.4.2.15 Safety

Some requirements may come from safety considerations. These may state how the item should behave under both normal and abnormal conditions.

4.4.2.16 The Environment

Concern for the environment will produce requirements, such as forbidding the use of chlorofluorocarbons (CFCs) or tetraethylchloride (TEC).

4.4.2.17 Ethics

Ethics could require physicians to obtain informed consent before experimenting on human subjects.

4.4.2.18 Intangibles

Sometimes the desires of the customer will be hard to quantify for intangible items such as aesthetics, national or company prestige (e.g., putting a man on the moon in the Apollo project), ulterior motives such as trying to get a foot in the door using a new technology (e.g., the stealth airplanes), or starting business in a new country (e.g., China).

4.4.2.19 Common Sense

Many requirements will not be stated because they are believed to be common sense. For example, characteristics of the end user are seldom stated. If we were designing a computer terminal, it would not be stated that the end user would be a human with two hands and ten fingers. Common sense also dictates that computers not be damaged if they are stored at temperatures as high as 140°F. Furthermore, we do not write that there can be no exposed high voltage conductors on a personal computer, but it certainly is a requirement. Many of these requirements can be found in de facto standards.

4.4.2.20 Laws or Standards

Requirements could specify compliance with certain laws or standards, such as the National Electrical Code, City/County Building codes, ISO-9000, or the IEEE 1220 Standard for Systems Engineering.

4.4.2.21 The Customer

Some requirements are said to have come from the customer, such as statements of fact and assumptions that define the expectations of the system in terms of mission or objectives, environment, constraints, and measures of effectiveness. These requirements are defined from a validated needs statement (Customer’s Mission Statement), from acquisition and program decision documentation and from mission analyses.

4.4.2.22 Legacy Requirements

Sometimes the existence of previous systems creates requirements. For example, “Your last system was robust enough to survive a long trip on a dirt road, so we expect your new system to do the same.” Many new computer programs must be compatible with COBOL, because so many COBOL business programs are still running. Legacy requirements are often unstated.

4.4.2.23 Existing Data Collection Activities

If an existing system is similar to the proposed new system, then existing data collection activities can be used to help discover system requirements, because each piece of data that is collected should be traceable to a specific system requirement. Often it is difficult to make a measurement to verify a requirement. It might be impossible to meet the stated accuracy. Trying to make a measurement to verify a requirement might reveal more system requirements.

4.4.2.24 Human Users

Systems should be required to withstand human abuse, such as standing on a computer case or spilling coffee on the keyboard. Systems should prevent human error, e.g., “Are you sure you want to delete that file?” Systems should ameliorate human error if it does occur, e.g. on-line real-time spell checking

4.4.2.25 Other Sources

There are many other sources of system requirements, such as: human factors, the environment (e.g., temperature, humidity, shock, vibration, etc.), the end user, the operator, potential victims, management, company vision, future expansion, schedule, logistics, politics, the US Congress, public opinion, business partners, past failures, competitive intelligence, liability, religion, culture, government agencies (e.g., DoE, DoD, OSHA, FAA, EPA), industry standards (e.g., ANSI, SAE, IEEE, EIA), availability, maintainability, compatibility, service, maintenance, need to provide training, competitive strategic advantage, time to market, time to fill orders, inventory turns, accident reports, deliverability, reusability, future expansion, politics, society, standards compliance, standards certification (e.g., ISO 9000), effects of aging, the year 2000 problem, user friendly, weather (e.g., must be installed in the summer), need to accommodate system abuse by humans, security as in government classification, security as in data transmission, it must fit into a certain space, secondary customer, retirement, and disposal.

4.4.3 There Are Many Ways to Express Requirements

For some purposes, the best expression of the requirements will be a narrative in which words are organized into sentences and paragraphs. Such documents are often called operation concepts or operational needs. But all descriptions in English will have ambiguities, because of both the language itself and the context in which the reader interprets the words. Therefore, for some purposes, the best description of a system will be a list or string of shall and should statements. Such a list would be useful for acquisition or acceptance testing. However, it is still very difficult to write with perfect clarity so that all readers have the same understanding of what is written.

Other modalities that can be used instead of written descriptions include:

•
Wymorian Notation (Wymore, 1993)

•
Finite State Machines (Katz, 1994; Bahill, et al., 1998)

•
Algorithmic State Machine Notation (Katz, 1994)
•
Hardware

•
Object-Oriented Models (Booch, 1994; Rumbaugh et al., 1991; Jacobson et al., 1995; Bahill, et al., 1998)

•
Special purpose, requirements management, computer programs
The big advantage of these modalities over the English language is that they can be rigorous and executable by computer. This greatly helps to point out contradictions and omissions. It also allows you to perform a sensitivity analysis of the set of requirements to learn which requirements are the real cost drivers (Karnavas et al., 1993).

4.4.3.1 A Prototype Expresses Requirements
A publicly assessable prototype can express the system requirements, as they are currently understood. This technique is very popular in the software community where a computer can be placed in the building lobby. Of course, many functions of the final system will not be implemented in the prototype; instead, there will be a statement of what the functions are intended to do. A publicly assessable prototype is easy to update, and it helps everyone understand what the requirements are.

The purpose of building a prototype is to reduce project risk. Therefore, the first functions that are prototyped should be (but usually are not) the most risky functions (Eb Rechtin, personal communication: Chapman and Bahill, 1996).

4.4.3.2 Consider Bizarre Alternatives
During Concept Exploration, encourage consideration of bizarre alternatives. Studying unusual alternatives leads to a better and deeper understanding of the requirements by both the systems engineer and the design engineer. Likewise, studying models and computer simulations will help you understand the requirements. Concept exploration is one of the most fruitful phases in requirements discovery.

4.4.3.3 Preparing the Users Manual Flushes Out Requirements
The Users Manual should be written by future users early in the system design process (Shand, 1994). This helps get the system requirements stated correctly and increases user “buy in.”

4.4.4 Input and Output Trajectories
Arguably, the best way to describe the desired behavior of a system and thereby discover system requirements is to create typical sequences of events that the proposed system will go through. Typically, a sequence of input values as a function of time (called an input trajectory) is described and an acceptable system behavior is given. Sometimes this system behavior is given as a sequence of output values (called an output trajectory). Dozens, or perhaps hundreds (but hopefully not thousands) of these trajectories will be needed for a complete description of the system. Such descriptions of input and output behavior as a function of time are also called trajectories, behavioral scenarios, use cases, threads, operational scenarios, logistics, sequence diagrams or interaction diagrams.

4.4.4.1 Behavioral Scenarios Describe the System

A behavioral scenario for an Automated Teller Machine (ATM) is shown in Figure 4.3. Several other examples are given in Appendix A. The basis of these diagrams is to list the system’s objects (or components) along the top of the diagram. Then, with time running from top to bottom, list the messages that are exchanged between the objects. Alternatively, the arrows can be labeled with data that are exchanged between the components or the functions that are performed. These ATM examples were derived using object-oriented modeling. This technique relies on collecting a large number of behavioral scenarios. This collection then describes the desired system behavior. Additional scenarios can be incrementally added to the collection. Behavioral scenarios are easy for people to describe and discuss, and it is easy to transform them into a system design.

Incorrect PIN Scenario
1.
The Customer inserts a bankcard; the Card Input sends the card’s information to the Card Transaction Handler, which detects that the card is valid (not invalid; if no message is returned, the card is assumed valid).

2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer’s Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his or her PIN, which is then passed to the Card Transaction Handler.

4.
The Card Transaction Handler checks if the PIN is correct. In this scenario, it is not, and the GUI is instructed to inform the customer that the PIN is invalid.

5.
The customer is then asked to input his or her PIN number again and step 4 is repeated.

6.
If the customer has not supplied the correct PIN number in three attempts (as is the case in this scenario), the Card Input is instructed to keep the card and the session is terminated. 




Figure 4.3. Behavioral scenario for an incorrect PIN.

4.4.4.2 Input-Output Relationships
Wymore (1993) shows the following six techniques for writing input-output relationships. These techniques have different degrees of precision, comprehensibility and compactness.

(1)
For each input value, produce an output value. For example, multiply the input by 3:

output(t+1) = 3 * input(t)

(2)
For each input string, produce an output value. For example, compute the average of the last three inputs:

output(t+1) = (input(t-2) + input(t-1) + input(t))/3

(3)
For each input string, produce an output string. For example, collect inputs and label them with their time of arrival:

For an input string of 1, 1, 2, 3, 5, 8, 13, 21, the output string shall be (1,1), (2,1), (3,2), (4,3), (5,5), (6,8), (7,13), (8,21). All strings are finite in length.

(4)
For each input trajectory, produce an output trajectory. For example, collect inputs and label them with their time of arrival.

For an input trajectory of 1, 1, 2, 3, 5, 8, 13, 21, . . . the output trajectory would be (1,1), (2,1), (3,2), (4,3), (5,5), (6,8), (7,13), (8,21) . . . A trajectory may be infinite in length.

(5)
For each state and input, produce a next state and next output. For example, design a Boolean system where the output is asserted whenever the input bit stream has an odd number of 1s. This Odd Parity Detector can be described as:

Z1 = (SZ1, IZ1, OZ1, NZ1, RZ1), where

SZ1 = {Even, Odd}, /* The 2 states are named Even and Odd. */

IZ1 = {0, 1}, /* A 0 or a 1 can be received on this input port. */

OZ1 = {0, 1}, /* The output will be 0 or 1. */

NZ1 = {((Even, 0), Even), /* If the present state is Even and the input is 0, then the next state will be Even. */ ((Even, 1), Odd), ((Odd, 0), Odd), ((Odd, 1), Even)},

RZ1 = {(Even, 0), (Odd, 1)} /* If the state is Even the output is 0, if the state is Odd the output is 1. */

(6)
Most of this chapter has focused on using qualitative descriptions, which includes words, sentences, paragraphs, blueprints, pictures and schematics.
4.5. Tools for Gathering Requirements

The following tools are used to help discover and write requirements. See Appendix B for a comparison of these tools.

•
Affinity diagrams

•
Force-field analysis

•
Ishikawa fishbone (cause-and-effect) diagrams

•
Pugh charts

•
Quality Function Deployment (QFD)

•
Functional Decomposition

•
Wymorian T3SD

•
RDD-100

•
CORE

•
Slate

Grady (1995) discusses many more tools that Systems Engineers can use to gain insight into the system and to derive appropriate requirements.

4.6. The Requirements Development Process

There are many aspects of the requirements development process. We will now discuss two of them. First, you have to find out what the requirements are and then you use the requirements that you have discovered.

4.6.1. The Requirements Discovery Process

4.6.1.1 Define and State the Problem
The first steps in discovering system requirements are identifying the customer, understanding the customers’ needs and stating the problem.

4.6.1.1.1 Identify Customers and Stakeholders

The first step in developing requirements is to identify the customer. The term customer includes anyone who has a right to impose requirements on the system. This includes end users, operators, bill payers, owners, regulatory agencies, victims, sponsors, etc. All facets of the customer must be kept in mind during system design. For example, in evaluating the cost of a system, the total life cycle cost and the cost to society should be considered. Frequently, the end user does not fund the cost of development. This often leads to products that are expensive to own, operate and maintain over the entire life of the product, because the organization funding development saves a few dollars in the development process. It is imperative that the Systems Engineer understands this conflict and exposes it. The sponsor and user can then help trade off the development costs against the cost to use and maintain. Total life cycle costs are significantly larger than initial costs. For example, in one of their advertisements, Compaq proclaimed, “80% of the lifetime cost of your company’s desktops comes after you purchase them.” In terms of the personal computer, if total life cycle costs were $10,000, purchase cost would have been $2,000 and maintenance and operation $8,000.

4.6.1.1.2 Understand the Customer’s Needs

The system design must begin with a complete understanding of the customer’s needs. The information necessary to begin a design usually comes from preliminary studies and specific customer requests. Frequently the customer is not aware of the details of what is needed. Systems Engineers must enter the customer’s environment, discover the details and explain them. Flexible designs and rapid prototyping facilitate identification of details that might have been overlooked. Talking to the customer’s customer and the supplier’s supplier can also be useful. This activity is frequently referred to as mission analysis.

It is the Systems Engineer’s responsibility to ensure that all information concerning the customer’s needs is collected. The Systems Engineer must also ensure that the definitions and terms used have the same meaning for everyone involved. Several direct interviews with the customer are necessary to ensure that all of the customer’s needs are stated and that they are clear and understandable. The customer might not understand the needs; he may be responding to someone else’s requirements. Often, a customer will misstate his needs; for example, a person might walk into a hardware store and say he needs a half-inch drill bit. But what he actually needs is a half-inch hole in a metal plate, and a chassis-punch might be more suitable.

4.6.1.1.3 State the Problem
What is the problem we are trying to solve? Answering this question is one of the Systems Engineer’s most important and often overlooked tasks. An elegant solution to the wrong problem is less than worthless.

Early in the process, the customer frequently fails to recognize the scope or magnitude of the problem that is to be solved. The problem should not be described in terms of a perceived solution. It is imperative that the Systems Engineer helps the customer develop a problem statement that is completely independent of solutions and specific technologies. Solutions and technologies are, of course, important; however, there is a proper place for them later in the Systems Engineering process. It is the Systems Engineer’s responsibility to work with the customer, asking the questions necessary to develop a complete “picture” of the problem and its scope. The Air Force customer did not know that they wanted a stealth airplane until after the engineers showed that they could do it. 

4.6.1.2 Write System Requirements

The Systems Engineer must interact with the customer to write the system requirements. The Systems Engineer must involve the customer in the process of defining, clarifying and prioritizing the requirements. It is prudent to involve users, bill payers, regulators, manufacturers, maintainers and other key players in the process.

Next, Systems Engineering must discover the functions that the system must perform in order to satisfy its purpose. The system functions form the basis for dividing the system into subsystems. QFD is useful for identifying system functions (Bahill & Chapman, 1993; Bicknell & Bicknell, 1994).

Although this makes it sound as if requirements are transformed into functions in a serial manner, that is not the case. It is actually a parallel and iterative process. First, we look at system requirements, then at system functions. Then we re-examine the requirements and then re-examine the functions. Then we re-assess the requirements and again the functions, etc. Identifying the system’s functions helps us to discover the system’s requirements.

4.6.1.3 Review System Requirements

The system requirements must be reviewed with the customer many times. At a minimum, requirements should be reviewed at the end of the modeling phase, after testing the prototypes, before commencement of production, and after testing production units.
The main objectives of these reviews are to find missing requirements, eliminate unneeded requirements, ensure that the requirements have been met, and verify that the system satisfies customer needs. At these reviews, trade-offs will usually have to be made between performance, schedule and cost. Additional objectives include assessing the maturity of the development effort, recommending whether to proceed to the next phase of the project and committing additional resources. These reviews should be formal. The results and conclusions of the reviews should be documented. The Systems Engineer is responsible for initiating and conducting these reviews.

The following definitions based on Sage (1992) and Shishko (1995) might be useful. They are arranged in chronological order. Although these definitions are written with a singular noun, they are often implemented with a collection of reviews. Each system, subsystem, subsubsystem, etc. will be reviewed and the totality of these constitutes the indicated review.

Mission Concept Review: The Mission Concept Review and the Mission Definition Review are the first formal reviews. They examine the mission objectives and the functional and performance requirements. If the organization does not have a Vision or Mission statement, then you should write one.

System Requirements Review (SRR): Demonstrates that the product development team understands the mission and the system requirements. It confirms that the system requirements are sufficient to meet mission objectives. It ensures that the performance and cost figures of merit are realistic, and that the verification plan is adequate. At the end of the system requirements review the requirements are placed into a formal configuration management system with appropriate approvals required for changes. Changing requirements after this review will affect schedule and cost.

System Definition Review: Examines the proposed system architecture, the proposed system design, and the flow down of functions to the major subsystems. It also ensures that the verification plan is complete.

Preliminary Design Review (PDR): Demonstrates that the preliminary design meets all the system requirements with acceptable risk. System development and verification tools are identified, and the Work Breakdown Structure is examined. Full-scale engineering design begins after this review.

Critical Design Review (CDR): Verifies that the design meets the requirements. The CDR examines the system design in full detail, ensures that technical problems and design anomalies have been resolved, checks the technical performance measures, and ensures that the design maturity justifies the decision to commence manufacturing. Few requirements should be changed after this review.

Production Readiness Review (PRR): For some systems, there is a long phase when prototypes are built and tested. At the end of this phase, and before production begins, there is a production readiness review.

System Test: At the end of manufacturing and integration, the system is tested to verify that it satisfies its requirements. Technical performance measures are compared to their goals. The results of these tests are presented at the System Acceptance and Operational Readiness Reviews.

Figure 4.4 shows the timing of some of these reviews.
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Figure 4.4. Timing of the major reviews.

4.6.1.4 Ask Why Each Requirement Is Needed

At these reviews, it is important to ask why each requirement is needed. This can help eliminate unneeded requirements. It can also help reveal the requirements behind the stated requirements. It may be easier to satisfy the requirements behind the requirements, than the stated requirements themselves.

4.6.1.5 Define Performance and Cost Figures of Merit

Figures of merit are the criteria on which the different designs will be “judged.” Each figure of merit must have a fully described unit of measurement. Units of power could be horsepower, for example, and units of cost could be dollars (or inverse dollars if it is desirable to consistently have “more is better” situations). Suppose a figure of merit was acceleration, then the unit of measurement could be seconds taken to accelerate from 0 to 60 mph. The units of measurement can be anything, as long as they measure the appropriate criteria, are fully described and are used consistently for all designs. The value of a figure of merit describes how effectively a preference requirement has been met. For example, the car went from 0 to 60 in 6.5 seconds. These values are the ones put into the scoring functions, as shown in Figure 4.2, to give the requirements scores, which are in turn used to perform trade-off studies. Such measurements are made throughout the development of the system.

4.6.1.7 Validate System Requirements

Validating requirements means ensuring that the set of requirements is complete and consistent, that a real-world solution can be built that satisfies the requirements, and that it can be proven that such a system satisfies its requirements. If Systems Engineering discovers that the customer has requested a perpetual-motion machine, the project should be stopped. Requirements are often validated by reference to an existing system that meets most of the requirements.

4.6.1.8 Summary of the System Discovery Process

Figure 4.5 summarizes the requirements discovery process just described.
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Figure 4.5. The requirements discovery process.

4.6.2 Using System Requirements

Once the system requirements have been discovered, there are several ways that they are used.

4.6.2.1 Verify System Requirements

A critical element of the requirements development process is describing the tests, analysis or data that will be used to prove compliance of the final system with its requirements. Each test must explicitly link to a specific requirement; this will help expose untestable requirements. Describing the system tests informs the producers how the system will be tested, so that they know how they will be “graded.” This process frequently uncovers overlooked requirements.
At this time, it may be useful to examine the following definitions.

Validating a System: Building the right system; making sure that the system does what it is supposed to do. It determines the correctness of an end product, compliance of the system with the customer’s needs, and completeness of the system.

Validating Requirements: Ensuring that the set of requirements is consistent, that a real-world solution can be built that satisfies the requirements, and that it can be proven that such a system satisfies its requirements. If Systems Engineering discovers that the customer has requested a perpetual-motion machine, the project should be stopped.
Verifying a System: Building the system right; ensuring that the system complies with its requirements. Verifying a system determines the conformance of the system to its design requirements. It also guarantees the consistency of the product at the end of each phase, with itself and with the previous prototypes. In other words, it guarantees the honest and smooth transition from model to prototype to preproduction unit to production unit.

Verifying Requirements: Test, inspection, demonstration, analysis, logical argument, simulation or modeling that proves whether a requirement has been satisfied. This process is iterative. The requirements should be verified with respect to the model, the prototype, the preproduction unit and the production unit.

Verification and Validation: MIL-STD-1521B (and most Systems Engineers) and DoD-STD-2167A (and most software engineers) use the words verification and validation in almost the exact opposite fashion (Grady, 1994). For Systems Engineers, to validate requirements is to prove that it is possible to satisfy them. System verification, on the other hand, is a process of proving that a system meets its requirements. To add further confusion, ISO-9000 tells you to verify that a design meets the requirements and validate that the product meets requirements. NASA has a different spin. It says that verification consists of proving that a system (or a subsystem) complies with its requirements, whereas validation consists of proving that the total system accomplishes its purpose (Shishko, 1995). Thus, it is necessary to agree on the definitions of verification and validation as these terms pertain to your system.

4.6.2.2 Define Technical Performance Measures
Technical performance measures (TPMs), or metrics, are used to track the progress of the design and manufacturing process. TPMs are measurements that are made during the design and manufacturing process to evaluate the likelihood of satisfying the system requirements. Not all requirements have TPMs, just the most important ones. In the beginning of the design and manufacturing process, the prototypes will not meet the TPM goals. Therefore, the TPM values are only required to be within a tolerance band. It is hoped that as the design and manufacturing process progresses, the TPM values of the prototypes and preproduction units will come closer and closer to the goals.

As an example, let us consider the design and manufacture of solar ovens (Funk & Larson, 1994). In many societies, particularly in Africa, many women spend as much as 50% of their time acquiring wood for their cooking fires. To ameliorate this sink of human resources, people have been designing and building solar ovens. Let us now examine the solar oven design and manufacturing process that we followed in a Freshman Engineering Design class at the University of Arizona.

First, we defined a TPM for our design and manufacturing process. When a loaf of bread is finished baking, its internal temperature should be 95°C (203°F). To reach this internal temperature, commercial bakeries bake the loaf at 230°C (446°F). As initial values for our oven temperature TPM, we chose a lower limit of 100°C, a goal of 230°C, and an upper limit of 270°C. The tolerance band shrinks with time as shown in Figure 4.6.

In the beginning of the design and manufacturing process, our day-by-day measurements of this metric increased because of finding better insulators, finding better glazing materials (e.g., glass and mylar), sealing the card board box better, aiming at the sun better, etc.

At the time labeled “Design Change-1,” there was a jump in performance caused by adding a second layer of glazing to the window in the top of the oven. This was followed by another period of gradual improvement as we learned to stabilize the two pieces of glazing material.

At the time labeled “Design Change-2,” there was another jump in performance caused by a design change that incorporated reflectors to reflect more sunlight onto the window in the oven top. This was followed by another period of gradual improvement as we found better shapes and positions for the reflectors.

But, in this case, it seemed that we might not attain our goal. Therefore, we reevaluated the process and the requirements. Bread baking is a complex biochemical process that has been studied extensively: Millions of loaves have been baked each day for the last four thousand years. These experiments have revealed the following consequences of insufficient oven temperature:

(1)
Enzymes are not deactivated soon enough, and excessive gas expansion causes coarse grain and harsh texture.

(2)
The crust is too thick, because of drying caused by the longer duration of baking.

(3)
The bread becomes dry, because prolonged baking causes evaporation of moisture and volatile substances.

(4)
Low temperatures cannot produce carmelization, and crust color lacks an appealing bloom.

After consulting some bakers, our managers decided that 190°C (374°F) would be sufficient to avoid the above problems. Therefore, the requirements were changed at the indicated spot and our TPM was then able to meet our goal. Of course, this change in requirements forced a review of all other requirements and a change in many other facets of the design. For example, the duration weight tables had to be recomputed.

If sugar, eggs, butter and milk were added to the dough, we could get away with temperatures as low as 175°C (347°F). But we decided to design our ovens to match the needs of our customers, rather than try to change our customers to match our ovens.
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Figure 4.6. A technical performance measure.

4.6.2.3 Mitigate Risk

Identifying and mitigating project risk is the responsibility of management at all levels in the company. Each item that poses a threat to the cost, schedule or performance of the project must be identified and tracked. The following information should be recorded for each identified risk: name, description, type, origin, probability, severity, impact, identification number, identification date, work breakdown structure element number, risk mitigation plan, responsible team, needed resolution date, closure criteria, principal engineer, current status, date, signature of team leader. Forms useful in identifying and mitigating risk are given in chapter 17 of Kerzner (1995), section 4.10 of Grady (1995), and Chapter 3 of this handbook. For the solar oven project, we identified the following risks:

(1) Insufficient internal oven temperature was a performance risk. Its origin was Design and Manufacturing. It had high probability and high severity. We mitigated it by making it a technical performance measure, as shown in Figure 4.6.

(2) High cost of the oven was a cost risk. Its origin was the Design process. Its probability was low, and its severity was medium. We mitigated it by computing the cost for every design.

(3) Failure to have an oven ready for testing posed a schedule risk. Its origin was Design and Manufacturing. Its probability was low, but its severity was very high. We mitigated this risk by requiring final designs seven days before the scheduled test date and a preproduction unit three days in advance.

Models (or computer simulations) are often used to reduce risk. Low risk portions of the system should be modeled at a high level of abstraction, whereas high-risk portions should be modeled with fine resolution.

Figure 4.7, based on Grady (1995), shows the whole requirements development process. 
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Figure 4.7. The requirements development process.

4.6.3. Fitting the Requirements Process into the Systems Engineering Process

Requirements discovery process of Figure 4.5 is one subprocess of the Systems Design Process shown in Figure 4.8.




Figure 4.8. The system design process tailored for the preliminary design phase.

Systems Engineering is a fractal process. There is a vertical hierarchy. It is applied at levels of greater and greater detail: It is applied to the system, then to the subsystems, then to the components, etc. It is applied to the system being designed and also to the enterprise in which the system will operate. It is also applied horizontally. It is applied to alternative-1, then to alternative-2, then to alternative-3, etc. It is applied to component-1, component-2, component-3, etc. This process is recursive, iterative and much of it is done in parallel. This concept is shown in a poster that is available at http://www.sie.arizona.edu/sysengr 

The fact that Discover Requirements (Figure 4.5) is a subprocess in the System Design Process (Figure 4.8) and that the System Design Process is a subprocess in the Systems Engineering Process of Figure 4.9, illustrates the hierarchical nature of System Engineering. We will now try to explain the repetitive aspect of the System Engineering Process. In Figure 4.9, the System Design Process is applied to preliminary designs, models, prototypes and to the real system. However, this process is not serial. Each of the loops will be executed many times. Execution of the redesign loop in the upper left is very inexpensive and should be exercised often. Execution of the redesign loop in the lower right is expensive, but should be exercised. Whereas, execution of the redesign loop from the lower right all the way back to the upper left is very expensive and should seldom be exercised.




Figure 4.9. The design portion of the systems engineering process.

Figure 4.9, of course, only shows a part of the Systems Engineering Process. It omits logistics, maintenance, risk management, reliability, project management, documentation, etc.

Although it seems that the Systems Design Process has been applied like a cookie cutter to preliminary designs, models, prototypes and the real system, the emphasis should be different in each application. In the preliminary design phase, the emphasis should be on discovering requirements and defining functions, with some effort devoted to alternative concepts. In the modeling phase, the emphasis should be on describing, analyzing and evaluating alternative concepts, with some effort devoted to rewriting requirements and redefining functions. In the prototype phase the emphasis should be on evaluating the prototypes, with some effort devoted to rewriting requirements, redefining functions, (and if there are multiple prototypes) describing alternatives and analyzing alternative concepts. And finally, when applied to the real system, the emphasis should be on evaluating the system. When the System Design Process is applied in the four phases, the inputs and outputs must also be relabeled. For the preliminary design phase, the input is the Customer Request and the output is Final Designs. For the modeling phase, the input is Final Designs and the output is models and modeling results that are the inputs for the prototype phase, etc.

4.7. Characteristics of a Good Requirement

As stated in the introduction, the statements in this section are not dogmatic. Each statement has been rightfully violated many times. Kar and Bailey (1996) provide a complementary discussion to the material in this section.

4.7.1 Describes What, Not How

There are many characteristics of a good requirement. First and foremost, a good requirement defines what a system is to do and to what extent, but does not specify how the system is to do it. A statement of a requirement should not be a preconceived solution to the problem that is to be solved. To avoid this trap, ask why the requirement is needed, then derive the real requirements. For example, it would be a mistake to require a relational database for the requirements. The following requirements state what is needed, not how to accomplish it: provide the ability to store, provide the ability to sort, and provide the ability to add attributes. It should be noted that because QFD is often used iteratively to define requirements, the hows in one QFD chart become the whats in the next, possibly making the above statements confusing.

4.7.2 Atomic

A requirement should be “atomic,” meaning it is not easily broken into smaller requirements. A requirement should have a single purpose (one idea per requirement). Furthermore, each requirement should be allocated to a single physical entity. It is acceptable to assign two or more requirements to one physical component. However, it would be a mistake to assign one requirement to two physical components.

4.7.3 Unique

A requirement should have a unique label, a unique name and unique contents. Avoid repeating requirements.

4.7.4 Documented and Accessible

A requirement must be documented (writing, pictures, images, databases, etc.) and the documentation must be accessible. In situations where confidentiality is important, each requirement should clearly indicate classification status. Only individuals with the appropriate clearance and the need to know should have access to classified requirements.

4.7.5 Identifies Its Owner

A good requirement will identify its owner and custodian, which could be the same person. The requirement’s owner must approve of any change in the requirement.

4.7.6 Approved

After a requirement has been revised, reviewed and rewritten, it must be approved by its owner. Furthermore, each top-level requirement must be approved by the customer.

4.7.7 Traceable

A good requirement is traceable; it should be possible to trace each requirement back to its source. A requirement should also identify related requirements (i.e., parents, children, siblings) and requirements that would be impacted by changes to it. A requirements document should have a tree (or graph) structure and this structure should be evident.

4.7.8 Necessary

All requirements should be necessary. Systems Engineers should ask, “Is this requirement really necessary? Will the system necessarily be better because of this requirement?” Avoid over-specifying the system, writing pages and pages that no one will probably ever read. There are two common types of over-specification: gold plating and specifying unnecessary things. For example, requiring that the outside of a CPU box be gold-plated is not a good requirement, because something far less expensive would probably be just as effective. Also, requiring that the inside of the CPU box be painted pink is probably an unnecessary request. Over-specification (of both types) is how $700 toilet seat covers and $25,000 coffeepots are created (Hooks, 1994). The documentation should include a complete statement of the rationale behind each requirement.

4.7.9 Complete

The documentation must be as clear, concise and complete as possible.

4.7.10 Unambiguous

Avoid the use of synonyms (e.g., The software requires 8 Mbytes of RAM but 12 Mbytes of memory are recommended) and homonyms (e.g., Summaries of disk X-rays should be stored on disk. There should be only one interpretation of meaning for a requirement.

4.7.11 Is Not Always Written

It must be noted that all systems will undoubtedly have many “common sense” requirements that will not be written. This is acceptable as long as the requirements really are common sense. An exhaustive list of requirements would take years upon years and use reams of paper, and even then, you would probably never finish.

4.7.12 Quantitative and Testable

Quantitative values must be given in requirements. A requirement states a necessary attribute of a system to be designed. The designer cannot design the system if a magnitude is not given for each attribute. Without quantification, system failure could occur because (1) the system exceeded the minimum necessary cost due to over design, or (2) failed to account for a needed capability. Quantitative values for attributes are also necessary in order to test the product to verify that it satisfies its requirements (Grady, 1993).

Each requirement must be verifiable by test, demonstration, inspection, logical argument, analysis, modeling or simulation and therefore must have a well-defined figure of merit. Qualitative words like low and high shall be (at least roughly) defined. What is low cost to a big corporation and what is low cost to a small company may be very different. Only requirements that are clear and concise will be easily testable. Requirements with ambiguous qualifiers will probably have to be refined before testing will be possible. Furthermore, the value given should be fully described as, for example, an expected value, a median, a minimum, a maximum, etc. A requirement such as “reliability shall be at least 0.999” is a good requirement because it is testable, quantified, and the value is fully described as a minimum. Also the requirement “the car’s gas mileage should be about 30 miles per gallon” is a good requirement as it establishes a performance measure and an expected value. Moody, et al. (1997) present a few dozen metrics that can be used to evaluate performance.

Note that often the customer will state a requirement that is not quantified. For example: “The system should be aesthetically pleasing.” It is then the engineer’s task to define a requirement that is quantified, i.e., “The test for aesthetics will involve polling two hundred potential users; at least 70% should find the system aesthetically pleasing.”

It is also important to make the requirements easily testable. NASA once issued a request for proposals for a radio antenna that could withstand earthquakes and high winds. They said, “The antenna shall not deflect by more than 0.5 degrees in spite of 0.5-G forces, 100-knot steady winds or gusts of up to 150 knots.” They expected bids around $15 million. But all of their bids were around $30 million. NASA asked the contractors why the bids were so high. The contractors said testing the system was going to be very expensive. NASA revised the requirements to When ‘hit with a hammer,’ the antenna shall have a resonant frequency less than 0.75 Hz. Then they got bids between $12 and $15 million (Eb Rechtin, personal communication).

4.7.13 Identifies Applicable States

Some requirements only apply when the system is in certain states or modes. If the requirement is only to be met sometimes, the requirement statement should reflect when. There may be two requirements that are not intended to be satisfied simultaneously, but they could be at great expense.

For example: The vehicle shall

(1) be able to tow a 2,000-pound cargo trailer at highway speed (65 mph),

(2) accelerate from 0 to 60 mph in less than 9.5 seconds.

It would be expensive to build a car that satisfied both requirements simultaneously.

R Your Lights On?

However, as with everything, you can take this principle too far, as illustrated by the following, which is probably a true story. We first saw it in Gause and Weinberg (1990).

Recently the highway department tested a new safety proposal. They asked motorists to turn on their headlights as they drove through a tunnel. However, shortly after exiting the tunnel the motorists encountered a scenic-view overlook. Many of them pulled off the road to look at the reflections of wildflowers in pristine mountain streams and snow-covered mountain peaks 50 miles away. When the motorists returned to their cars, they found that their car batteries were dead, because they had left their headlights on. So the highway department decided to erect signs to get the drivers to turn off their headlights.

First, they tried “Turn your lights off.” But someone said that not everyone would heed the request to turn his or her headlights on. And it would be impossible for these drivers to turn their headlights off.

So they tried “If your headlights are on, then turn them off.” But someone objected that would be inappropriate if it were nighttime.

So they tried “If it is daytime and your headlights are on, then turn them off.” But someone objected that would be inappropriate if it were overcast and visibility was greatly reduced.

So they tried “If your headlights are on and they are not required for visibility, then turn them off.” But someone objected that many new cars are built so that their headlights are on whenever the motor is running.

So they tried “If your headlights are on, and they are not required for visibility, and you can turn them off, then turn them off.” But someone objected....

So they decided to stop trying to identify applicable states. They would just alert the drivers and let them make the appropriate actions. Their final sign said, “Are your lights on?”

4.7.14 States Assumptions

All assumptions should be stated. Unstated bad assumptions are one cause of bad requirements.

4.7.15 Use of Shall, Should, and Will

A mandatory requirement should be expressed using the word shall (e.g., The system shall conform to all state laws.). A preference requirement can be expressed using should or may (e.g., The total cost for the car’s accessories should be about 10% of the total cost of the car.). The term will can be used to express a declaration of purpose on the part of a contracting agency, to express simple future tense and for statement of fact (e.g., The resistors will be supplied by an outside manufacturer.) (Grady, 1993).

4.7.16 Avoids Certain Words

The words optimize, maximize, and minimize should not be used in stating requirements, because we could never prove that we had achieved them. Consider the following criteria: (1) we should minimize human suffering, and (2) we should maximize the quality and quantity of human life. A starving child should be fed, even if the child continues to live in misery. However, the criterion of minimal suffering could lead to the conclusion that the child should die.

Requirements should not use the word simultaneous because it means different things to different people. It might mean within a few fempto seconds to a physicist, on the same clock cycle to a computer engineer, or to a paleontologist studying the extinction of the dinosaurs, within the same millennium. The word simultaneous is often confused with concurrent.

4.7.17 Might Vary in Level of Detail

The amount of detail in the requirements depends upon the intended supplier. For in-house work or work to be done by a supplier with well-established systems engineering procedures, the requirements can be written at a high level. However, for outside contractors with unknown systems engineering capabilities, the requirements might be broken down to a very fine level of detail.

Requirements also become more detailed with time. In the beginning, the requirements should describe a generic process that many alternative designs could satisfy. As time progresses, the problem will become better understood, the acceptable number of alternatives will decrease and the requirements should become more detailed.

4.7.18 Contains Date of Approval

The name of the approver and the date of approval should be included in each requirement.

4.7.19 States its Rationale

Although it is seldom done, it would be nice if each requirement stated why it was written and what it was supposed to ensure.

4.7.20 Respects the Media

Newspaper journalists quote out of context, and headlines do not reflect the content of their stories. It is important to write each requirement so that it cannot spark undue public criticism of your project.

4.8. Related Items

4.8.1 Requirements versus Constraints

The terms requirements and constraints are sometimes used interchangeably. However, a design constraint can be defined as a boundary condition within which the designer must remain while satisfying the performance requirements (Grady, 1993). With this definition, almost all of the requirements mentioned in this document (except for performance and system test) could alternatively be called constraints.

4.8.2 Requirements versus Goals

The term goal is often used for a requirement that cannot be tested. Some says there are requirements and desirements. For example, a requirement may be that “The hole shall be 5 mm in diameter, plus or minus 0.5 mm.” According to Taguchi, a goal would say, “The hole shall be 5 mm in diameter and the standard deviation should be as small as feasible.” Some people use “goal” as a specific value for a preference requirement.

4.8.3 External versus Internal

Some engineers characterize requirements as external and internal. External requirements are driven by customer need. Internal requirements are driven by company practices and resources. For example, a company might require certain processes or technologies.

4.8.4 Outcomes, Environments and Constraints

Some engineers also characterize requirements as outcomes, environments and constraints. Outcomes are related to the customer’s statement of the problem. Environmental requirements change as the system design progresses. Finally, constraints, such as laws that have to be obeyed or standards that have to be followed, are often left unstated for the sake of brevity.

4.8.5 Requirement Definition versus Specification

A requirements definition set, which we usually call the requirements, describes the functions the systems should provide, the constraints under which it must operate, and the rationale for the requirements. It should be written in plain language. It is intended to describe the proposed system to both the customer and the designers. It should be broad so that many alternative designs fit into its feasibility space.

The requirements specification, which we usually call the specification, provides a precise description of the system that is to be built. It should have a formal format and might be written in a specialized language. It is intended to serve as the basis of a contract between Purchasing and Manufacturing. It should narrow the feasibility space to a few points that describe the system to be manufactured.

The set of requirements determines the boundaries of the solution space. The specifications define a few solutions within that space. The requirements say what, the specifications say how.

These definitions came out of the software engineering literature (Sommerville, 1989). However, some in the software community disagree. The systems engineering literature is seldom as clear. Often the best we get is “A specification is a big document that contains a lot of requirements.” (Jim Martin and Ivy Hooks, personal communications, 1995.) Because of the variable usage in the literature, if someone uses the term specification, you should ask him or her what they mean by the term.

Why do so many people write the requirements after the system has been built? Perhaps they (1) write the requirements up front, (2) develop the requirements into specifications, and (3) build the system, continually updating the specifications but not the requirements. Consequently, when they deliver the system and the customer asks for the requirements, they must go back and write them.

4.8.6 Performance, Functional and Design Requirements

In olden days, there was a progression from performance requirements to functional requirements to design requirements. For example, a teen-age boy might express the operational need this way: “Hey, Dad, We need speakers in the car that will make your insides rumble during drum solos.” The father would translate this into the performance requirement: “For bass frequencies, we need 110 dB of sound output.” Then the Systems Engineer would convert this into the functional requirement: “Amplify the radio’s output to produce 115 watts in the frequency range 20 to 500 Hz.” Finally, after a trip to the audio shop, the design engineer would transform this into the design requirement: “Use Zapco Z100S1VX power amplifiers with JL Audio 12W1-8 speakers.” But this implies a sequential process, and now days the requirements process is concurrent and iterative.

4.8.7 Figures of merit, technical performance measures and metrics

Figures of merit, technical performance measures and metrics are all used to quantify system parameters. These terms are often used interchangeably, but we think a distinction is useful. Figures of merit are used to quantify requirements. Technical performance measures are used to mitigate risk. Metrics are used to help manage a company's processes.

Performance and cost figures of merit show how well the system satisfies its requirements, e.g., "In this test the car accelerated from 0 to 60 in 6.5 seconds." Such measurements are made throughout the evolution of the system: based first on estimates by the design engineers, then on models, simulations, prototypes and finally on the real system. Figures of merit are used to help select amongst alternative designs and they are used to quantify system requirements. During concept selection, figures of merit are traded-off; that is, going from one alternative to another increases one figure of merit and decreases another.

Technical performance measures (TPM's) are used to track the progress of design and manufacturing. They are measurements that are made during the design and manufacturing process to evaluate the likelihood of satisfying the system requirements. Not all requirements have TPMs. They are usually associated only with high-risk requirements, because they are expensive to maintain and track. Early prototypes will not meet TPM goals. Therefore, the TPM values are only required to be within a tolerance band. It is hoped that as the design and manufacturing process progresses the TPM values will come closer and closer to the goals.

Metrics are often related to the process, not the product (Moody, et al., 1997). Therefore, they do not always relate to specific system requirements. Rather some metrics relate to the company's mission statement and subsequent goals. A useful metric is the percentage of requirements that have changed after the System Requirements Review.

4.8.8 Grouping of Requirements

Requirements should be organized into categories, subcategories, etc. Requirements that are correlated should be grouped together. Suppose a young couple wants to buy a new car. The man says his most important requirement is Horse Power and the woman says her most important requirement is Gas Mileage. Although these are conflicting requirements, with a negative correlation, there is no problem. Their decision of what car to buy will probably be based on a tradeoff between these two requirements. Now, however, assume there is another couple where the woman says her only requirement is Safety (as measured by safety claims in advertisements), but the man says his most important requirements are Lots of Horse Power, Lots of Torque, Top Speed, Low Time to Accelerate 0 to 60 mph, Low Time to Accelerate 0 to 100 mph, Low Time for the Standing Quarter Mile, Large Engine Size (in liters), and Many Cylinders. Assume the man agrees that the woman's requirement is more important than his. So they give Safety the maximum importance value of 10 and they only give his requirements importance values of 3 and 4. What kind of a car do you think they will buy? The man's requirements should have been grouped into one subcategory, and this subcategory should have been traded-off with the woman's requirement. In summary, similar, but independent, requirements ought to be grouped together into subcategories. Quality function deployment can help you to group requirements (Bahill and Chapman, 1993).

4.9. An Heuristic Example of Requirements

4.9.1 An Automatic Teller Machine (ATM) Example

Earlier we discussed several ways to express requirements, such as narratives, shall and should statements, and computer models. Here is another example, one that uses formal logic notation. LaPlue, Garcia, and Rhodes (1995) state that a requirement should contain (1) the description of a system output, (2) the name of the system that accepts this output, (3) conditions under which the requirement must be met, (4) external inputs associated with the requirement, and (5) all conditions that determine if the system output is correct. The authors have organized this into a standard template:

The system shall <function>


for use by <users>,


if <conditions>,


using <inputs>,


where <conditions>.

Where <function> is usually of the form <verb> <output>.

They offer the following example.

	Requirements for an Automated Teller Machine

	3.0
Transaction Requirements

3.1
Related to the ATM User

3.1.1
Produce Receipt
	

	3.1.2
Dispense Cash

The ATM shall dispense cash

•
for use by the ATM user

•
if the ATM user requested a withdrawal

•
and if the Central Bank verified the account and PIN

•
and if the Central Bank validated the withdrawal amount

•
and if the ATM cash on hand is greater than or equal to the cash requested

•
using the Withdrawal Validation Message from the Central Bank

and the Account Verification Message from the Central Bank

and the Withdrawal Request from the user

•
where the amount of cash produced equals the amount requested

•
and where the cash is dispensed within 10 seconds of the receipt 
of the Withdrawal Validation Message from the Central Bank.
	3.1.3.2
Eject unreadable cards

The ATM shall eject the bank card

• for use by the ATM user

•
if the ATM user has inserted a bank card

•
and if the bank card does not contain a valid code

•
using the bank card

•
where the code reading and validation is as specified in Bank Card Specifications, section 4.1.2

3.1.4
Produce Error Messages

3.2
Related to the Central Bank

	3.1.3
Eject Card

3.1.3.1
Eject bank card at end of session

The ATM shall eject the bank card

•
for use by the ATM user

•
if the ATM user has inserted a bank card

•
and if the ATM user has requested termination of session

•
using the Bank Card and the Terminate Request

•
where the Bank Card is ejected within 1 second of the receipt of the Terminate Request
	3.2.1
Verify Account Message

The ATM shall produce the Verify Account Message

•
for use by the Central Bank 

•
if the ATM user has entered a PIN

•
and if the bank card contains a readable code

•
using the bank card and user-entered PIN

•
where the content and format is as specified in the Central Bank Interface Specification, section 4.2.21

•
and where the message is issued within 1 second of the final digit of the PIN




This example shows many of the features of good requirements that were mentioned in this chapter. The numbering scheme manifests the tree structure of this set of requirements: parent, child and sibling relationships are clear. References are made to the specifications. In each requirement, the customer is identified: e.g., the ATM user, the central bank. Many behavioral scenarios were used to elicit these requirements. Performance figures of merit are given, they are specified as maximum values, units are given, and they are testable: e.g., cash must be dispensed within 10 seconds. The requirements state what, not how: e.g., The ATM shall dispense cash. The requirements identify applicable states with the conjunctive if clauses. The word choice is correct. It is unfortunate that there is no allowance for the rationale.
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Appendix A. Behavior Scenarios of ATM Transactions

The following six diagrams depict behavioral scenarios for an automated teller machine (ATM). The scenarios were adapted from The Object Advantage by Jacobson, Ericsson, and Jacobson (1995). The scenarios were derived using object-oriented modeling.

An ATM is a machine that performs basic banking transactions without the need for a human teller. In each of the following scenarios, a bank customer attempts to perform a withdrawal transaction. Each diagram describes a different possible scenario for the customer-ATM interaction. In these diagrams, time runs from top to bottom.

Scenario 1: Invalid Card

The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is invalid. The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message to the customer stating that the card is invalid. The Card Transaction Handler then instructs the Card Input to eject the card. The customer then removes the card from the ATM, and the transaction is terminated.
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Scenario 2: Incorrect PIN

Note:
The text set in Italics is identical to text in the previous scenario. It is not necessary to reread the italicized text if the scenarios are being read in order.

1.
The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is valid (not invalid, if no message is returned, the card is assumed valid).

2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer's Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his or her PIN, which is then passed to the Card Transaction Handler.

4.
The Card Transaction Handler checks if the PIN is correct. In this scenario, it is not, and the GUI is instructed to inform the customer that the PIN is invalid.

5.
The customer is then asked to input his or her PIN number again and step 4 is repeated.

6.
If the customer has not supplied the correct PIN number in three attempts (as is the case in this scenario), the Card Input is instructed to keep the card and the session is terminated. 

Scenario 2: Incorrect PIN
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Scenario 3: No Cash in ATM

Note:
The text set in Italics is identical to text in the previous scenario. It is not necessary to reread the italicized text if the scenarios are being read in order.

1.
The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is valid (not invalid, if no message is returned, the card is assumed valid).

2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer's Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his/her PIN, which is then passed to the Card Transaction Handler.

4.
The Card Transaction Handler checks if the PIN is correct. In this case, it is and the GUI is instructed to display the customer's options.

5.
The customer requests a withdrawal transaction. This information is returned to the Card Transaction Handler, which in turn calls upon the Withdrawal Handler.

6.
The Withdrawal Handler checks whether there is cash in the machine by querying the Cash Handler. The Cash Handler returns that the ATM does not have any cash in it.

7.
The transaction is terminated and the card is ejected.

Scenario 3: No Cash in ATM
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Scenario 4: Not Enough Cash in ATM

Note:
The text set in Italics is identical to text in the previous scenario. It is not necessary to reread the italicized text if the scenarios are being read in order.

1.
The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is valid (not invalid, if no message is returned, the card is assumed valid).
2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer's Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his/her PIN, which is then passed to the Card Transaction Handler.
4.
The Card Transaction Handler checks if the PIN is correct. In this case, it is and the GUI is instructed to display the customer's options.
5.
The customer requests a withdrawal transaction. This information is returned to the Card Transaction Handler, which in turn calls upon the Withdrawal Handler.
6.
The Withdrawal Handler checks whether there is cash in the machine by querying the Cash Handler. There is cash in the machine in this scenario (not No Cash, if no message is returned, it is assumed that there is money in the machine).

7.
The Withdrawal Handler instructs the GUI to display the withdrawal informa​tion. The GUI requests the amount of withdrawal. The customer enters the withdrawal amount.

8.
If the amount is not a multiple of twenty (as is the case), the customer is asked again to enter the amount of withdrawal. This will be repeated until the amount is a multiple of twenty (in this case the customer inputs a valid amount the second time) or the customer cancels the transaction.

9.
After a valid amount is entered, the Withdrawal Handler passes that amount to the Cash Handler. The Cash Handler returns that there is not enough cash in the ATM, the GUI informs the customer, the transaction is terminated, and the card ejected.

Scenario 4: Not Enough Cash in ATM
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Scenario 5: Bank Denies Withdrawal

Note:
The text set in Italics is identical to text in the previous scenario. It is not necessary to reread the italicized text if the scenarios are being read in order.

1.
The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is valid (not invalid, if no message is returned, the card is assumed valid).
2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer's Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his/her PIN, which is then passed to the Card Transaction Handler.
4.
The Card Transaction Handler checks if the PIN is correct. In this case it is and the GUI is instructed to display the customer's options.
5.
The customer requests a withdrawal transaction. This information is returned to the Card Transaction Handler, which in turn calls upon the Withdrawal Handler.
6.
The Withdrawal Handler checks whether there is cash in the machine by querying the Cash Handler. There is cash in the machine in this scenario (not NoCash, if no message is returned, it is assumed that there is money in the machine).
7.
The Withdrawal Handler instructs the GUI to display the withdrawal informa​tion. The GUI requests the amount of withdrawal. The customer enters the withdrawal amount.
8.
If the amount is not a multiple of twenty, the customer is asked again to enter the amount of withdrawal. This will be repeated until the amount is a multiple of twenty (in this case, however, the customer input a valid amount the first time) or the customer cancels the transaction.
9.
After a valid amount is entered, the Withdrawal Handler passes that amount to the Cash Handler then calls on the Financial Systems Interface for approval of the transaction.

10.
The bank denies the withdrawal. The GUI is instructed to inform the customer that the transaction was denied. The transaction is then terminated and the card is ejected.

Scenario 5: Bank Denies Withdrawal
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Scenario 6: Successful Withdrawal Transaction

Note:
The text set in Italics is identical to text in the previous scenario. It is not necessary to reread the italicized text if the scenarios are being read in order.

1.
The Customer inserts a bankcard, the Card Input sends the card's information to the Card Transaction Handler, which detects that the card is valid (not invalid, if no message is returned, the card is assumed valid).
2.
The Card Transaction Handler instructs the Graphical User Interface (GUI) to display a message requesting the customer's Personal Identification Number (PIN).

3.
The GUI requests the PIN and the customer enters his/her PIN, which is then passed to the Card Transaction Handler.
4.
The Card Transaction Handler checks if the PIN is correct. In this case it is and the GUI is instructed to display the customer's options.
5.
The customer requests a withdrawal transaction. This information is returned to the Card Transaction Handler, which in turn calls upon the Withdrawal Handler.
6.
The Withdrawal Handler checks whether there is cash in the machine by querying the Cash Handler. There is cash in the machine in this scenario (not NoCash, if no message is returned, it is assumed that there is money in the machine).
7.
The Withdrawal Handler instructs the GUI to display the withdrawal informa​tion. The GUI requests the amount of withdrawal. The customer enters the withdrawal amount.
8.
If the amount is not a multiple of twenty, the customer is asked again to enter the amount of withdrawal. This will be repeated until the amount is a multiple of twenty (in this case, however, the customer input a valid amount the first time) or the customer cancels the transaction.
9.
After a valid amount is entered, the Withdrawal Handler passes that amount to the Cash Handler, then calls on the Financial Systems Interface for approval of the transaction.
10.
The bank approves the withdrawal. The Withdrawal Handler instructs the Cash Dispenser to dispense of the cash. The Cash Handler is updated and the Receipt Printer is instructed to print a receipt.

11.
The transaction is complete and the card is ejected.

Scenario 6: Successful Withdrawal Transaction
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Appendix B. A Comparison of Some Systems Engineering Tools That Aid in Developing and Understanding System Requirements

1. Introduction

This appendix compares several of the tools used by Systems Engineers to analyze or design complex systems. This appendix provides a brief synopsis of each of the tools, a comparison of their utility in a variety of real-world scenarios that a Systems Engineer will likely encounter, and an evaluation of each tool against a common set of criteria. None of the tools is a Systems Engineering panacea; each of the tools likely addresses only a small part of the problem domain. However, knowledgeable application of one or more of these tools will provide the Systems Engineer with information that is critical to developing solutions that meet requirements.
2. Tools Examined in This Appendix

The following tools will be examined:

•
Affinity diagrams

•
Force-field analysis

•
Ishikawa fishbone (cause-and-effect) diagrams

•
Pareto diagrams

•
Pugh charts

•
Quality Function Deployment (QFD)

•
Functional Decomposition

•
Wymorian T3SD

•
RDD-100

•
CORE

•
Slate

Before attempting a comparison or use-case analysis, it is useful to provide a brief description of each of the tools.

Affinity diagrams implement organized brainstorming. A group of people writes ideas on small pieces of paper. These ideas are then grouped by natural relationships, and names are derived for these relationships. Using this method, everybody has a chance to give input. Since the ideas are “anonymous,” people tend to be more willing to express them, resulting in more complete discussions.

Force field analysis diagrams present the major forces that influence a problem or situation under study. In a given domain of interest, forces may be loosely divided into two groups: driving forces, which promote some type of change or departure from the status quo, and opposing forces, which may resist change or promote change in another direction. The force field diagram presents these forces in opposing columns. Such a presentation provides unique insight into the probability of achieving some desired change. If the driving forces appear overwhelming, the impetus for strategic change may be present. If, however, opposing forces appear more formidable, the change in question is unlikely.

Ishikawa fishbone diagrams are examples of cause-and-effect diagramming. Cause-and-effect diagramming presents a clearly organized, graphical representation of the possible factors contributing to a given problem. Then, the possible contributing factors to each identified possible problem factor are recursively enumerated until the diagram provides a clear representation of the root causes of any problem within the system. In an Ishikawa fishbone diagram, the cause-and-effect relationship is presented concisely and completely, allowing the user to quickly identify and discard unlikely causes in favor of more likely alternatives.

Pareto diagrams help to identify which problems are dominant. It is a frequency distribution (or histogram) of data arranged by category. The problems are listed on the x-axis and their corresponding frequency on the y-axis. It operates on the idea that 80% of the problems are caused by 20% of the factors. The most significant problems, which should be worked on first, are easily seen as the tallest columns.

Pugh charts provide a qualitative concept comparison. A matrix is formed with the alternatives on the columns and the factors used to judge the alternatives on the rows. A base alternative is then chosen. All other alternatives will be compared to the base alternative. The elements of the matrix are filled with plus signs (+), minus signs (–) and S’s. A plus sign is used if a given alternative is judged to be better than the base alternative for a given factor. A minus sign is used if it is worse. An S is used if it is the same as the base. The number of plus signs, minus signs, and S’s are totaled for each column. An alternative is chosen based on the totals. 

Quality Function Deployment (QFD) is a matrix-based system for the evaluation of customer needs and requirements providing a systematic means of analyzing customer requirements and deploying them into product, service and business operations. QFD uses a matrix structure to map the customer “wants” to the “hows,” progressively passing through a series of matrices known as Houses of Quality. The relationship between the wants and hows are weighted, and on each successive level the process is further refined.

QFD provides a means of tracking the process of concept refinement from inception to realization. The traditional use has been to improve product accept​ability as an element of a larger quality improvement structure. Qualitative and quantitative measures are used for both the mapping of the wants to the hows as well as the weights applied. In addition, the process can be used to identify correlations within a set of either wants or hows, providing a means of establishing sets and subsets of the system requirements.

Functional Decomposition is the process where the top-level function of the system is described first. This top-level function is then broken down into subfunctions. Each of the subfunctions is then decomposed into subsubfunctions. This process is continued until the functions are small enough that a team of engineers can design a system to implement the function.

Wymorian T3SD design is a tool based in the theory of discrete systems and the tricotyledon theory of system design. The process incorporates a seven-document set to record the various steps in the design or analysis process. These documents include the following: a lay description of the problem, a mathematical formulation of the feasibility of system requirements, an evaluation of the system alternatives, a functional decomposition, and a physical synthesis of the systems designs.

The process involves qualitative and quantitative measures for establishing the design or designs that best meet system requirements. The application of mathematically based evaluations regarding characteristics and attributes of the candidate systems provides a means of analytical comparisons using a combination of the degrees of fulfillment of each requirement.

RDD-100, Slate, and CORE are large software packages that were designed to help engineers design complex systems and satisfy US Government Systems Engineering requirements. RDD-100 has a dynamic modeling facility while Slate and CORE do not. Otherwise, there is little difference.

3. Failure Analysis: Analysis performed to determine why a system does not meet requirements or in any way fails to operate as planned.

The Ishikawa fishbone diagram is an ideal tool for failure analysis. The diagram displays factors that influence a particular part of the system. By tracing through the diagram from the failed or nonconforming system component, the diagram presents probable and improbable suspect factors.

The Pareto diagram is also a good tool. The groupings of reported errors indicate the sources of the most common errors. Systems Engineering may use this information to identify likely causes of each type of error. The Pareto diagram is particularly useful in warning of a process that is deteriorating or that has gone out of control.

Because large systems can be simulated on RDD-100, it is a good tool for failure analysis.

4. Concept Development: Identify potential system concepts that satisfy system requirements.

Affinity diagrams encourage concept brainstorming. They generate concepts, but have no mechanism for rejecting concepts that do not satisfy requirements. However, brainstorming is an effective tool for encouraging innovative design.

Functional decomposition helps to identify the functions the system must perform. This allows models to be developed and alternative concepts to be explored.

As a tool for establishing requirements and evaluating criteria, Wymorian methodology can provide the means for defining and selecting alternative designs from a variety of options. Through an iterative process, requirements are obtained from the client, which, in turn, are used to establish the design requirements upon which the alternatives can be measured through an analytical process. Alternative designs can be evaluated at various stages in the design and prototyping phases of development, allowing those most promising to move forward. Further, the Wymorian process examines life cycle and retirement issues often overlooked in many design processes.

QFD, as a tool to evaluate issues, is well adaptable for use in product design, primarily in establishing design requirements and in identifying quality information. QFD may provide the best means of interpreting client or public input at the requirements development phase of the design process.

5. Best Concept: Identify the best concept alternative from a list of candidate concepts.

Pugh charts generate a qualitative comparison with a null (usually existing) concept and any number of proposed concepts. No formal method for choosing the “best” concept exists; however, Pugh charts provide information that may be valuable in an initial concept comparison.

Wymorian T3SD provides a quantitative procedure for identifying, validating and testing a system component. It is an excellent tool for best concept selection, but is considerably more complex than Pugh chart methods. However, for large, complex systems, the benefits of improved requirements tractability and the integrated select-build-test features of T3SD usually outweigh the initial simplicity of Pugh charts.

6. Requirements Analysis: Generate a complete and concise statement of the system requirements.

QFD by its very nature is a requirements tool. The first QFD chart correlates the customer's need, the Whats (the Voice of the Customer) with the technical measures, the Hows (the Voice of the Engineer). The technical measures show How we can ensure that the customer's Whats are satisfied. In other words, the technical measures are the technical requirements that will be verified to ensure that the customers’ needs are satisfied.

Functional decomposition helps assure that all the requirements have been discovered. Affinity diagrams help gather input from a wide range of customers.

The Wymorian methodology, through the Systems Requirements Validation (Document 4) and Concept Exploration (Document 5), also provides a means of analyzing requirements. In many ways, these capabilities are unique for the systems under consideration. This is particularly true when numerical values can be assigned to the performance of various systems for each of the requirements. Additionally, the scoring functions allow for the measurement and assessment of system sensitivity to parameter changes. The ability to validate requirements and to address sensitivity by analytical measures provides a powerful requirements analysis tool.

7. Market Forces: Analyze the potential demand for a system that satisfies a given set of requirements.

A force field diagram generates a clear picture of the forces opposing and encouraging a particular system. QFD market analysis may help to determine what characteristics are essential to a successful product.

8. Service Systems: A system designed to provide some form of non-tangible utility to its customers.

Wymorian theory, as a result of its general nature, can be applied to various types of service systems, but its application to those systems may be too difficult and provide similar information to less complex and readily usable operations research techniques. As the system grows in complexity, however, these models may be more accurate.

As with any system that affects, and therefore would benefit from the ability to use client input, the application of QFD can be highly beneficial in developing performance criteria and potential sources of difficulty in service type systems. To a great extent, QFD use can be carried through the requirements development phase of virtually any system, but its usefulness tends to wane as the process moves into a design phase. QFD can take a leadership role after a system is in place by providing a means of accepting client input about an operation after it commences on the performance, so that further improvements can be accommodated in the operation.

9. Comparison of Tools
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