
Sequencing problems usually mean a computer must
search the entire state space for a solution, which is a
time-consuming chore—intelligent heuristics can help

any problems that cannot be
solved algorithmically are
search problems, and finding
a solution that satisfies the sys-

tem requirements necessitates searching
through a large number of possible solu-
tions. For example, in a manufacturing envi-
ronment, management must accommodate
constraints on start and completion time
and schedule particular operations for par-
ticular machines. Often, on even the fastest
computers, all possible assignments of
operations to machines cannot be tested in a
reasonable amount of time. In such cases,
intelligent heuristics must be developed to
prune the search space. We will explore a
heuristic for reducing the search space for
designing schedules that assign specific
operations to specific operators. The specif-
ic application we designed with the algo-
rithm and heuristic was a round-robin
schedule for Cub Scout Pinewood Derbies.
However, this heuristic can certainly be ap-
plied to manufacturing, scheduling com-
mercial air traffic, and scheduling competi-
tive events.

Since the 1950s, more than 80 million
Cub Scouts have built five-ounce wooden
cars and raced them in Pinewood Derbies.
Pinewood Derbies have traditionally consist-
ed of a series of elimination races where
only the winner from each heat proceeds to
the next round. This set up pleases Scouts
with fast cars, but for the unlucky majority
it means a single race, waiting for the awards
to be announced, and then going home.

The best way to explain our Cub Scout
problem is to first show a solution. Table 1
shows a schedule for a 15-car, six-round
race. Each car is identified with a letter, A
through 0. Each car runs six times, twice in
each lane (most tracks have three lanes), and
only runs against any particular competitor
once. This schedule is the end result of our
project. Although it looks simple, it was not
easy to derive.

In our paradigm, we changed the race
format for our Cub Scout pack to a round
robin (see Table 1). The objective was to let
each Scout race more often and throughout
the whole event. We decided to use six

Reducing State
Space Search

in the Classic Al
Challenge

By A. Terry Bahill and William J. Karnavas

rounds because that would give each car two
runs in each lane and still keep the whole
event reasonably short. Switching from an
elimination tournament to a round robin
produced two side benefits: The Scouts
raced more often, and lane biases were
eliminated because each car ran in each lane
the same number of times.

The next task was to derive schedules.
The schedules had two constraints: Each car
had to run twice in each of the three lanes,
and no two cars should run against each

other more than once. We knew from past
Pinewood Derby experiences that schedules
for nine to 39 cars were required. We only
created schedules for races where the num-
ber of cars was a multiple of three. When
the number of cars was not a multiple of
three, we merely left some lanes empty.

In 1989, we created the first schedules by
hand. Each car was assigned a letter, and the
first round was assigned in alphabetical or-
der. The slight deviation from alphabetical
order shown in Table 1 (interchanging N 29

AI EXPERT • SEPTEMBER 1993

30

and/) ensured that all heats would have at
least two cars, even if no cars were labeled N
and C). Subsequent rounds were filled by
rearranging the first round using rotations,
then trial and error. Our 15-car, hand-de-
rived schedule supposedly satisfied both
constraints, hut later we found it satisfied
neither. We therefore decided to give up on
making the schedules by hand and investi-
gated computer algorithms.

RELATED STUDIES
Kirkman's Schoolgirls Problem is similar to
our Pinewood Derby problem. According
to Rouse Ball and Coxeter's Mathematical
Recreations & Essays, in 1850 T. P. Kirkman
said: "A school mistress took her 15 girls for
a daily walk; the girls were arranged in five
rows of three girls each so that each girl had
two companions." The task was then to
"Plan the walk for seven consecutive days so
that no girl walks with any of her classmates
in any triplet more than once."

There are several clever tricks for finding
solutions to this problem. One simple
graphical technique works if there are n
girls, such that n = 24w + 3 or n = 24m +
9, where m is a member of the set \0, 1, 2,
3, . . .\. Solutions exist for all values of n
where n is an odd multiple of three, but
they involve trial and error and are much
harder to implement.

Kirkman's problem is bigger than ours
because the girls go on seven walks, whereas
our scouts only race six times. However, our
problem is harder because of the lane re-
striction: Each scout must race in each lane
exactly twice. We could not adapt any of the
Kirkman Schoolgirls algorithms to our
problem. Checking the usefulness of the
Kirkman solutions for the Pinewood Derby
was a large combinatorial problem that we
decided was not a beneficial endeavor. How-
ever, we applied our algorithm and heuristic
to the schoolgirl problem on a 486 PC, and
so far we found 368 of the 845 solutions.

Montgomery showed how Al heuristics
could be used to improve state-space search-
es. The first problem he presented, the
Magic Star, took his heuristic two hours to
find 959 solutions. Our algorithm and heu-
ristic ran for 1 2 minutes (including valida-
tion of each solution) and found 960 solu-
tions. His second example was the Who
Lives on First Problem: "Five houses are on
a certain street, each of a different color,
and inhabited by eccentric old men of dif-
ferent nationalities, different pets, drinks,
and smokes. The following information is
known:

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. The Ukrainian drinks tea.

16. One of the men owns a zebra.

As you might expect, the problem is to dis-

The Permutation-

This algorithm is best explained by the following small ex-
ample. The right column shows the 24 permutations of the
letters A, B, C, and D, and the left side shows the operations
needed to produce each of these permutations.

Step-O:
Step-1:
Step-2:
Step-3:
Step-4:
Step-5:

Step-6:
Step-7:
Step-8:
Step-9:
Step-10:
Step-11:

Step-12:
Step-13:
Step-14:
Step-15:
Step-16:
Step-17:

Step-18:
Step-19:
Step-20:
Step-21:
Step-22:
Step-23:

Initial sequence
Swap 1 and 0 of sequence above

Swap 2 and 0 of initial sequence
Swap 1 and 0 of sequence above

Swap 2 and 1 of initial sequence
Swap 1 and 0 of sequence above

Swap 3 and 0 of initial sequence
Swap 1 and 0 of sequence above

Swap 2 and 0 in sequence of Step-6
Swap 1 and 0 of sequence above

Swap 2 and 1 in sequence of Step-6
Swap 1 and 0 of sequence above

Swap 3 and 1 of initial sequence
Swap 1 and 0 of sequence above

Swap 2 and 0 in sequence of Step-12
Swap 1 and 0 of sequence above

Swap 2 and 1 in sequence of Step-12
Swap 1 and 0 of sequence above

Swap 3 and 2 of initial sequence
Swap 1 and 0 of sequence above

Swap 2 and 0 in sequence of Step-18
Swap 1 and 0 of sequence above

Swap 2 and 1 in sequence of Step-18
Swap 1 and 0 of sequence above

Position
3210
A B C D
A B D C
A D C B
A D B C
A CBD
A C O B

D B C A
D B A C
D A CB
D A B C
DCB A
D C A B

C B A D
C B D A
C D A B
C DB A
C A B D
C A DB

B A C D
B A DC
B O C A
B D A C
B C A D
BC D A

The steps can be assigned a level, S, based on the highest
position they swap. Steps-6, 12, and 18 all swap position
three with lower positions and thus are called level-3 swaps.
Steps-2 and 4 (and all their repetitions) swap position two
with lower positions and thus are called level-2 swaps. Step-1
(and all its repetitions) swaps position one with its lower posi-
tion, zero, so it is the level-1 swap. A level-6' swap changes
the character at position 5 with lower positions starting at
zero and ending with 5-1: Therefore, it can make 5 swaps
before the sequence repeats.

A level-5 swap changes characters in its working sequence
with the last sequence output by a higher level (the initial se-
quence is the highest level). So a level-1 swap is always done
to the previous output. A level-2 swap is done to the last lev-
eI-3 or higher output. The level-3 swap is always carried out
on the initial sequence (for the four-character example).

To implement the algorithm, all that is needed is to hold
a count and working sequence for each level. Each time a
level exhausts all the permutations it can make, the higher
level is invoked. The higher level makes its swap and then

AI EXPERT • SEPTEMBER 1993

cover which man lives in which house, what
the color of each house is, and what each
man's pet, drink, and smoke is."

There are 25 billion possibilities, but by
using an intelligent heuristic, he was able to

Generating Algorithm

resets the counts of the lower levels and sets their working
sequence to its present output. This lends itself easily to a re-
cursive implementation but can also be implemented itera-
tively. For speed, we implemented it as an iterative function
that returns the next permutation of the sequence and only
required a small record be kept from call to call. The follow-
ing Pascal program shows this implementation:

Program Permutations(Output);
Const

N = 4;
NFact = 24;

Type
PermStr = Array[O..N-1] of Char?

Var
Counts: Array[1..N] of Integer;
WorkSequence: Array[1..N] of PermStr;
PrintStr: PermStr;
i: Integer;

Procedure Permutation(Level: Integer; Var OutStr: PermStr);
Var C: Char;
Begin

If Counts[Level] >= 0 Then Begin
OutStr := WorkSequence[Level];
C := OutStr[Level]; (* swap 2 characters *)
OutStr[Level] := OutStr[Counts[Level]];
OutStr[Counts[Level]] := C;

Counts[Level] := Counts[Level] - 1;
End Else Begin

Permutation(Level+1, OutStr);
Counts[Level] := Level-1;
WorkSequence[Level] := OutStr

End;
End;

(* Main program *)
Begin

(* set up variables used by Permutation *)
For i := 1 to N-1 Do

Counts[i] := -1;
CountsfN] := N;
WorkSequence[N] := 'ABCD';

(* find and print the permutations of a sequence *)
For i := 1 to NFact Do Begin

Permutationf 1, PrintStr);
Nriteln(PrintStr)

End
End.

solve the problem on an IBM PC in two
hours. Our program solved this problem in
two minutes. However, we are not claiming
that our program is better because it is fas-
ter: Although we used the same computer,
we used a different language. Our program
is more general since we used the exact
same code in each case to generate the per-
mutations and only modified the functions
that check constraints.

RANDOM TRIALS SOLUTION
We will use the following terminology to de-
scribe Pinewood Derbies. We will refer to
each set of cars running down the track at
the same time as a "heat." The number of
heats necessary for every car in the division
to run once constitutes a "round." A set
number of rounds constitutes a "divisional
race." Thus, for 15 cars to run six times
each, the divisional race consists of six
rounds of five heats each, as shown in Table
1. Finally, several divisional races constitutes
a "derby." Typically the divisions are aggre-
gated by age, with four or five divisions be-
ing common in a Cub Scout pack.

Our first computerized scheduling system
was a simple program that randomly or-
dered cars in races. It successfully produced
round-robin schedules for 18 or more cars.
The first round was assigned in alphabetical
order as was done by hand. The program
successively filled the slots in each heat of
each round using a random number gener-
ator to assign a car. If the car had been in
the round already, or violated either con-
straint, it was rejected, and the next car in
alphabetical order was tried. If all cars were
tried in a slot without success, the partial
round was discarded and restarted. If the
number of restarts for a round exceeded a
threshold (66 was arbitrarily used), the pro-
gram cleared all assignments from round
two on and started again. Within minutes
the program produced schedules for divi-
sional races of 18 or more cars. However,
the 15-car, six-round divisional race re-
mained unsolved, even after letting the pro-
gram churn for more than 24 hours.

Why did the random assignment program
fail for 15 cars? By the calculations previous-
ly mentioned, there was no logical reason
why the 15-car, six-round schedule could
not be found. Our program worked well for
18 and more cars, so there was no reason to
assume a programming error. Yet, it ran for
over a day without finding a solution. Be-
cause it was a random guesser, there was no
way to know if it would ever terminate. This
situation created the impetus for us to seek
out deterministic methods.

DETERMINISTIC METHODS
In an attempt to find a correct 15-car, six-
round schedule, we explored two determin- 31

AI EXPERT • SEPTEMBER 1993

LANE1 LANE 2 LANE 3

HEAT1

HEAT 2

HEAT 3

HEAT 4

HEATS

HEAT1

HEAT 2

HEAT 3

HEAT 4

HEATS

HEAT1

HEAT 2

HEATS

HEAT 4

HEATS

HEAT1

HEAT 2

HE AT 3
HE AT 4

HEATS

HEAT1

HEAT 2

HEATS

HEAT 4

HEATS

HEAT1

HEAT 2

HEAT 3

HEAT 4

HEATS

A

D

G

N

M

C

D

A
E

I

L

E

H
1

O

M
B

G
N

F

J

F

C
H

K

J

B

K

L

O

ROUND 1

B

E

H

K

J

ROUND 2
F
B
N

K

L

ROUNDS
J
G
F
M

A

ROUND 4
C
E

A

0
I

ROUNDS
D
L
I

M

0

ROUNDS
H
N

D

G
C

C
F

I

L

0

G

H

M

J
0

C

N
K

B
D

D

L

K
H

J

G

A

N
E .
B

A
F
I

M
E

TABLE 1. A 15-car,
six-round race

table.

32

istic methods for finding a solution or prov-
ing that none exists. One was a heuristic
search of the 15 factorial (15!) permutations
of cars that make up each round. This pro-
cess involved finding a fast algorithm for
generating the permutations of a sequence
and checking each sequence for constraint
compliance. The other method was an inte-
ger programming formulation that we will
not discuss.

First, we considered the brute force ap-
proach of trying all potential schedules. The
plan was simply to generate all 15! permuta-
tions of the ordering of the cars in each
round and then check each against all pre-
viously accepted rounds for lane and com-
petitor conflicts until we could find a set of
six.

In this approach, we encountered two
problems. First, we could riot test all 15! per-
mutations (about 1012) per round in any rea-
sonable time period. The second problem
was our lack of an appropriate algorithm
for generating all the permutations of a se-
quence. This problem was much more
pressing since it prevented even attempting
an exhaustive search. All permutation algo-
rithms we had seen generated the whole set
of permutations of a sequence in one shot:
We did not have the resources to store all
these sequences. The brute force approach
was only feasible if each sequence was gen-
erated, tested, and then accepted and saved
or rejected and discarded. Therefore, we
developed a new recursive algorithm that
can be used to generate one permutation at
a time.

PERMUTATION GENERATING
The permutation-generating algorithm
works by breaking the problem of generat-
ing the permutations of a sequence of a
characters into the problem of generating
the permutations of a sequence of n - 1
characters, n times. This continues until n is
two, where the permutations are the se-
quence and the sequence reversed. Thus,
the permutations of AB are AB and BA. To
generate the permutations of ABC, first find
the two permutations of AB and append C,
then find the two permutations of AC and
append B, and finally find the two permuta-
tions of CB and append A. To generate the
permutations of the sequence ABCD, you
must find the six permutations of ABC and
append D, then find the six permutations of
ABD and append C, and so on for ADC and
B, and finally DBC and A. This example is
shown in the sidebar.

This algorithm can be implemented as a
recursive function that returns one permu-
tation each time it is called. Between func-
tion calls, a record stores a count of how far
it has progressed and the sequence of char-
acters being permuted for each level of re-
cursion. A simple Pascal version is also given
in the sidebar.

Using this algorithm, we set out to find a
schedule for a 15-car, six-round divisional
race; it ran for four weeks on an AT&T
3B2/400 without termination or solution. To
see the probable cause of this failure, com-
pare the first round of the 15-car schedule
(ABC DEF GHIJKL MNO) to the first per-
mutation to be tried for the second round
(ABC DEF GHI JKL MON): Only N and O
have changed places. Since the algorithm
modifies the sequence like a counter start-
ing in the "least significant" position (on the
right end), it will require 13! permutation
calls and constraint checks before B is
changed, which is necessary to prevent A
and B from racing against each other.

AI EXPERT • SEPTEMBER 1993

This led to our first heuristic rule: Find
the constraint conflict in the highest posi-
tion and perform a "super-permutation" at
that position. A super-permutation consists
of all the less-significant individual permuta-
tions needed to cause a particular character
in the sequence to change. A modification
of the permutation procedure implemented
the super-permutation in an extremely effi-
cient manner. By forcing all permutations
to the right of a particular position to think
that they are done, the sequence can per-
mute to a new character in another position
in one jump. A super-permutation requires
no more work than a normal permutation
and is as simple as properly setting counters
of the less-significant positions in the per-
mutation generator.

We modified the search program to im-
plement the heuristic and used the new abil-
ity of the permutation procedure. This pro-
cess involved redefining the constraint
checking functions to return the position
rather than the presence of conflicts. This
way, the high position conflicts could be re-
solved in a few permutation cycles, eliminat-
ing (p-1)! needless permutations and checks.
This made large problems such as a 39-car,
six-round race feasible for systematic
search, even though 39! is far too large to
exhaustively search.

Our systematic search started with the

first round set to alphabetic order. Then we
did permutations using the heuristic until a
valid round was found. We saved it and
searched on from there for the next round.
This process made the search faster, and we
saw no reason to start each round from
scratch and recheck a previously searched
region of the state space.

This heuristic search program was run on
large schedules and produced rapid results
for n = 21. The 15- and 18-car schedules
terminated, claiming that no solution exist-
ed. This situation presented quite a prob-
lem since an 18-car schedule had already
been found by the random-assignment tech-
nique.

The solution to this dilemma was to look
at the system used by the random assigner.
It would start over if it decided that a par-
ticular solution seemed stuck. The permuta-
tion search did not try to restart, presuming
that any working round was as good as an-
other and cannot preclude the finding of
later rounds. But this presumption w7as not
true. A dead end can be reached in only the
second round, for example, by placing cars
A, D, Gin Heat 1, cars B, E, H in Heat 2, and
cars C, F, I in Heat 3. (The lane assignments
are not important.) Of the remaining cars,y
through O, no three can be found that have
not already raced one of the others. More
explicitly, the program tried to solve the

ADVERTISERS
PAGE CIRCLE
NO. NO.

ABTECH

AMERICAN INTERFACE
COMPUTER

AMZIOD

ARTIFICIAL INTELLIGENCE
TECH

B.I.M

BYTE DYNAMICS

GENSYM

HNC—HECHT-NIELSEN

HESS CONSULTING

HYPERLOGIC

ITASCA SYSTEMS

LEVEL5 RESEARCH .

LOGIC PROGRAMMING
ASSOCIATES

MAN MACHINE INTERFACES

23

19

14

39

C2

C3

8

39

6

1

23

39

13

11

35

36

9

16

1

19

30

17

6

2

12

18

NEURALWARE INC

NOVA CAST

NEURON DATA

PARALOGIC

PINNACLE DATA CORP. ..

QUINTUS CORP

REDUCT SYSTEMS

SOFT WAREHOUSE INC. ..

SAPIENS SOFTWARE

THE MATHWORKS INC. ..

THE ART OF SOFTWARE
I N C , . . . ,

VENUE CORP

VISUAL SOLUTIONS

WARD SYSTEMS ..

2

25

C4

13

25

4

12

6

15

3

15

20

34

32

8

33

31

14

4

37

7

5

10

The index on this page is provided as a service to our readers.
The publisher does not assume any l iabil i ty for errors or omissions.

33

AI EXPERT • SEPTEMBER 1993

problem using only a 15! state space. The
state space is 15! per round, and in this case
we must find schedules for five rounds, so
the true state space is (15!)5.

The ability to backup was added to the
search heuristic by saving not only the se-
quence derived for each round but also the
state of the permutation-generating algo-
rithm. If the permutation generator
reached the final permutation of the series
before a sequence was accepted for a round,
the heuristic skipped back to the previous
round and resumed searching for another
valid sequence for that round. Using this re-
vised heuristic, our program quickly found a
solution for the 18-car, six-round problem.
After running three weeks on an AT&T
3B2/400, it finally found a solution for the
15-car, six-round problem, thus proving the
existence of a solution, shown in Table 1.
Schedules derived by this program for nine-
to 39-car, six-round divisional races have
been published in Chapman, Bahill, and
Wymore.

UNRESOLVED PROBLEMS
During our 1989 Pinewood Derby, using
our manually derived 12-car, six-round
schedule, a parent noticed two cars that did
not race each other. Subsequent investiga-
tions showed that 13 pairs of cars did not
race each other. So we ran our program and
found a good, but not perfect, solution for
this 12-car race. In this solution, all cars
race in each lane twice and no car races any
other car more than twice; but. cars B and /
never race each other. We added a third
constraint for nine-car and 12-car races,
namely that every car race every other car.
Our program searched for six weeks with-
out finding a better solution. We are still
looking for a perfect solution for the 12-car
race.

Recently, we encountered an interesting
phenomenon. When we discussed this prob-
lem with our eminent colleagues who did
research in scheduling, seven times in a row
we heard them say, "Aw, that's an easy prob-
lem. I solved that years ago." However,
when we asked them to use their algorithms
on our 12-car problem, they produced no
solutions. When pushed, they said, "Evi-
dently our algorithm is good for our prob-
lem, but it cannot stretch to your problem."
After discussing this problem for three
years, we have concluded that scheduling
problems are indeed difficult. Each re-
searcher spends time and money solving a
particular problem. At the end of this en-
deavor, they hope that their technique is
general. However, when a problem comes
along that their algorithm cannot solve,
they must reluctantly admit that their algo-
rithm only works for a particular problem,
not for a general class.

EFFICIENCY VS. FLEXIBILITY
We do not believe that efficiency is the most
important property of an algorithm: We
think that flexibility is more important. We
have many computers, so we have no prob-
lem with letting a particular computer com-
pute for five or six weeks finding a solution
to our problem, as long as it finds a solution.
(Multitasking operating systems and resu-
mable programs let us use the computer for
other tasks when necessary.) We realize this
is not feasible in all situations, but it is prac-
tical in many instances such as our
Pinewood Derby. We do not want to solve
and resolve a problem with more and more
efficient algorithms. Rather, we want to get
a reasonable solution with a technique that
can be reapplied to different problems. Pro-
gramming time is expensive, but computer
time is very cheap. Our algorithm and heu-
ristic let us write programs quickly for the
three problems mentioned under related
studies and can be easily applied to prob-
lems such as the traveling salesman problem
and the Chinese Mailman problem.

When we started writing programs for
Pinewood Derby schedules, we had difficul-
ty assigning items to processes with con-
straints. We investigated several methods of
solution. Brute force enumeration was in-
feasible: It took too long. Integer program-
ming could prove the existence or nonexis-
tence of a solution, but it required resources
we did not have. We finally wrote an intelli-
gent enumeration heuristic that solved our
scheduling problem. In the process, we also
developed an efficient and versatile algo-
rithm for generating the permutations of a
sequence.

The intelligent-search heuristic can be
easily applied to the solution of other sched-
uling problems by changing the constraint
checking procedures. The only requirement
needed to achieve significant improvement
over full n! or (n!)m search is that the con-
straints are such that single positions of con-
flict are identifiable and resolvable. If the
problem is confined to the permutations of
a single sequence or can be cast as such, the
heuristic search can find solutions quite
rapidly. [Jj

The authors thank Bill Velez for pointing out
Kirkman's Schoolgirls Problem and Siwrajeet
Sen for showing how to state our problem as an
integer programming problem.

SUGGESTED READING
Rouse Ball, W.W., and H.S.M. Coxeter. Mathematical

Recreations & Essays. New York, N.Y.: Macmillan, 1962,
pp. 267-298.

Montgomery, G. "Improving State Space Searches,"
AI Expert, Mar., 1992, pp. 39-43, and "Mastermind: Im-
proving the Search," AI Expert, April 1992, pp. 40-47.

Chapman, W.L., A.T. Bahill, and W. Wymore. Engi-
neering Modeling and Design. Boca Raton, Fla.: CRC
Press Inc., 1992.

A. Terry Bahill is a
professor of
systems engineering
at the University of
Arizona at Tucson.
He has authored
several books,
including
Bioengineering:
Biomedical, Medical,
and Clinical
Engineering and
Keep Your Eye on
the Ball: The
Science and
Folklore of Baseball.

William J. Karnavas
is a Fellow for
neurophysiology in
the department of
neurosurgery at the
University of
Pittsburgh Medical
School. 35

AI EXPERT • SEPTEMBER 1993

