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A technique for validating recursive filters

CHAO-YEN Wu,1" FERENC SZIDAROVSZKY^ AND A. TERRY

Abstract. A new technique is introduced for verifying computer implemen-
tations of recursive digital filters. A target waveform is presented to the input of
the filter and the filter coefficients are allowed to converge. Then the values of the
coefficients are checked to see if they converged to the correct values. These correct
values are derived first for a sinusoidal input. Then a general derivation shows what
the coefficients should converge to for a large variety of waveforms.
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1, Introduction

Designing a system means making a model upon which a real world
system can be built. Ensuring that the model is a solution to the real
world problem is called validation (building the right system.) However, a
more important aspect of systems engineering is proving that the computer
implementation emulates the model (building the system right). This later
verification issue is the topic of this paper.

There are many types of digital filters. The recursive algorithms, such
as least-mean-squar (LMS) [1,2] and recursive-least-square (RLS) [3,4],
worked well for our application. While investigating these filters we devel-
oped a technique for proving that the computer implementation was correct.
This technique can be generalized to all types of recursive filters.

The conventional way of verifying adaptive filtering algorithms can be
described as follows.

1. Use simulation to approximate coefficients of a signal model.
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2, Fed the signal generated by the model to the adaptive filter and allow
the coefficients of the filter to converge,

3. Compare the coefficients of the filter with those of the model.

In this paper, we describe a new technique for verifying recursive least
squares adaptive filters. The procedures of this technique can be summarized
as follows.

1. Choose a signal, a sinusoid for example. This signal can be described
by a difference equation in terms of its past values and a set of autoregressive
coefficients.

2. Synthesize a model whose output is the chosen signal.
3. Pre-compute the exact values of the coefficients of the chosen signal

using the technique introduced in this paper.
4. Feed the signal generated by the model to the adaptive filter and allow

the coefficients of the filter to converge.
5. Compare coefficients of the filter with those of the model.

Our technique is better than the conventional algorithm in three ways.
First, we have a mathematical way of deriving coefficients of the chosen sig-
nal in terms of the n-th order difference equation. Second, we use a simple
signal, such as an impulse or a step, as the input to the adaptive filter. This
allows us to easily derive coefficients of the chosen signal. This is unlike the
conventional technique where a complicated signal is the input to the adap-
tive filter. With the conventional technique it is difficult to mathematically
verify the coefficients of the chosen signal. Third, the coefficients of a signal
can be derived theoretically and proved by computer simulation. Unlike in
the conventional technique, where the coefficients of the signal are chosen
arbitrarily without theoretical support.

Modeling, identification, filtering predicting, and tracking are closely re-
lated activities. If you identify a signal, you have modeled it. If you can
model it, you can predict its future output. If you can predict its future
output, you can track it. Therefore, any digital filter can also be used for
prediction. So, although our specific problem was that of prediction, in this
paper we make little distinction between these terms.

2. Least square estimators

Let us first present a general review of the well known RLS technique.
The recursive-least-square predictor (RLSP) is a parameter identification
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scheme that can be described by a difference equation of the form

(1) y ( t i )

Equation (1) is called an autoregressive model. In this model, the current
value of the process y(t{) is expressed as a finite, linear aggregate of previous
values of the process and a set of autoregressive coefficients, the a&'s, where
k = 1 , , . , , T V and TV is the order of the signal (the number of coefficients
needed to describe the signal). The RLSP generates ai to a^ that are the
estimates of the autoregressive coefficients, ai through a^. Thus, it yields a
model of the signal given by

(2) y ( t i ) = aiy(ti-i) + a2y(ti--2) + ... + aNy(ti-N).

Here, y ( t i ) is an estimated value of ?/(/,•) based on the parameters a&,
(k = 1, . . . , TV). The RLSP minimized the sum of squared errors:

N

(3) «/
i=0

The squared error is chosen as the cost, function, J, in the minimization
procedure because it is differentiable and non-negative. Minimizing squared
error leads to the name "least squares." The recursive formulae can be de-
scribed as

(4) (tN

where G)( t fyv) is a vector of parameters,

(5)

$.(ti) is a vector of past signal values,

(6)

and

(7)

The matrix P.(N) is updated with

(8) P(TV) = P(N - 1) - L(N)$T(tN)P(N - 1).

To start the process simply let P(0) = 07, where a is a large (positive)
number and let .0(0) = 0. When the implementation converges, estimators
y(ti) are almost identical to the correct values y(t-i) for large TV.
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3, Accuracy of the LRS algorithm

When an RLS algorithm is adapting to a new waveform its coefficients
will be changing. When both the waveform and the algorithm have reached
steady-state the coefficients will no longer change, up to a small error tol-
erance. The exact coefficients are unique for each input waveform. Finding
these coefficients is equivalent to identifying the signal. For some waveforms
these coefficients can be calculated theoretically. Therefore, the coefficients
derived by the algorithm can be compared to these theoretical coefficients
to evaluate the accuracy of the computer implementation of the algorithm.

To understand our verification technique, assume that a signal is coming
out of a black box. The behavior of the black box can be described by
a difference equation with the transfer function H. Now the identification
task is to estimate the transfer function H of the black box. For our specific
case, the desired output from the RLSP is the predicted signal, Y(z~1}. To
simplify the mathematical derivations, choose the input signal, U(z~1} = 1,
to be an impulse and the system transfer function, H(z~1}, becomes equal
to Y(z~l), This combination of the input signal and system produces an
output signal,

(9) Y(z-*)=U(z

as desired.

4, Specific formulas

4,1. Sinusoidal signal

Now assume that the signal, y(t], coming out of the black box is sinusoid.
The identification task is to find the transfer function H that would produce
such an output in response to a unit impulse input. Consider a sinusoidal
position signal of frequency u>, the position can be described as sinu^, which
is the output signal Y(^~1) in the time domain, so in the ^-domain,

(10)
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That is,

o

(11) H(z'1} = ^

oo

— 2z cos u> +
z~l sinu;

Hence

(12) #U~a) =

1 —2z~ 1 COSW

Combining equations (10) and (13) yields

(14) Y(z~l)(I - 2z~l CQSW + z~2) = U(z

Taking the inverse of the ^-transformation of equation (14) yields, in the
time domain,

(15) y(ti) — 2cosu>7/(^_i) + £/(tj_2) = sinum(^_i).

Since the input is an impulse, u(ti) = 0, for i > 0. Thus, for i > 1,

(16) y(ti) = 2coswj/(ti_i) + y(ti-i) = 0,

That is,
(17) y(ti) ~ 2cOSCUt/(tj_i) — #(tj_2) .

Comparing equation (17) with the standard form (2nd-order difference equa-
tion)
(18) y(ti) — aiy(ti-.i) + a^y(ti~2} >

yields
(19) ai = 2cosw, and 02 = —!.

Equation (19) shows that a sinusoidal signal can be described as a second-
order difference equation and its autoregressive coefficients a\d 02 will
converge to 2cosu> and —1 respectively. Therefore, if a black box containing
a second order difference equation has a sinusoidal output with frequency u>,
then the difference equation must be of the form

(20) . y(ti) =
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To illustrate that this equation really produces a sinusoid, let the period, P,
equal 10, meaning w = 0,63 and 2cosu> - 1.62, and start off with initial
conditions of 0 and 1. Equation (20) will produce the sinusoid of Table 1,
with a period of 10.

Table 1. A >
t -1 0

0 1
1

1.62
2

1.62
3
1

4
0

0

-1

imisoi'J
fi

-1.62

( r e d u c e d by Eq
7 « 9

- 1 W ~ 1 0

C20)
10
1

11 12
i . i 2 i ;;;=!

l.'J '
ll 1

So to test our computer.implementation of the RLS algorithm, we gave
it a sinusoidal signal and checked to see if its coefficients converged to 2 cosuj
and — 1. In one computer simulation, the period of the signal, P, was chosen
to be 10. u> equals 27T/P, so, 2cosu; was 1.61803. The simulations results of
the RLSP showed the coefficients converged to 1.61998 and -0.99998, which
is^ pretty close to the ideal values of 1.61803 and -1.

4,2. Other test waveforms

We also used cubic, parabolic and triangular waveforms to test our algo-
rithms. For example, the cubic position signal was described as

(21) y ( t ) = 10.39A , 0< t < P,

where A is amplitude and P is period. We repeated this curve every P
seconds to make it a periodic signal. The parabolic position signal was
described by

(22)
A

A
.

+ !-(

-1+ |

;
P )
7 /

'^V
^ 7 /

, if 0 < t < £

, if £ < t < P

The triangular position signal was expressed as

(23) if 0 < t < f

This collection of equations provided a set of waveforms that were similar
in shape to the sinusoids, yet they had distinctive velocity waveforms and
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spectral characteristics [5]. We derived the autoregressive coefficients for
these waveforms in a manner similar to the sinusoids in the previous section.
The results are shown in Table 2.

Table 2
Theoretical coefficients
Waveform
Sinusoid
Cubic
Parabolic
Triangular
Square-wave

for the difference equation
QI Q>2 G>3 Q>4

2cosu>
4

3
2
1

-1 0
-6 4
-3 1
-1

0
-1

order
2
4
3
2
1

However, rather than show individual derivations for these special cases, we
shall now show a general derivation for any waveform.

5. General derivation

For a general difference equation of the form

(24) y ( t i ) = Oi3/(tt--i) + a2j/(t,-_2) + ... -

the characteristic polynomial is defined as

fne\ \N-~I \N—2 \
\£>D) A — Q,]A — 0<2A — ... — ttjV—1^ — 0>N == " •

Let the roots be Ai ,A 2 , . . . , A r with multiplicities mi,m2 , . . . ,m r, respec-
tively. Here necessarily mi + 7773 + ... + Wr = N • Then the general solution
has the form:

(26)

That is,

(27)

where
(28)

/=! 3=0

KO = 1 A .
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Assume first that for some .£, A^ = 1, then

(29) yf(i) =-QO

since A} = 1 for all i. Hence, if m^ = 2, the triangular part is obtained,
if rnt — 3, the parabolic part is obtained, and if mi — 4, the cubic part is
obtained,

Assume next that for some /, A^ = (cosu> + jsinw)/? (complex roots).
Then

(30) sn w

which gives the trigonometric polynomial form. In the future special case,
when mi = 1 (multiplicity 1),

(31) sn u?

The polynomial part vanishes, hence we get the trigonometric form. The
results of this general derivation are summarized in Tables 2 and 3.

Table 3
Roots and multiplicities of general scheme

Waveform
Sinusoid
Cubic
Parabolic
Triangular
Square

Roots (A^)
(cosuj + jsinu?)/?

1
1
1
1

Multiplicities (mt)
1
4
3
2
1

So, we have shown that some trigonometric and polynomial waveforms
can be obtained from higher order difference equations, as given in Table 2,
by carefully selecting initial values so that the unwanted parts of the general
solution cancel out.

6. General results

When one of these waveforms is applied to the input of a recursive filter
its coefficients should (if it works right) converge to the values shown in Table
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2, A sinusoidal signal can be described as a second-order difference equation
and its autoregressive coefficients ai and At will converge to 2cosu> and —1
respectively. A cubic signal can be described as a fourth-order difference
equation and its autoregressive coefficients 01,02,035 and 04 will converge to
4, -6,4, and -1 respectively, A parabolic signal can be described as a third-
order difference equation with autoregressive coefficient 01,03, and 03 to be
3,—3, and 1 respectively. Finally, a triangular signal can be also described
as a second-order difference equation with autoregressive coefficient 01 and
03 to be 2 and —1 respectively.

Our computer implementation of the RLSP worked well as was demon-
strated by its coefficients, shown in Table 4, converging to the correct values
of Table 2.

Table 4
Actual coefficients for our implementation

Waveform
Sinusoid
Cubic
Parabolic
Triangular
Square- wave

01
1.61998
3.99998
2.99998
1.99998
0.99998

02
-0.99998
-5.99998
-2.99998
-0.99998

03
0

3.99998
0.99998

04
0

-0.99998

Four conditions are necessary for accurate predictions using an RLS pre-
dictor. (1) The order of the model must be greater than or equal to the order
of the input signal: If it is not, the algorithm will not converge. When we
run the RLSP on the computer we assign a value to the order of the RLSP.
If the order of the input signal is unknown we assign a large number. If the
order of the input signal is known (as for the signals in Table 2) we assign
the exact value. (2) The parameter estimates, GI through ON, must con-
verge to the actual parameters of the input signal, as shown in Table 4. (3)
The signal parameters must be time invariant. For example, for a sinusoid
01 = 2cosu?, and 03 = —1. As you can see GI and 02 are time invariant. If
the signal parameters vary with time the RLSP will not converge. (4) The
z-transform of the input signal must have at least one pole. The denomina-
tor of equation (12), z2 — 2zcosw + 1, is the characteristic function. If we
set this equal to zero we get the characteristic equation. For a sinusoid this
characteristic equation has two poles. If no poles exist in the z-transform of
the input signal, then characteristic equation is constant. Therefore there is
no difference equation in the time domain.
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7. Summary

In this paper we presented a technique for verifying computer implemen-
tations of recursive digital filters. Target waveforms were presented to the
input of the filter and the filter coefficients were allowed to converge. If they
converged to the correct values we concluded that the computer implemen-
tation was correct. These correct values were derived for sinusoidal, cubic,
parabolic and triangular waveforms. Our technique is general sot that any
desired waveform cpuld be used to verify a computer implementation of a
recursive filter.
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