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ABSTRACT

Practicing engineers often find the tools and techniques used for investigating alternative
system designs to be cumbersome or complicated. This article will show that these systems
engineering tools and techniques are in fact quite simple and can provide critical insight into
how stakeholder requirements drive the engineering design process. This helps ensure that
customer requirements are satisfied throughout the entire system lifecycle and aids in
reducing expensive design iterations due to poorly understood or poorly documented
requirements. These goals are achieved by deriving figures of merit and combining them using
standard scoring functions to steer efforts towards fulfilling the customer’s objectives early in
the design process. Few papers in the literature capture the basic elements of tradeoff
analyses in a way that entices the engineer to utilize the techniques. We have attempted to
ameliorate this problem. Most of the practices presented in the literature are written from a
decision analysis perspective. The success of such techniques is dependent on the expertise
of the analyst in that several of the methods require considerable analyst experience for them
to be employed effectively. This paper presents standardized methodologies for carrying out
tradeoff analyses, which are applicable to a wide array of problems and also demonstrates
that these techniques are relatively simple to use. © 2001 John Wiley & Sons, Inc. Syst Eng 4:
190–212, 2001

1. INTRODUCTION

Tradeoff studies are an important part of the systems
engineering process. However, practicing engineers
often find the tools and techniques for performing trade-
off studies to be cumbersome or complicated. This
paper will show that these systems engineering tools
and techniques are in fact simple and can provide criti-
cal insight into how stakeholder requirements drive the
engineering design process. This helps ensure that cus-

Regular Paper

*Author to whom all correspondence should be addressed at: Depart-
ment of Systems and Industrial Engineering, University of Arizona,
Tucson, AZ 85721-0020 (e-mail: terry@sie.arizona.edu).

Contract grant sponsor: Federal Aviation Administration; contract
grant number: AAR-424

Contract grant sponsor: U.S. Department of Energy; contract grant
number: DE-AC04-94AL85000 

Systems Engineering, Vol. 4, No. 3, 2001
© 2001 John Wiley & Sons, Inc. 

190



tomer requirements are satisfied throughout the entire
system lifecycle. This paper shows techniques for doing
tradeoff studies and also shows how the tradeoff process
fits into the overall systems engineering process, as is
shown in Table I.

2. THE SIMILAR PROCESS

Humans (individually, on teams, and in organizations)
can employ simple processes to increase their prob-
ability of success. Many authors, both technical and
nontechnical, have described these processes, and their
descriptions are similar. Bahill and Gissing [1998] com-

pared these processes and extracted the similarities:
State the problem, Investigate alternatives, Model the
system, Integrate, Launch the system, Assess perform-
ance, and Reevaluate. These seven functions can be
summarized with the acronym SIMILAR: State, Inves-
tigate, Model, Integrate, Launch, Assess, and Reevalu-
ate. In this section, we will briefly describe the
SIMILAR process, shown in Figure 1, to give the reader
an overall context for applying tradeoff studies. It is
important to note that the SIMILAR process is not
sequential. The functions are performed in a parallel
and iterative manner.

2.1. State the Problem

The problem statement starts with a description of the
top-level functions that the system must perform, or else
the deficiency that must be ameliorated. The systems
mandatory and preference requirements should be
traceable to this problem statement [Bahill and Dean,
1999]. Acceptable systems must satisfy all the manda-
tory requirements. The preference requirements are
traded off to find the preferred alternative. Hopefully
your customer will seldom force you to tradeoff man-
datory requirements. The problem statement should be
in terms of what must be done, not how to do it. It might
be composed in words or as a model. Inputs come from
end users, operators, maintainers, suppliers, acquirers,
owners, bill payers, regulatory agencies, victims, spon-
sors, manufacturers, and other stakeholders.

2.2. Investigate Alternatives

Alternative designs are evaluated based on perform-
ance, cost, schedule, and risk figures of merit (FoMs).
No design is likely to be best on all FoMs, so multicrit-
eria decision-aiding techniques should be used to reveal
the preferred alternatives. This analysis should be re-
done whenever more data are available. For example,
FoMs should be computed initially based on estimates
by the design engineers. Then models should be con-
structed and evaluated. Next simulation data should be
derived. Subsequently, prototypes should be measured
and finally tests should be run on the real system. For

Table I. Conceptual Outline of This Paper

Figure 1. The SIMILAR Process from Bahill and Gissing (1998) © 1998 IEEE.
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the design of complex systems, alternative designs re-
duce project risk. Investigating innovative alternatives
helps clarify the problem statement. Most of this paper
is about the Investigate Alternatives function.

2.3. Model the System

Models will be developed for most alternative designs.
The model for the preferred alternative will be ex-
panded and used to help manage the system throughout
its entire life cycle. Many types of system models are
used such as physical analogs, analytic equations, state
machines, block diagrams, functional flow diagrams,
object-oriented models, computer simulations, and
mental models [Blanchard and Fabrycky, 1998]. Sys-
tems engineering is responsible for creating a product
and also a process for producing it. So, models should
be constructed for both the product and the process.
Process models allow us, for example, to study sched-
uling changes, create dynamic PERT charts, and per-
form sensitivity analyses to show the effects of delaying
or accelerating certain subprojects. Running the process
models reveals bottlenecks and fragmented activities,
reduces cost, and exposes duplication of effort. Product
models help explain the system. These models are also
used in tradeoff studies and risk management.

As previously stated, the systems engineering proc-
ess is not sequential: It is parallel and iterative. This is
another example: Models must be created before alter-
natives can be investigated.

2.4. Integrate

No man is an island. Systems, businesses, and people
must be integrated so that they interact with one another.
Integration means bringing things together so they
work as a whole. Interfaces between subsystems must
be designed. Subsystems should be defined along natu-
ral boundaries. Subsystems should be defined to mini-
mize the amount of information to be exchanged
between the subsystems. Well-designed subsystems
send finished products to other subsystems. Feedback
loops around individual subsystems are easier to man-
age than feedback loops around interconnected subsys-
tems.

2.5. Launch the System

Launching the system means running the system and
producing outputs. In a manufacturing environment this
might mean buying commercial off-the-shelf hardware
and software or it might mean actually making things,
e.g., bending metal. Launching the system means al-
lowing the system to do what it was intended to do.

2.6. Assess Performance

FoMs, technical performance measures, and metrics are
all used to assess performance. FoMs are used to quan-
tify requirements in the tradeoff studies. Technical per-
formance measures are used to mitigate risk during
design and manufacturing. Metrics are used to help
manage a company’s processes. Measurement is the
key. If you cannot measure it, you cannot control it. If
you cannot control it, you cannot improve it [Moody et
al., 1997].

2.7. Re-evaluate

Re-evaluation is arguably the most important of these
functions. For a century, engineers have used feedback
to help control systems and improve performance. It is
one of the most fundamental engineering tools. Re-
evaluation should be a continual process with many
parallel loops. Reevaluate means observing outputs and
using this information to modify the system, the inputs,
the product, or the process.

Figure 1 shows the SIMILAR Process. This figure
clearly shows the distributed nature of the Re-evaluate
function in the feedback loops. However, all of these
loops will not always be used. The loops that are used
depend on the particular problem to be solved.

This paper is primarily about the Investigate Alter-
natives function. The four main tasks in investigating
alternatives are brain storming to develop the alterna-
tive concepts, designing the alternative systems, mod-
eling the systems, and finally performing a tradeoff
analysis to find the preferred alternative. The rest of this
paper is about tradeoff analyses, which have six sub-
functions: create an hierarchical structure, assign
weights of importance, select a combining method,
design figures of merit, consider the do-nothing alter-
native, and conduct sensitivity analyses.

3. TRADEOFF ANALYSES 

A tradeoff analysis (also called a trade study) is an
analytical method for evaluating and comparing system
designs based on stakeholder-defined criteria. Tradeoff
analyses are most often performed as a part of the
Investigate Alternatives function of the SIMILAR proc-
ess (see http://www.sie.arizona.edu/sysengr/pinewood/
for an example). The cornerstone of performing a trade-
off study is designing Figures of Merit (FoMs). FoMs
are also known in the literature as evaluation measures,
measures of effectiveness, attributes, performance
measures, or metrics. FoMs are quantifiable criteria that
are useful in characterizing how the stakeholder values
important system attributes. In the context of tradeoff
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studies, we use FoMs to determine how to trade off
preference requirements in order to identify the system
design that most closely matches the stakeholder’s ob-
jectives. The process of designing FoMs assists in the
formation of the stakeholder’s preference structure
through which alternate system designs can be com-
pared. Stakeholder preferences can be described and
quantified in a variety of ways. For many years, deci-
sion analysts have studied how people make decisions,
which has resulted in a multitude of techniques for
handling these issues. We will only consider the use of
scoring functions to characterize, quantify, and provide
a common basis for analyzing a stakeholder’s prefer-
ences with regard to a given FoM. We will go into
greater detail about FoMs and scoring functions in
Sections 5 and 6, respectively.

3.1. Tradeoff Study Structure

A tradeoff study is commonly structured as hierarchical
partitions of FoMs. The hierarchy may be arbitrarily
deep; however, Kirkwood [1997] advises that smaller
hierarchies are desirable, because they can be commu-
nicated more easily, and the analysis requires fewer
resources. When actually performing the analysis, each
FoM is evaluated through its scoring function and the
resulting scores are combined or “rolled up” at each
layer of the hierarchy to achieve an overall numerical
evaluation of the system under study. The overall nu-
merical evaluation is used to compare system designs
at a high level.

In designing the hierarchical FoM structure for a
system, we usually group FoMs that have some natural
relationship with one another. Sometimes it is benefi-
cial to first list possible categories of concern to the
stakeholder and then derive appropriate FoMs that be-
long to each category identified. Common top-level
categories in the hierarchy are performance, cost,
schedule, and risk. Each top-level category should be
decomposed into finer subcategories as needed to cap-
ture the full spectrum of stakeholder criteria.

The hierarchical partitioning of the FoM structure
allows us to evaluate contributions from the bottom-
level FoMs on up to the top-level categories. The hier-
archical structure also helps in dealing with dependence
issues between FoMs. Since FoMs in any given cate-
gory should be intrinsically related, dependence be-
tween them remains isolated in that specific category
and will not directly contaminate the overall evaluation.
See Kirkwood [1997] for additional properties that are
desirable in FoM hierarchies.

3.2. Weights of Importance

Another critical element of a tradeoff study is in select-
ing the weights, through which priorities among FoMs
and layers in the FoM hierarchy are established. That
is, FoMs or categories with higher importance are given
more weight in the overall evaluation of the system.
Weights of importance should be assigned keeping in
mind the five principles of Von Neumann and Mor-
genstern [1947] and Howard [1992], namely, that fun-
damental decision analysis is based on probability,
order, equivalence, substitution, and choice. As a first
approximation, we typically have the customer assign
a number between 1 and 10 and then we normalize the
weights in each category. The authors are aware that this
method is ad hoc and without axiomatic basis. How-
ever, it has been proven to be useful as a rough indicator
of stakeholder preferences despite inconsistencies that
may occur by employing this method. The important
thing is to get the decision-maker to think about these
issues. The exact numbers are not that important. After
all, your decision-makers are going to be inconsistent,
and they will change their minds anyway.

Many other methods for deriving weights exist, in-
cluding: the ratio method [Edwards, 1977], tradeoff
method [Keeney and Raiffa, 1976], swing weights
[Kirkwood, 1997], rank-order centroid techniques
[Buede, 2000], and paired comparison techniques dis-
cussed in Buede [2000] such as the Analytic Hierarchy
Process [Saaty, 1980], tradeoffs [Watson and Buede,
1987], balance beam [Watson and Buede, 1987], judg-
ments, and lottery questions [Keeney and Raiffa, 1976].
These methods are more formal, and some have an
axiomatic basis. For a comparison of weighting tech-
niques, see Borcherding, Eppel and Winterfeldt [1991].

A fragment of a tradeoff analysis showing scoring
functions, weights, and a simple combining method is
shown in Table II.

4. METHODS FOR COMBINING DATA

In this section, we explore different methods for com-
bining scores, or values in a tradeoff study to calculate
a numerical measure that can be used to compare alter-
natives. The combining methods described here are
used to combine data at all levels of the FoM hierarchy.

At the lowest layer when we are dealing with indi-
vidual FoMs, the scores are given as outputs of the
scoring functions associated with each of the FoMs, and
the weights are based on expert opinion or customer
preference. When we move to higher levels in the
hierarchy, the scores are no longer derived from scoring
functions, but are derived by combining scores at lower
levels. Again, weights at higher layers in the hierarchy

QUANTITATIVE METHODS FOR TRADEOFF ANALYSES  193



are based on expert opinion or customer preference,
perhaps from a different category of stakeholder.

Combining values at the top layer of the hierarchy
yields the overall numerical designation used to com-
pare alternative systems. A selection of data-combining
methods, or tradeoff functions, is outlined next.

4.1. Linear Combination

The linear method of combining data is the simplest and
most common method. To describe the data combining
process, first suppose there are n reasonably inde-
pendent FoMs to be combined (perhaps they are in the
same layer in the FoM hierarchy). We assign a qualita-
tive weight to each of the n FoMs and then normalize
the weights so that they add up to 1. Data are collected
for the FoM, each FoM is then evaluated with its scoring
function, and the resulting scores (valued from 0 to 1)
are then multiplied by the corresponding weight. The
final result is the summation of the weight-times-score
for each FoM. This process is commonly used, for
example, when computing a grade-point average for a
student at a university.

The equation defining the process mathematically is
given as

f = ∑ 
i=1

n

wi ⋅ xi ,

where n is the total number of FoMs to be combined,
wi represents the normalized weight, and xi represents
the score for the ith FoM. An extensive example of
roll ing-up of figures of merit  is  given at
http://www.sie.arizona.edu/sysengr/pinewood/.

Linear combination, which is the most common
method in engineering, also seems to have great public
acceptance, as it is the technique used to rate the Na-
tional Football League (NFL) professional quarter-
backs and also to select the college football teams that
will play for the national championship in the Bowl
Championship Series (BCS). The National Football
League uses these four FoMs:

1. FoM1 = (Completed Passes)/(Pass Attempts)
2. FoM2 = (Passing Yards)/(Pass Attempts)
3. FoM3 = (Touchdown Passes)/(Pass Attempts)
4. FoM4 = Interceptions/(Pass Attempts)

Rating = [5(FoM1 – 0.3) + 0.25(FoM2 – 3) +
20(FoM3) + 25(–FoM4+0.095)] * 100/6.

Source: November 1998, http://www.sportserver.com/
newsroom/sports/fbo/1995/nfl/nfl/stat/qbrating.html,
and http://espnet.sportszone.com/editors/nfl/features/
qbrate.html.

College football also uses linear combination to
schedule a game that might determine the national
champion. The Bowl Championship Series (BCS) rat-

Table II. Tradeoff Study Fragment (Computer System Example)
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ing system has been established to determine the teams
that will participate in the championship game of the
Bowl Championship Series. The ranking system has
four figures of merit (called components): subjective
polls of the writers and coaches, computer rankings,
team record, and strength of schedule. The two teams
with the lowest total for the four figures of merit play
in the national championship game.

   Polls: The poll component is calculated based on
the average of the ranking of each team in the Associ-
ated Press media poll and the ESPN/USA Today
coaches poll. The rankings of each team are added and
divided by two. For example, a team ranked in No. 1 in
one poll and No. 2 in the other poll receives 1.5 points
(1 + 2 = 3, 3/2 = 1.5).

Computer rankings: The second component consists
of three computer rankings, which are published in
major media outlets. These computer rankings include
Jeff Sagarin’s, published in USA Today, the Seattle
Times, and The New York Times. An average of these
three rankings is utilized to calculate the points in this
component. In order to prevent unusual differences
which might occur as the result of individual computer
formulas, a maximum adjusted deviation of no greater
than 50% of the average of the two lowest (best) com-
puter rankings is utilized in this calculation. For exam-
ple, if a team is ranked No. 3 and No. 5 in two of the
computer systems and No. 12 in the third computer
system, the highest ranking of 12 is adjusted to No. 6
before calculating the average points for the computer
component (3 + 5 = 8, 8/2 = 4, 4 * 50% = 2, 2 + 4 = 6).
The average of these three rankings is calculated for the
points of this component (3 + 5 + 6 = 14, 14/3 = 4.67).

Strength of schedule: The third component is the
team’s strength of schedule. This component is calcu-
lated by determining the cumulative won/lost records
of the team’s opponents and the cumulative won/lost
records of the team’s opponents’ opponents. The for-
mula is weighted two-thirds for the opponent’s record
and one-third for the opponents’ opponents record. The
team’s schedule strength shall be calculated to deter-
mine in which quartile it will rank: 1–25, 26–50, 51–
75, 76–100 and is further quantified by its ranking
within each quartile (divided by 25). For example, if a
team’s schedule strength rating is No. 28 in the nation,
that team would receive 1.12 points (28/25 = 1.12).

Team record: The final component evaluates the
team’s won/lost record. Each loss during the season
represents one point in this component.

Summary: All four components are added together
for the total rating. The team with the lowest point
total ranks first in the Bowl Championship Series
standings. The BCS standings will be published in
the second week of November each season. This

system will be utilized only to select the teams that
will participate in the championship game of the Bowl
Championship Series and to determine any inde-
pendent team or team from a conference without an
automatic selection that shall qualify for a guaranteed
selection in one of the games of the Bowl Champion-
ship Series as a result of being ranked in the top six in
the BCS standings. Source: November 1998, http://
espn.sportszone.com/ncf/news/980609/00731091.html.

4.2. Product Combination

The combination function for the product combining
method is given as

f = ∏ 
i=1

n

xi,       or alternatively      f = ∏ 
i=1

n

xiwi .

In the above equations, n represents the number of
FoMs that are to be combined, xi represents the output
of the scoring function for the ith FoM, and wi repre-
sents the weight of importance assigned to the ith FoM.
The Product Tradeoff Function is commonly used, for
example, in computing cost to benefit ratios and in
doing risk analyses. This method favors alternatives
where all figures of merit have moderate values. It
rejects alternatives that have a FoM value of zero. This
method is often used for mission critical functions,
where setting one function to zero, or a very low num-
ber, is not likely to be overcome by extra effort in the
other functions.

4.3. Exponential Combination

Cooper [1999] developed the exponential combining
method discussed in this section. The application of this
exponential technique is effective when incorporating
uncertainty into the model.

The exponential model presented here is one exam-
ple of a nonlinear combining function. The original
model incorporates two families of information, one
that leads to an increase in preference and another that
leads to a decrease in preference. However, in the fol-
lowing model, we only consider data that leads to an
increase in preference. The exponential combining
function is given as

f = 1 − e
−∑

i=1

n

 kw
i
x

i

.

The wi indicate weights (scaled between 0 and 1) that
suggest the significance of the ith measure with respect
to increases in the overall preference level for the crite-
ria. At the bottom layer of the hierarchy, the xi represent
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scores, or output of the scoring function affiliated with
the ith FoM. At higher layers, xi represents the aggregate
values from the lower layers. k is a scaling constant used
to further tailor the output to match the requirements
necessary for accurate evaluation. Note that if k = 1, the
output of this model will range from 0 to 0.63.

4.4. Sum Minus Product Combination

The sum minus product combining function for two
FoMs, x and y, is given as

f = x + y − x ⋅ y,    or alternatively,

f = w1 ⋅ x + w2 ⋅ y − w3 ⋅ x ⋅ y .

In this function, x and y are the outputs of the scoring
functions for FoMs x and y, respectively. In the alternate
form, w1 and w2 represent the weights for FoM x and y,
respectively, and w3 represents a weight for the product
of the two FoM evaluations. The sum minus product
combination function has its origins in probability the-
ory: It is appropriate for computing probabilities of
unions for independent events. It also is the function
used in Mycin style decision support systems for com-
puting certainty factors when two or more rules with
the same conclusion succeed [Buchanan and Shortliffe,
1984].

4.5. Compromise Combination

The compromise combining function for two FoMs, x
and y, is given as

f = [x 
p + y 

p]1 / p,      or alternatively,

   f = [w 1
p ⋅ x 

p + w 2
p ⋅ y 

p]1 / p
 .

Here x and y represent the outputs of the scoring func-
tions for FoMs x and y, respectively, and the variable p
represents a scaling factor. The Compromise Tradeoff
Function identifies alternatives that have the largest
distance from the origin [Goicoechea, Hansen, and
Duckstein, 1982: Duckstein, Treichel, and El Mag-
nouni, 1993]. If p = 1, it is merely the linear combination
function mentioned above. This function shows perfect
compensation, because a unit reduction in one alterna-
tive can be perfectly compensated by a similar increase
in another. This type of compensation is typified by
optimization techniques such as linear programming. If
p = 2, it is the Euclidean distance measure, used, for
example, to obtain root-mean square measurements.
This type of compensation is used in problems with
quadratic objective functions, such as certain optimal
control problems. If p = ∞, then the preferred alternative

will be the one that has the largest figure of merit.
There is no compensation in this case, because only
one of the figures of merit (the largest) is considered.
Consider the

Compromise Output = [x 
p + y 

p]1 / p.

If x > y and p >> 1, then xp >> yp and the

Compromise Output = [x 
p]1 / p = x.

This type of compensation is typical in H∞ control or in
nuclear reactors where peak centerline temperature has
to be limited. Steuer [1986] calls this a Chebyshev
norm. The Compromise Tradeoff Function with p = ∞
might be most appropriate when choosing a hero and
the figures of merit show no compensation, for exam-
ple, when selecting the greatest athlete of the century
using figures of merit based on Number of National
Championship Rings and Peak Salary, when picking the
baseball player of the week using Home Runs and
Pitching Strikeouts, when a couple is choosing a movie
using figures of merit based on Romance, Action, and
Comedy, when the NBA teams are drafting basketball
players using Height and Assists, or when a pregnant
woman is choosing between Pickles and Ice Cream.

4.6. Certainty Factors

Certainty Factors (CFs) have been used in expert sys-
tems for many years [Buchanan and Shortliffe, 1984].
The underlying method surrounding CFs is based on
probability theory and has survived mathematical scru-
tiny. Thus, a vast knowledge base has developed for
CFs, and a great deal is known about their properties
and uses.

The initial CF datum point is derived from the
weight and score for the first FoM as follows: CF = w1 *
x1, where w1 is the weight (between 0 and 1) and x1 is
the score (output of the scoring function, also between
0 and 1) corresponding to the 1st FoM. The formula for
computing CFs beyond the initial datum point is given
in Eq. (1) below:

TotalCF = OldCF + (1 – OldCF) * (wi ∗ xi) (1)

The CFs for the remaining FoMs are combined using
Eq. (1) to create an aggregate score for their respective
subcategories. When we move to the next level up, the
xi’s and wi’s become the weights and scores for the
subcategories just calculated, and so on. At the highest
level of the FoM structure, TotalCF becomes the overall
evaluation from which alternatives can be compared. In
our analysis, the CFs are restricted to the range [0, 1].

196  DANIELS, WERNER, AND BAHILL



Another advantage of using CFs as a combining
method is that the weights (wi) do not have to be
normalized. This means each time the objectives hier-
archy is modified, be it the addition or subtraction of a
new FoM, or a layer in the hierarchy, it is not necessary
to renormalize the weights as with linear combination.
This feature simplifies computations; however, the
weights must still be in the range [0, 1].

4.7. Summary

Of course, there are many more methods for combining
evidence (see, for example, Goicoechea, Hansen, and
Duckstein [1982], Szidarovszky, Gershon, and Duck-
stein [1986], Edwards [1992], Bardossy and Duckstein
[1995], and Buede [2000]). Even listing them is beyond
the scope of this paper. We have only mentioned a few
methods to give the reader an idea of possible options.
In fact, different methods may be used in different parts
of the hierarchy. It should be noted that, in some cases,
the choice of a combining method is more important
than acquiring accurate data about the system [Keefer
and Pollock, 1980; Bahill, Dahlberg, and Lowe, 1998].
Therefore, it is at least as important to choose the
appropriate combining method as it is in collecting
precise data. This is particularly true when the distribu-
tion of alternatives in the Figure of Merit space is
nonconvex [Bahill, Dahlberg, and Lowe, 1998].

The next section deals in depth with the process of
selecting FoMs, or criteria useful in evaluating systems
for comparison purposes. The central idea here will be
the use of scoring functions. Scoring functions, among
other things, make direct comparisons between systems
possible. Scoring functions, their uses and properties is
the main subject of the rest of the paper.

5. FIGURES OF MERIT

In practice, it is usually desirable to employ a simple,
objective, and quantitative method to analyze alterna-
tive system designs for comparing attributes such as
performance, cost, schedule, and risk. Selecting a tech-
nique for conducting these analyses is typically handled
with approaches studied in the field of multiattribute
utility theory. The general tasks involved in multiattrib-
ute utility measurement are structuring objectives and
operationalizing attributes, eliciting single-attribute
utility functions, eliciting weights, and aggregating
weights and utility functions [Borcherding, Eppel, and
von Winterfeldt, 1991]. This section of our paper deals
with creating figures of merit, which fits into the opera-
tionalizing system attributes task.

When evaluating systems and investigating trade-
offs, the analyst and the customer must select measures

that encompass the customers’ preferences and values
regarding system designs with respect to the problem at
hand. With these system measures, we can infer about
the overall quality or performance of the system as
judged by the customer. As mentioned previously in this
paper, we call such system measures or properties fig-
ures of merit. FoMs are specific items that need to be
quantified to determine how well the system under
study satisfies the design requirements from the stake-
holders point of view [Chapman, Bahill, and Wymore,
1992]. Consider the simplistic example of evaluating a
computer system. In comparing computer systems one
may use FoMs such as cost, processor speed, amount
of RAM, hard disk size, etc., to determine how well
each computer system meets the requirements for these
metrics. FoMs are most commonly derived for “prefer-
ence” requirements, or system requirements that show
compensation and can be traded off. Sometimes we are
faced with the situation where the customer states man-
datory requirements in such a way that they are in
conflict. It may be necessary to trade off mandatory
requirements in these instances.

We shall make a distinction between preference and
mandatory system requirements. Mandatory require-
ments state specific conditions that must hold in order
for the system to be considered acceptable. In general,
mandatory requirements are stated as “hard” limits and
show little or no compensation. In the above example,
a mandatory requirement might be that the processor
speed must be above 400 MHz. Consequently, any
system demonstrating a processor speed below 400
MHz constitutes an infeasible alternative in the eyes of
the customer. We will see later that mandatory require-
ments can play an important role when evaluating FoMs
for preference requirements.

5.1. Designing Figures of Merit

5.1.1. Hierarchy
Experience shows that stakeholders are not comfortable
with considering more than seven FoMs at a time, and
therefore FoMs should be organized in a hierarchical
fashion to enable communication of information and
systematic aggregation. As we mentioned in Section
3.1, there will usually be an intrinsic partitioning of the
FoMs that we should take advantage of by breaking up
related FoMs up into smaller, more manageable catego-
ries or layers. These natural partitions are combined to
form higher-level categories whose value represents the
combination of all lower-layer FoMs belonging to the
category.

Fundamental or top-layer FoMs are evaluated by
aggregating bottom-layer FoMs and all intermediate
layers. In the previous computer system example, an
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intermediate or top-layer FoM such as “computer per-
formance” can be considered a combination of many
lower-layer FoMs such as processor speed, quantity of
RAM, bus speed, etc., and some of these FoMs should
be broken down into even finer granularity as needed.
This hierarchical decomposition of the FoM structure
is also known as the fundamental objectives hierarchy
[Buede, 2000].

5.1.2. Properties of FoMs
When selecting FoMs, combining methods, and verifi-
cation processes, it is important to ensure that they
satisfy certain properties. Some of the properties men-
tioned here will pertain to the FoMs themselves while
some may concern the combining method or verifica-
tion process for the FoM. However, problems created
by violating these properties can usually be ameliorated
by reengineering the FoMs.

5.1.2.1. Quantification. FoMs should be quantita-
tive, meaning that it must be possible to build a scoring
function for the FoM. We desire quantifiable metrics so
that we are able to measure and collect data that can be
fed directly into the scoring function for evaluation.
“Soft” or “fuzzy” metrics such as “safety culture” are
not directly measurable as stated, and violate the quan-
titative property of FoMs. These types of FoMs are good
candidates for higher-level categories containing quan-
tifiable FoMs. Alternatively, the analyst should seek out
measurable quantities that convey the required informa-
tion. Customers usually think in terms of “soft” metrics,
so it is our job as systems engineers to derive appropri-
ate, measurable metrics that can then be used to objec-
tively evaluate the system with respect to the
information sought by the customer. For the “safety
culture” FoM stated earlier, one possible measure might
be the number of safety training courses administered
per year.

5.1.2.2. Independence. FoMs should also be inde-
pendent, implying that information about one FoM
should not lead to inferences about another. Depend-
ence causes complications, because in combining the
data to extract results we are not obtaining orthogonal
or independent combinations. This makes it difficult or
impossible to ascertain which of the FoMs is in fact
contributing to the analysis and which are confounded
due to interactions with other FoMs.

There are four main independence cases when con-
sidering systems characterized with multiple FoMs:
preferential, weak-difference, utility, and additive inde-
pendence. See Keeney [1992] for a discussion of these
independence cases and for a discussion on how to
verify whether or not they hold. Keeney [1992] states
that if any of these independence conditions do not
hold, it is usually because we have missed some FoMs.

One ad-hoc method used to reduce the effects of
dependence is to bundle dependent FoMs into higher-
level categories. This way if there are any adverse
outcomes due to interdependence, they will remain
isolated in that category and will minimize any sub-
sequent contamination of the analysis.

5.1.2.3. Transitivity. The combining method used to
aggregate FoM output data should show transitivity,
meaning if A is preferred to B, and B is preferred to C,
then A should be preferred to C. Violations of this
property show inconsistencies that can produce invalid
conclusions. The fundamental axioms of decision
analysis state that this is an essential ingredient to sound
analysis. The consequences of infringing on this prop-
erty can be illustrated by the “money pump” argument
[Buede, 2000]; an impartial party may lure us into
offering an infinite amount of money by providing us
with a sequence of trades among three alternatives. For
example, I would be violating this property if I stated
that I preferred to live in Albuquerque compared to
Berkeley, Berkeley compared to Chicago, and Chicago
compared to Albuquerque. With this preference struc-
ture and the fact that I live in Albuquerque, I would pay
to move to Chicago, pay again to move from Chicago
to Berkeley, and then pay a third time to move from
Berkeley to Albuquerque where I started out. At this
point, it is evident that this preference structure is
seriously flawed.

5.1.2.4. Objectivity. FoMs should be objective or
observer-independent. Data that depend heavily on “en-
gineering judgment” may be more susceptible to bias
and error. It has been suggested by Buede [2000] that
experimental design, simulation, or similar techniques
should be employed to generate data whenever possible
to avoid such difficulties. For example, one should
avoid such FoMs as “prettiness” or “niceness” for se-
lecting crew members. In sports, most valuable player
selections are often controversial. Deriving a consensus
for the best football player of the century would be
impossible. These examples violate the objectivity
property of good FoM design.

5.1.2.5. Statement of FoM. FoMs should be de-
signed and worded so that a higher score results in a
more desirable outcome. This aids in interpreting re-
sults; i.e., when comparing two alternatives, the alter-
native with the higher score should be preferred to the
other. If scoring functions are used, the shape of the
scoring function will determine how scores are allo-
cated; this allows more flexibility in the statement of
the FoM. However, the wording of the FoM should still
be considered with care; i.e., the use of double negatives
or complex phrasing should be avoided. If scoring
functions are not used, then wording the FoM such that
a higher score is desirable will satisfy this property.
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5.1.2.6. Temporal Order. The temporal order of
verifying or combining FoMs should not be important;
e.g., the clothing for our astronauts should be Flame
Proof and Water Resistant and verification should not
depend on which we test first. Questionnaires are often
written to lead the reader down a primrose path.
Whether a question is asked early or late in a list might
effect the given answer. Let us consider a combining
function (CF) that adds two numbers truncating the
fraction: (0.2 CF 0.6) CF 0.9 = 0; however, (0.9 CF 0.6)
CF 0.2 = 1. The answer depends on the order in which
the inputs were presented, and therefore it would not be
a good combining function for a tradeoff study. In the
field of Boolean Algebra, it is said that such functions
do not obey the Law of Association, e.g., as with the
Boolean NAND function (↑): (0↑1) ↑1 = 0; however,
(1↑1) ↑0 = 1. If temporal order is important, then an
expert system might be more appropriate than a tradeoff
study.

5.1.2.7. Compensation. FoMs for preference re-
quirements should show compensation meaning they
can be traded off. For an example of perfect compensa-
tion, consider astronauts growing food on a trip to Mars.
Assume we have two FoMs: amount of rice grown and
amount of beans grown with the single objective of
maximizing yield. A lot of rice and a few beans is
preferred equally to a lot of beans and little rice. This
shows that we are able to trade off beans for rice and
vice-versa. Now consider another scenario that demon-
strates no compensation: a system that produces oxygen
and water for our astronauts. A system that produced a
huge amount of water, but no oxygen might get the
highest score, but clearly, it would not support life for
long. Care must be exercised in stating tradeoffs be-
tween FoMs for requirements that do not show compen-
sation to reveal situations as described above. FoMs of
this type often fall into the mandatory requirements
class.

6. SCORING FUNCTIONS

A tradeoff study is carried out by assessing each FoM
and combining the resulting data (usually on multiple
levels) to give a general numerical analysis of the sys-
tem. For complex systems with many FoMs, it may be
difficult or impossible to directly evaluate each FoM in
raw units and combine them to elicit useful data. This
difficulty is due to the lack of a common basis for
combination and comparison (i.e., comparing hard disk
space in gigabytes to processor speed in megahertz).
Standard scoring functions provide a simple technique
through which this problem can be remedied. This
method is similar to utility, value or fuzzy-set functions.

Each bottom-layer FoM is assigned a scoring func-
tion. Intermediate or top-layer FoMs may also be as-
signed scoring functions as prescribed by the
stakeholder, although Buede [2000] and Wymore
[1993] advise that scoring functions are not necessary
beyond the bottom layer. The scoring function itself is
a mathematical mapping between the FoMs “natural”
or measured values to a “coded” or normalized range of
values common to all FoMs. It is formalized as a
mathematical function accepting parameters specific to
the FoM and assigning as output a real number, com-
monly between 0 and 1, but can be any other consistent
scaling. With this technique, a FoM, no matter what raw
units or scale it may be defined in, can be transformed
by its scoring function to have a set of possible values
common to all other FoMs whose raw values have been
transformed by their own scoring function. Through
this mathematical transformation, a common basis for
aggregation and comparison can be attained.

The classical procedure for creating a scoring (or
utility) function for a given FoM is to survey the deci-
sion maker concerning his or her preferences and judg-
ments as the input values of the FoM are considered
[Winston, 1994]. This information guides the re-
searcher in defining the shape of the scoring function
curve. The shape of the curve is important as it explicitly
illustrates the degree of variation in the customer’s
judgment with each incremental change in FoM input
values. With the classical methods, it is essential that
sufficient data be obtained so that the shape of the curve
reflects an accurate portrayal of the customer’s assess-
ments. As one might imagine, this method can be tedi-
ous and time-consuming. To speed up this process, a
finite set of “standard” scoring functions can be devel-
oped that possess the properties previously mentioned.
Standard scoring functions are characterized by a few
parameters and enjoy the ability to take on many shapes.
This would allow the researcher to conveniently capture
a customer’s preferences by only specifying a few pa-
rameters for a predefined curve.

6.1. Standard Scoring Functions

The construction of standard scoring functions is set up
such that the values along the y-axis represent the output
indicating customer “happiness” on a 0-to-1 or equiva-
lent scale, and the information associated with the x-
axis correspond to the units and scale of measure for the
FoM. For example, if we are considering computer
processor speed as a FoM, suitable units of measure
along the x-axis might be gigahertz. The range of values
spanning the x-axis is more difficult to establish and will
be discussed in more detail later. By output, we are
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indicating values along the y-axis that are dependent on
inputs, represented by values specified along the x-axis.

6.1.1. Exponential Family Scoring Functions
Kirkwood and Sarin [1980] studied the exponential
scoring function form and showed that, in many cases,
the shapes attained with this form are reasonable. Buede
[2000] shows that the exponential form takes on four
general shapes: decreasing returns to scale (RTS), linear
RTS, increasing RTS, and an S-curve (see Fig. 2). To
generate the scoring functions shown in Figure 2, it may
be necessary to invert and/or splice portions of the
exponential curves. Returns to scale indicates what
happens to the output when the input is successively
increased by the same proportion.

The general form used to generate the curves is an
exponential function that accepts three parameters and
an input value. The specific exponential forms are
shown as Eqs. (2a) and (2b) as presented by Kirkwood
[1997]. Equation (2a) represents preferences that are
monotonically increasing over the input value v. This
implies that the higher the value of v, the higher the

Score, or the more preferred it is. Equation (2b) repre-
sents a monotonically decreasing scoring function over
the input value v. With the monotonically decreasing
curve, the lower the value of v, the higher the Score, or
the more preferred it is. As exhibited by Kirkwood
[1997], the indices representing individual input values
and FoMs are left off to simplify the presentation of the
equations.

Score = 













1 − e−(v − Low) / ρ

1 − e−(High − Low) / ρ ,

v − Low

High − Low
,

    

ρ ≠ infinity,

otherwise,

 

 

(2a)

Score = 













1 − e−(High − v) / ρ

1 − e−(High − Low) / ρ ,

High − v

High − Low
,

    

ρ ≠ infinity,

otherwise.

 

 

(2b)

Figure 2. Four basic exponential scoring function forms.
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In both Eqs. (2a) and (2b), Score represents the output
of the function corresponding to the input value v. Note
that Score will always be between 0 and 1.

The parameters Low and High define the lower and
upper bounds, respectively, of the domain for the FoM.
The domain encompasses inputs v to the FoM that can
be demonstrated by the alternatives under considera-
tion. The domain bounds may be established due to
buildability (budget or technological) constraints or due
to mandatory requirements (see Section 5: Figures of
Merit). If the bounds on the domain are established by
mandatory requirements, alternatives exhibiting values
outside the domain are eliminated from consideration,
or seriously reconsidered.

Buede [2000] in addition identifies a range of input
values v called the key performance range that encap-
sulates the FoM input values that are of most interest to
the stakeholder. In this range, the rate of change of the
stakeholder’s preferences with respect to the input data
is at or near the maximum. Input values greater than or
less than the key performance range thresholds result in
a diminishing rate of change in customer preference.
That is, we begin to care less and less about values
outside of this key range.

The intersection of the key performance range and
the domain truncates the curve such that the key per-
formance range translates the curve along the x-axis,
while the domain effectively “cuts off” values outside
of its bounds. The exponential scoring functions are
conceptually constructed by first identifying the upper
and lower limits (Low and High) of the domain and then
observing how the customer’s preferences (key per-
formance range) overlap these values. In other words,
the domain is defined in terms of what can physically
be realized from a buildability or requirements stand-
point, and then the curve is constructed based on the
customer’s preferences in this region. Figures 3–6 show
the four basic scoring functions that can be derived with
this exponential function by splicing together two ex-
ponentials and then perhaps truncating one end or the
other. Next, we will give general guidelines for apply-
ing these curves and we give a short example for each.

Figure 3 shows a Decreasing RTS function.
Guideline: With decreasing returns to scale (returns

to scale indicates what happens to the output
when the input is successively increased by the
same proportion), we care equally for input data
at the lower and middle range of the domain, but
there exists an input point at which we care less
and less about inputs increasing past this value.
There is an implicit assumption that more is
always better.

Example: Let the units be the number of trips to an
all-you-can-eat salad bar. At first, each trip is
valued equally; however, after a number of trips
the value one perceives by each incremental trip
diminishes, even though we still consider more
as better.

Figure 4 shows an Increasing RTS function.
Guideline: Use increasing returns to scale if the

domain specifies an input value at which the
stakeholder begins to care less and less about
change below this value. At the other end, in-
creases are valued more or equally well up to the
upper limit of the domain. At the upper end, we
have not reached a point where the change in the
customer’s values diminishes past that input.

Example: Consider evaluating a manufacturing
process based on a Throughput FoM. Assume

Figure 3. Decreasing RTS. Key performance range (KPR)
exceeds Low.

Figure 4. Increasing RTS. KPR exceeds High.
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that the design alternatives define a domain of
possible input values as low as 100 widgets per
hour and technology constraints limit the number
of widgets per hour to 200. If the current com-
petitor is able to produce at 190 widgets per hour,
inputs below say 170 will be of limited value and
inputs around 170 will be considered equally or
more valued up to the upper technological thresh-
old (and past it if that were legal).

Figure 5 shows a Linear RTS function.
Guideline: Linear returns to scale occur when the

domain restricts the possible input values so that,
throughout the domain, changes in those inputs
are valued equally. There is no input point in the
domain range at which changes past that point
cause the stakeholder to care less and less about
that change. More is always considered equally
better, and less is always considered equally
worse.

Example: Consider any situation where some con-
straints such as technology, budget, etc. limit the
valid input data in the range where the customer
most values changes in the input. One example
of a linear tradeoff is in currency exchange. The
exchange rate is constant irrespective of how
much currency is to be exchanged.

Figure 6 shows an S-curve.
Guideline: Use an S-curve if the domain permits

input values that are greater than and less than the
key performance range as defined by the cus-
tomer. This means that the design alternatives
being considered allow input values for the FoM
that more than satisfy the customer’s preferences

at the upper end, and allow input values at the
lower end that the customer sees a diminishing
rate of change in preference. “The S-curve indi-
cates that the range of possible designs has been
maximized” [Buede, 2000, p. 363].

Example: Consider the widget-manufacturing sce-
nario in the above example. If the domain of
possible values now allows a lower bound of 100
and an upper bound of 5000 widgets produced
per hour, we will still care about increases above
the benchmark of 190, but only up to a certain
point past which we will not value increases as
much anymore. Similarly, values below the 190
benchmark begin not to interest us and thus will
still be valued less, but at a decreasing rate. Inputs
between these two ranges are assigned the most
change in value per unit change in input.

The value assigned to the parameter ρ, the exponen-
tial constant in Eq. (2), defines the shape of the curve.
According to Kirkwood [1997], the appropriate values
for the parameter ρ will depend on the range of the
domain (High – Low). Realistic values of ρ will typi-
cally have a magnitude greater than one-tenth of the
domain range. There is no upper limit to the value of ρ,
but if the magnitude is greater than ten times the domain
range, the curve will almost be a straight line. In this
case, we would just use a straight line. For a more
detailed, systematic discussion of choosing a value for
ρ (see Kirkwood [1997]).

Additional scoring functions can be derived by com-
bining curves and/or flipping the curves along the y-
axis. The possible output values for each scoring
function shown consistently range from 0 to 1.Figure 5. Linear RTS. KPR exceeds Low and High.

Figure 6. S-curve. KPR is within Low to High.
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6.1.2. Wymore’s Scoring Functions
Wymore [1993] has also developed a set of standard
scoring functions. In this set are 12 families of scoring
functions representing 12 fundamental shapes. A list
describing the general shape of each scoring function is
given next. Note that these functions limit their output
values to a 0-to-1 scale.

SSF1: a shape whose output is 0 as the input goes
from –∞ to a point L and then increases asymp-
totically to 1;

SSF2: a shape whose output is asymptotic to 0 as the
input approaches –∞, as the input increases the
output increases to 1 at a point U and gives an
output of 1 from there on;

SSF3: a shape whose output is 0 as the input goes
from –∞ to a point L and then increases to 1 at a
point U and gives an output of 1 from that point
to ∞;

SSF4: a shape whose output is asymptotic to 0 as the
input approaches –∞ gives an output that is as-
ymptotic to 1 as the input approaches ∞  and is
always increasing;

SSF5: a hill shape whose output is 0 until the input
reaches a point L, then increases to 1 at input
point O, then gives an output that decreases to 0
at a point U and is 0 for larger input values;

SSF6: a hill shape whose output is asymptotic to 0
at both ends, but increases to 1 at an input point
O.

The notation SSFx refers to Standard Scoring Func-
tion x. The other six shapes are obtained by interchang-
ing the roles of 0 and 1 and by replacing “increasing”
with “decreasing.” Figure 7 shows the six fundamental
shapes of the Wymorian standard scoring functions.

Each of the 12 scoring functions is defined mathe-
matically in terms of the first scoring function called
SSF1. This is convenient since if any of the 12 scoring
functions needs to be evaluated, only one calculation
involving SSF1 needs to be done. Figure 8 shows the
SSF1 shape along with its mathematical equation. Defi-
nition of the parameters:

v: The input value for the FoM.
Score: The output of the scoring function.
L: The lower threshold of performance for the FoM

below which the value to the customer is unde-
sirable (but not necessarily unacceptable) and is
assigned a zero score.

B: The parameter B is called the baseline value for the
FoM and can be chosen as the design goal or the
status quo for this or similar systems. By definition,
baseline values are always assigned a score of 0.5. 

S: The parameter S determines the behavior of the
scoring function in the neighborhood of the base-
line value B. Mathematically, S is the slope of the
tangent to the scoring function at the baseline
value B. Practically speaking, the slope repre-
sents the maximum incremental change in the
customer’s quantitative judgment with each in-
cremental change in input.

D: The parameter D represents the domain of defini-
tion of the scoring function. This is the same con-
cept that was discussed earlier for the exponential
family scoring functions in that D clearly states the
range of input values that are possible from a build-
ability viewpoint or legal due to mandatory require-
ments. Values outside this range constitute
impossible or unacceptable inputs.

For the nonmonotonic “hill” and “valley” shaped
scoring functions (SSF5, SSF6, SSF11, and SSF 12),
we must define additional parameters such as multiple
baseline (B1 and B2) and slope (S1 and S2) values, as
well as an optimum (O) or pessimum (P) value. The
optimum and pessimum values indicate the peak or
minima, respectively, of the customer’s preferences
relative to the input values. The multiple baseline and
slope values have the same interpretation as the single
parametered counterparts; it just depends on how and
where the customer’s preferences change before and
after the optimum or pessimum values.

One observation about the 12 fundamental Wy-
morian shapes is that there is always a flattening out of
the curves at the extreme input values for a given
scoring function. This occurs because, in contrast to the
exponential scoring functions whose input range is
bounded in terms of what can be built, Wymore’s curves
are characterized in terms of the customer’s prefer-
ences. Wymore’s scoring functions are constructed by
first querying the customer for parameters describing
his or her preferences. These parameters or thresholds
should contain the key performance range (linear and
near-linear region of the curve), and sufficient breadth
so that a diminishing rate of change in preference is
observed at both the upper and lower limits. This ac-
counts for the flattening out at the extreme points.

However, the full range of input values delimited by
the customer’s preferences may not be attainable from
a buildability or requirements perspective. With Wy-
morian scoring functions, we allow the domain to im-
plicitly truncate the curve at these hard limits. The logic
and reasoning behind any such truncation should be
clearly explained in the documentation and denoted on
the curves themselves (see Fig. 9).
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We will now present guidelines for choosing an
appropriate Wymorian scoring function along with a
short example for each (see also Table III):

SSF1 Guideline: If more is better, the customer can
provide a finite lower bound but no finite upper
bound, and the domain can support this, then
choose SSF1.
Example: Let the units be the capable density in
dots per inch of a printer. The higher the better,
and there is no finite upper bound to this measure.

SSF2 Guideline: If more is better, the customer can
provide a finite upper bound but no finite lower
bound, and the domain can support this, then
choose SSF2.
Example: Depth below the surface of the earth,
with greater depth being better. There is a fixed
upper limit (3951 miles), but as we go out into
space (the left side of our function) the value goes
to –∞.

SSF3 Guideline: If more is better, the customer can
provide both a finite upper bound and a finite

Figure 7. Six of Wymore’s standard scoring functions.
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lower bound, then choose SSF3. This is by far the
most common scoring function used when deal-
ing with an FoM where more is better.
Example: Let the units be the number of widgets
sold. The customer could provide a lower bound

below which we can assign a 0 score and an upper
bound where anything above that value is as-
signed a score of 1.

SSF4 Guideline: If more is better, the customer can
provide neither a finite upper bound nor a finite
lower bound on his or her preferences, and the
domain can support this, then choose SSF4.
Example: Let the upper range denote happiness
and the lower range represent unhappiness. There
are no upper or lower bounds, but more happiness
is better.

SSF5 Guideline: If the customer’s preferences can
be described as a hill-shaped curve where there
is one optimum point and values to the left and
right of this point are less desirable, and the
customer can provide a finite upper bound, a
finite lower bound and the optimum value, then
choose SSF5.
Example: Let the units be a measurement speci-
fication for a particular piece of material. The
optimum would be the target value and values
greater or less than the target value would result
in a lower score.

SSF6 Guideline: If the customer’s preferences can
be described as a hill-shaped curve where there
is one optimum point and values to the left and
right of this point are less desirable, and the
customer can furnish the optimum value, but not
finite upper or lower bounds, then choose SSF6.
Example: Let the units be the error in measure-
ment for a particular quantity and the customer
cannot say how low or how high the error would
have to be in order to assign a score of 0 or 1. The
optimum value would obviously be 0 error.

SSF7 Guideline: If more is worse, and the stake-
holder can provide a finite lower bound but no
finite upper bound (as in the case of a cost), then
choose SSF7.
Example: Number of deaths in airplane crashes.
The lower bound would be 0 deaths and we
assume the customer cannot give an upper limit
where if the number of deaths is greater than this
limit it is assigned a 0 score. However, the do-
main may restrict this use of the scoring function,
because the population of the world is finite.

SSF8 Guideline: If more is worse, and the stake-
holder can provide a finite upper bound but no
finite lower bound, then choose SSF8.
Example: Let the units be the logarithm of the
size of a RAM cell. The lower the better, but it
may be the case that the customer cannot specify
how small the cell can possibly be in order to
receive a score of 1. Values approach 0 as the
input approaches the upper bound.

Figure 8. The first Wymorian standard scoring function.

Figure 9. Scoring function truncated by the domain.
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Table III. The 12 Wymorian Scoring Functions
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SSF9 Guideline: If more is worse, and the stake-
holder can provide both a finite upper bound and
a finite lower bound, then choose SSF9. This
scoring function is by far the most frequently
used with FoMs where more is worse.
Example: Costs. It is usually the case that the
customer can provide upper and lower limits on
expenditures. For simplicity, we assume the
higher the expenditure, the lower the score.

SSF10 Guideline: If more is worse, the stakeholder
can provide neither a finite upper bound nor a
finite lower bound, and the domain can support
this, then choose SSF10.
Example: Assume the customer is trying to build
the most powerful microscope. Let the units be
the size of the smallest viewable object. Here, the
smaller the object, the happier the customer.

SSF11 Guideline: If the stakeholder’s preferences
can be characterized by a valley-shaped curve,
there is one pessimum value where inputs greater
or less that this value give more desirable results,
and the stakeholder can provide a finite upper
bound, a finite lower bound and the pessimum
value, then choose SSF11.
Example: Consider a vehicle driving with unbal-
anced tires. It may be the case that if the driver
reaches a certain speed the car will begin to
“shimmy,” which creates an undesirable condi-
tion. If the driver maintains speeds further and
further away (either faster or slower) from this
pessimum speed, then the result is a smoother,
more desirable ride.

SSF12 Guideline: If the stakeholder’s preferences
can be characterized by a valley-shaped curve,
there is one pessimum value where inputs greater
or less that this value give more desirable results,
and the stakeholder can provide the pessimum
value but can provide neither a finite upper bound
nor a finite lower bound, then choose SSF12.
Example: Consider trying to eliminate bacterial
growth by varying temperature. There will be a
most undesirable temperature where the bacteria
grow very fast, and temperatures greater or less
than this value will impede bacterial growth.

We mentioned earlier that all 12 fundamental Wy-
morian scoring functions are defined in terms of SSF1.
Next, we will expand this notion by illustrating the
explicit manner in which the four basic scoring func-
tions are constructed. We will start with SSF3.

SSF3 has the following four ranges:

1. For input values of the FoM less than the lower
threshold L, Score = 0.

2. For input values of the FoM between the lower
threshold L and the baseline value B, Score =
SSF1(L, B, S) evaluated at v = input value, or Score
= SSF1(L, B, S)(input value) with domain D.

3. For input values of the FoM between the baseline
value B and the upper threshold U, Score = 1 –
SSF1(2 ∗ B – U, B, S) evaluated at v = (2 ∗ B –
input value), or Score = 1 – SSF1(2 ∗ B – U, B,
S)(2 ∗ B – input value) with domain D.

4. For input values of the FoM greater than the
upper threshold U, Score = 1.

SSF9 has similar ranges as SSF3, but is constructed
by taking 1 – SSF3(L, B, U, –S, D) and evaluating at
v = input value, or Score =1 – SSF3(L, B, U, –S,
D)(input value). For example, say we have an SSF9
scoring function for a FoM defined with the following
parameters: L = 1, B = 2, U = 3, S = –4, D = real numbers
between 0 and 10, and say the input value v is 2.7. First,
note that 2.7 is a valid input since it is within the domain
D. Then evaluate the score (denoted “Score” below) for
SSF9 through a series of calculations as follows:

Score = 1 – SSF3(1, 2, 3, –(–4))(2.7),

where

SSF3(1, 2, 3, –(–4))(2.7) =

1 – SSF1(2 ∗ 2 – 3, 2, –(–4))(2 ∗ 2 – 2.7)

since the input value, 2.7, is between the baseline value,
2, and the upper limit, 3, where

SSF1(2 * 2 – 3, 2, –(–4))(2 * 2 – 2.7) =

1

1 + 




2 − (2 ∗ 2 − 3)
(2 ∗ 2 − 2.7) − (2 ∗ 2 − 3)





2∗(−(−4))(2 + (2∗2−2.7)−2∗(2∗2−3))
 .

We have left the numerical values unsimplified so that
it can be seen how each value traces back to the original
SSF9 problem.

The nonmonotonic Wymorian scoring functions
(hill- and valley-shaped curves) are constructed from
the appropriate monotonic functions. The upper limit
for the first curve must match the lower limit for the
second to obtain a smooth transition from curve to
curve.

Nonmonotonic scoring functions such as hill and
valley shapes are often used when we are trying to
balance two or more objectives, or anticipating the
actions of others [Keeney, 1992].
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6.1.2.1. Mathematical Properties of the Wy-
morian Scoring Functions. Wymore’s base scoring
function SSF1 was chosen in part because it has many
desirable mathematical properties. Among other attrac-
tive results, these properties make it possible to conduct
analytical sensitivity analyses when evaluating alterna-
tive systems. We will now abbreviate SSF1(L, B, S, D)
by f1 where f1(v) denotes SSF1(L, B, S, D)(v), or SSF1
evaluated at v given L, B, S, and D. The properties are
as follows (taken from Wymore [1993: 389–390]:

1. The output of f1 evaluated at the baseline value
B is 0.5.

2. The limit of f1(v) as v approaches infinity is 1.
3. The limit of f1(v) as v approaches L from the right

is 0.
4. Under the assumption that the slope S is strictly

less than 1/(B - L):
a. The limit of the derivative of f1(v) with respect

to v as v approaches L from the right is 0.
b. The value of the derivative of f1(v) with re-

spect to v is positive for every v that is greater

than L, and therefore f1 is strictly increasing
over the interval (L, ∞)

c. The value of the derivative of f1(v) with re-
spect to v at the point v = B is S.

d. The value of the second derivative of f1(v)
with respect to v at the point v = B is 0.

e. The limit of the second derivative of f1(v) with
respect to v as v approaches L from the right
is 0.

5. From these facts and the form of the function f1,
it can be concluded that the first and second
derivatives of f1(v) with respect to v are continu-
ous everywhere in D.

Because none of the mathematical manipulations
performed on f1 to create the other 11 fundamental
scoring functions affect the derivatives, all the Wy-
morian standard scoring functions as well as their first
and second derivatives are continuous.

6.1.2.2. How Many of the Wymorian Scoring
Functions Are Necessary? Over the last three decades
of using scoring functions (see, e.g., Chapman, Bahill,

Figure 10. The four essential Wymorian standard scoring functions.
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and Wymore, [1992] and http://www.sie.arizona.edu/
sysengr/pinewood), we have found that eight standard
scoring functions are sufficient for all applications that
we have encountered. We use two Boolean or step
functions, two linear functions, and the four function
shapes shown in Figure 10. The step functions are used
when a yes/no type input response is required and there
is no continuum of possible inputs. We have also found
that infinity end points (as with SSF1) are not necessary.
It is adequate to use a large number and adjust the slope
accordingly. Of these eight standard scoring functions,
we have found the linear scoring functions to be the
least frequently used. A program that implements the four
Wymorian scoring functions of Figure 10 is available at
http://www.sie.arizona.edu/sysengr/slides/.

6.1.3. The Do Nothing Alternative
In all tradeoff studies, it is essential to include a Do
Nothing alternative. There are two interpretations of the
Do Nothing alternative: (1) Evaluate the status quo. (2)
Do absolutely nothing. Bahill owns a 1971 Datsun
240Z that has 150,000 miles on it. He might want to
select a replacement for it. His alternatives would be a
Honda S2000, a Saturn, and Do Nothing. The two
interpretations for Do Nothing are (1) the status quo,
keep the 240Z and (2) do without a car, i.e., walk or take
the bus. The most common of these approaches is to use
the status quo as the Do Nothing alternative.

If the status quo Do Nothing alternative attains one
of the highest scores in the tradeoff analysis, then you
may have too many (perhaps dependent) Cost or Risk
figures of merit and not enough Performance figures of
merit. Usually the Do Nothing alternative has low cost
and little risk. This hints that perhaps we should have a
similar number of Performance, Cost and Risk figures
of merit.

If a nihilistic Do Nothing alternative attains one of
the highest scores in the tradeoff analysis, then you
might have too few Performance figures of merit. For
example, in a tradeoff study for a municipal transporta-
tion system, if a pogo stick wins, then you have missed
some Performance figures of merit. As a second exam-
ple, suppose a young couple on a date is selecting a
movie to go to and they define their alternatives as
comedy, romance, blood and guts, and do not go to the
movies. If the Do Nothing alternative wins, then they
missed some Performance figures of merit.

Just as you should not add apples and oranges, you
should not combine Performance, Cost, Schedule, and
Risk FoMs. All the Performance FoMs should be com-
bined; then all the Cost FoMs should be combined; then
all the Schedule FoMs should be combined; and finally
all the Risk FoMs should be combined. Then the Per-
formance, Cost, Schedule, and Risk combinations can

be combined with clearly stated weights, 1⁄4, 1⁄4, 1⁄4,
1⁄4, is a good default. If the Do Nothing alternative still
wins, then you may have the weight for Performance
too low.

7. SENSITIVITY ANALYSIS

In many instances, a system design specification can be
inspected to reveal that the major attributes of the
system (such as performance, cost, schedule, or risk)
are driven by relatively few parameters. A rough inter-
pretation of Pareto’s rule would state that 80% of the
influence can be traced to 20% of the parameters. That
is, variations of the few prominent parameters can have
a substantial impact on the characteristics of the system.
Information of this type can be extremely valuable to
the stakeholder because it not only alludes to factors
that are central in characterizing the system, but it also
conveys to the stakeholder which parameters are robust
to change. This can shed new light on tradeoff possibili-
ties. The process of uncovering parameters that drive
the system’s properties is called sensitivity analysis.

We suggest that all tradeoff studies should include a
sensitivity analysis. The results of a sensitivity analysis
can be used to (1) validate a model, (2) warn of strange
or unrealistic model behavior, (3) suggest new experi-
ments or guide future data collection efforts, (4) point
out important assumptions of the model, (5) suggest the
accuracy to which the parameters must be calculated,
(6) guide the formulation of the structure of the model,
(7) adjust numerical values for the parameters, (8)
allocate resources, and (9) point out the true cost drivers
[Karnavas, Sanchez, and Bahill, 1993]. If you show
your customer the requirements that are driving the cost
of the system, then he or she may relax a requirement
and save a lot of money.

There are many methods for carrying out sensitivity
analyses such as relative-sensitivity measures, Re-
sponse Surface Methodology, Sinusoidal Variation of
Parameters, etc. In analyzing the sensitivities of tradeoff
study parameters, typically we are interested in (1)
those parameters and Figures of Merit that are most
important and deserve further attention and (2) those
parameters that, when varied, could change the recom-
mended alternative. The first issue could be investigated
using a relative-sensitivity measure for each parameter
for each alternative. The second could be ascertained by
employing a search algorithm using the sensitivity of
each parameter [Karnavas, Sanchez, and Bahill, 1993].
Typical tradeoff study parameters include weights at all
levels of the tradeoff structure, and the scoring function
inputs and parameters.
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Kirkwood [1997] gives a nice discussion of how
sensitivity analyses can be performed using a simple
spreadsheet. For doing sensitivity analyses on the
weights in a tradeoff study, Kirkwood [1997] gives a
useful weight-ratio formula for determining what the
values should be for the fixed weight parameters as the
variable weight is varied.

8. DISCUSSION

So, what does this all mean? Suppose, through conduct-
ing a tradeoff study as prescribed, we obtain the follow-
ing results:

(a) Alternative A score = 0.9,
(b) Alternative B score = 0.89,
(c) Alternative C score = 0.5,
(d) Alternative D score = 0.4.

Does this mean that alternative A is preferred to
alternative B? No. It means that alternatives A and B are
the preferred choices. It is up to the stakeholder to
distinguish between close results. We are not able to
make precise judgments because:

1. Our method for deriving weights is ad hoc and
not based upon axioms.

2. We only mention a few combining methods and
we don’t know what type of problem is best
suited for each method.

3. We have ignored interactive effects among FoMs.
For a discussion of interactions among FoMs, see
Daniels, Werner, and Bahill [2000].

The value of a tradeoff study is not in its mathemati-
cal elegance or precision. Its value is in stating the
problem in a public and verifiable manner.

9. SUMMARY

Tradeoff studies are important because:

1. They create an objective mechanism for evaluat-
ing systems.

2. They document the decision process.
3. The preference structure is quantified.
4. The tradeoff study process educates the customer.
5. They help validate system requirements by pro-

viding a measurable quantity that helps deter-
mine if and how well a design satisfies the
requirements [Grady, 2000].

6. They assist in selecting the preferred alternative.

The purpose of this paper is to provide the practicing
engineer with an introduction to tradeoff analysis the-
ory and to demonstrate the benefits these analyses can
offer. Tradeoff analyses give systems engineering the
power to confidently make design decisions by struc-
turing the design process through an analytical mapping
with stakeholder input. Since tradeoff analyses are per-
formed early on in the design process, the expensive
consequence of misinterpreting or not validating vital
customer requirements in the deployment or implemen-
tation phase can be avoided. By such rigorous upfront
analysis of the stakeholders’ requirements and prefer-
ences, we can be sure that the system adopted to satisfy
the stakeholders’ objectives will effectively do so
throughout its lifecycle.

We have exploited the hierarchical nature of systems
design by approaching the discussion of tradeoff analy-
ses and ultimately scoring functions through selective
decomposition of the system design process. The SIMI-
LAR process suggests that effective system design is
achieved in a hierarchical and iterative fashion. A criti-
cal subfunction of the system design process is the
investigation of alternative designs. Investigating alter-
native designs is achieved by first deriving an appropri-
ate Figure of Merit architecture based on customer
requirements and preferences. Individual FoMs are
evaluated by running models or acquiring measure-
ments on the actual system. The evaluation data are then
transformed into normalized numerical scores using
respective standard scoring functions that capture the
customers’ relative preferences. Scoring functions al-
low comparisons to be carried out across the many
diverse FoMs used for evaluating a given alternative.
Comparisons of alternative system designs involve
combining scoring function outputs in such a way that
decisions regarding preferred system alternatives can
be made and defended while concurrently preserving
customer preferences and requirements.

The most important result of a tradeoff study is not
determining the preferred alternative. The most impor-
tant product of a tradeoff study is the documentation,
with the FoMs, the scoring functions, their parameters,
and the input values that were used. This lets everyone
see and understand why the preferred alternative was
preferred.
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There are many popular methods for combining data
in a tradeoff study. One of these is forming the product
of the scores and weights [Daniels, Werner and Bahill,
2001]. Unfortunately, in this publication the printed
formula was wrong. 

The equation should have the weights in the expo-
nent, like this:

f = ∏ 
i=1

n

xi
w

i

In this equation, n represents the number of Figures
of Merit (FoMs) that are to be combined, xi represents
the output of the scoring function for the ith FoM and wi

represents the weight of importance assigned to the ith

FoM. The Product Tradeoff Function is commonly used
for example in computing cost to benefit ratios and in
doing risk analyses. 

Unfortunately, the published equation on page 195
multiplied the weight times the score, like this:

f = ∏ 
i=1

n

xiwi

Formulated like this, the weights have absolutely no
effect. We apologize for any confusion this may have
caused.
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