QFD: VALIDATING ROBUSTNESS

Kinnar K. Ghiya

Intel Corporation 5000 W. Chandler Blvd., CH7-306 Chandler, Arizona 85226

A. Terry Bahill

Systems and Industrial Engineering Department University of Arizona Tucson, Arizona 85721-0020

William L. Chapman

Raytheon Systems Company Tucson, Arizona 85734

Key Words

Quality function deployment (QFD); Concurrent engineering; Sensitivity analysis; Total quality management (TQM).

Introduction

Quality function deployment (QFD) started in Japan in the late 1960s and is now used by half of Japan's major companies. It was introduced in American automobile manufacturing companies in the early 1980s and is being used by numerous American corporations (1,2). QFD is a handy tool for interdisciplinary teams. A typical QFD team will have members from marketing, sales, manufacturing, design, quality control, purchasing, and so on. "QFD enhances communication levels within the core team" (3).

Quality function deployment strives to get the customer's view of quality introduced in the early phases of the design cycle and considered throughout the product's entire life cycle. "QFD therefore represents a change from manufacturing-process quality control to product development quality control" (1). In most implementations, QFD uses many matrixlike charts to discover interrelationships among customer demands, product characteristics, and manufacturing processes, as shown in Figure 1. For example, the first QFD chart compares the customer's demands to quality characteristics. The second chart then investigates the relationship between these quality characteristics and characteristics of the product. The third chart subsequently examines the relationships between these product characteristics and manufacturing processes. Finally, these manufacturing processes are compared to the quality controls that will be monitored during manufacturing.

ToothBrite Inc.: A Heuristic Case Study

In order to analyze QFD as a tool, we need an example to study; therefore, we will now present ToothBrite (4). Assume that you are the Chief Executive Officer of

Figure 1. Relationship of the four QFD charts.

ToothBrite Inc., a major toothpaste manufacturer, and your market share has suddenly dropped. You suspect that this is a result of your competitor's new innovation. Crest® has developed a new toothpaste container called the Neat Squeeze dispenser and has endowed it with a substantial advertising budget. (To understand this example better, you might cut open a Crest® Neat Squeeze dispenser or a Colgate® Neat and Easy Stand Up dispenser and see how it is produced and what is inside.) To recapture your market share, you decide to redesign your product; therefore, you decide to use QFD as your analysis tool. We had our marketing department interview all people we thought could provide inputs for the system design. In the QFD literature, the aspects deemed important by the customer are called customer demands. Our marketing department derived the following customer demands:

Neatness

Tidy tip: The tip stays neat and clean.

Retains shape: the container retains its original shape. Stays put: The container will not roll off the counter.

- Hygienic: Toothpaste cannot touch the brush and then be drawn back into the container.
- Squeezable: People want to squeeze the container, not pump.
- Easy open: The cap opens and closes easily.
- No waste: Almost all the toothpaste comes out.
- Small footprint: Container takes little counter space.
- Reasonable cost: It should cost about the same as present containers.
- Attractive container: The sales department says that it must look good.

After listing the demands, the customer assigns a weight indicating the relative importance of each demand. Usually, the weights are between 1 and 10, with 10 being most important. Figure 2a shows the customer demands on the left side and the associated weights in the right column.

		·					·	·		·			
(01 of 1) sonstropmI		10	4	9	4	∞	4	9	5	6	7		
Selling Price										6	6	144	7
Cost to Produce		6	I		6	I	£			ŝ	-	184	Ţ
Pleasing Appearance		5	I							1	6	156	4
Amount of Deformation			6	3		Э		I	1		Э	011	ç
Counter Space			3	3					6		1	78	L
Amount of Waste		-	1			-		6				9L	8
front of the second							6					98	10
Amount of Pressure			I			6		3				† 6	9
Amount of Pullback		3			6			I				7L	6
sesM to truomA		6			-		1	3			3	132	ε
Original ToothBrite Phase I	Neatness	Tidy Tip	Retains Shape	Stays Put	Hygienic	Squeezable	Easy Open	No Waste	Small Footprint	Reasonable Cost	Attractive Container	Score	Rank

(a)

9
्त्व

Modified ToothBrite Phase I	Neatness	Tidy Tip	Retains Shape	Stays Put	Hygienic	Squeezable	Easy Open	No Waste	Small Footprint	Reasonable Cost	Attractive Container	Score	Rank
Suction Device													
Dashpot & Air Chamber		6	6		6	6		3				797	7
Elastic Walls		6	6		6	6		6		Э		sie	ī
qmu¶ & elleW bigiЯ			6	1			3		1			65	٤I
Plastic Walls			-			6		6		6		112	ε
Paste Viscosity Requirement		3						6				96	10
bəznəqziU truomA bəxiA		3	1		ŝ			6				00 I	8
New Cap Design		3			-		6	1		1	1	76	π
Flat Top & Bottom				6					6		З	120	4
Squeezable Top & Bottom			3	1		Э		6	1		1	801	9
Inexpensive Materials							3			6	1	00 I	8
səssəsor4 gnirutastunsM əlqmiZ					3		1			6	1	104	L
Graphic Designer			ŝ	m					3	I	6	411	ç
Tamper Proof Package					6					3	-	02	15
(01 ot 1) sonstroqmI		10	4	9	4	∞	4	9	5	6	7		

Figure 2. The original (a) and the modified (b) ToothBrite Phase I charts.

(9

In this example, our customer is the person who brushes his or her teeth with the toothpaste. However, "the customer" should also include all people who should provide inputs for the system design. This includes buyers, store managers, mothers, the manufacturer's sales force, the design team, and the production facility. See Chapter 5 of Ref. 5 for a fuller exposition of this matter.

Next, we asked our Systems Engineering Department to derive measures to assure that these customer demands are being satisfied. In the QFD literature, these measures are called figures of merit, quality characteristics, or, sometimes, measures of effectiveness. Quality characteristics should be quantitative and measurable. The following are the quality characteristics we used for the ToothBrite project.

- Mess: amount of toothpaste scraped off the tip when half empty
- Pull-back: amount of toothpaste pulled back when done dispensing
- Pressure: amount of pressure needed to squeeze out the toothpaste
- Effort: number of turns, or time, or effort needed to remove cap
- Waste: amount of toothpaste left in the container at end of life cycle
- Counter space: amount of counter space occupied by container
- Deformation: amount of change in shape of container when half empty
- Cost of materials: cost of raw materials used to make the container

Pleasing appearance: based on results of customer survey

In general, QFD charts have a desire that needs to be satisfied listed along the side, and measures or approaches for satisfying the desires across the top, as shown in Figure 2a. The items listed on the left are called Whats and items listed along the top are called Hows. To help determine the Hows we ask, "This is What the customer wants, now How can we measure it?" We will often associate optimal or target values with these measures. These measures become the desires on the next chart.

The next step in QFD analysis is determining the strength of the relationships (or the degree of correlation) between the Whats and the Hows. This is done by filling in the center matrix on a column-by-column basis as shown in Figure 2a. Each What is compared to each How. Four classifications are given: If they are strongly related, a value of 9, or a black disk with a white dot inside, is recorded in the appropriate cell. Moderate relationships are given a 3, or a circle; weak relationships are given a 1, or a triangle; and no relationship is given a 0, or the cell is left blank. Depending on the customers, symbols and number can be mixed.

The next step is multiplying each cell's value by the weight of the customer demand and totaling the column for each quality characteristic. This is shown in the row across the bottom labeled Score in Figure 2a. The total score for each column is an indication of the importance of that characteristic in measuring the customer's satisfaction. Typically, measures with low scores receive little consideration. However, this does not necessarily mean that these measures will not be used in the product design: They still may be necessary for contractual or other reasons. To satisfy the customer, we must pay strict attention to the measures with the highest scores. Focusing attention on the customer is the main purpose of the QFD chart. The chart and its results are not as important as the process of concentrating on the "Voice of the Customer" rather than the "Voice of the Manufacturer." For the ToothBrite project, the Cost to Produce (with a score of 184) and Selling Price (with a score of 144) were the most important measures.

Subsequent QFD Charts

To continue our QFD analysis, we will relate the quality characteristics of Figure 2a to characteristics of the product. One of the purposes of a QFD analysis is to investigate many alternative designs. However, as the analysis progresses, we must limit the number of alternatives under consideration. The characteristics of the product will be different for each alternative design. Thus, if we wish to continue investigating alternative designs, then we might have to create a second QFD chart for each alternative. The following product characteristics, provided by the Design Engineering Department, seem to imply a suction type of container:

Double lead threads on cap and tip—allowing cap removal with a half-turn Size of dispensing hole in tip Thickness of side walls Type of material for side walls Size of dashpot (the portion of the tube containing air) Viscosity of dashpot Total weight of the container Size of the container Printing on label—must be colorful and easy to read

These product characteristics now become Hows in our second QFD chart shown in Figure 3a. The score of each

QFD: VALIDATING ROBUSTNESS

Double Double Materic Viscosi Viscosi Printiny Printiny	Weig	
Amount of Mess 1 1 3 3 1 1	37	
Amount of Pull-back 3 3 9 3 9	72	
Amount of Pressure 3 3 9 9 9	94	
Amount of Effort 9 1 1 1	36	
Amount of Waste 3 1 3 1 3 1 7	76	
Counter Space 3 9 1 9 8	82	
Amount of Deformation 1 1 3 1 1 1	10	
Pleasing Appearance 1 3 9 3 1	26	
Cost to Produce 1 9 1 3 1 3 9 1	84	
Selling Price 1 3 1 1 1 1	44	
acos 324 324 1149 1149 955 955 955 22577 22677 22677 22677 22677 22677 22677 22677 22677 22658 22958 22858 22958 22858 22958 22858 229588 22958 229588 22958 22958 22958		
Rank 01 1 0 1 0 1 0 1 0 1 0 0		

(a)

Modified ToothBrite Phase II	Double Lead Threads	Size of Hole in the Tip	(Tube) Material Thicknes	(Tube) Material Type	Size of the Dashpot	Viscosity of the Dashpot	Weight of the Container	Size of the Container	Printing on Label	Shape of the Container	Weights
Suction Device											
Dashpot & Air Chamber		3		3	9	9		3			252
Elastic Walls		3	3	9							315
Rigid Walls & Pump			3	9			3			1	59
Plastic Walls			3	9					1		211
Paste Viscosity Requirement		3	1	1	3	9				1	96
Fixed Amount Dispensed		3			1		1	1		1	100
New Cap Design	9	1		3						1	92
Flat Top & Bottom										9	120
Squeezable Top & Bottom			3	3						1	108
Inexpensive Materials			9	9		3		1	3	3	100
Simple Manufacturing Processes	1	1	3	3	1	9	1	1	3	9	104
Graphic Designer								9	9	9	117
Tamper-Proof Package	1		3	3					1	3	70
Score	1002	2485	3597	8139	2760	4368	381	2113	1946	4034	
Rank	6	9	4		S	5	10	7	8	3	

(b)

Figure 3. The original (a) and the modified (b) ToothBrite Phase II charts.

quality characteristic as determined in the first chart is used as the weight in the second chart. The quality characteristics become the new Whats and the product characteristics become the new Hows. The question becomes, "This is what I am going to measure, now How will I build the product to make it optimum?" We fill out this chart using the same process used for the first chart. Fill out each cell based on how strongly each product characteristic is related to each quality characteristic. Multiply the weights by the numerical values for the relationships and sum the columns to give the scores at the bottom of the chart. The column scores now indicate how strongly each product characteristic is related to the customer's demands. For the ToothBrite project, these scores indicate that the type of material used for the sides of the container is the most important product characteristic. This is an important finding that was not obvious at the outset.

The third QFD chart, shown in Figure 4a, compares the product characteristics to manufacturing processes provided by the Manufacturing Department. The manufacturing processes are as follows:

Molding process (cap, body, and bottom)-assume a
blow molding process
Create mold
Blow material—assume polycarbonate material will
be used
Remove container
Insert and bond liner—the bag that holds the toothpaste
Insert toothpaste
Screw on cap
Weld bottom—assume use of ultrasonic welding to at-

Weld bottom—assume use of ultrasonic weiging tach sides and bottom

Paste or print label

These manufacturing processes are listed in the approximate temporal order that we envision. From the scores and ranks at the bottom of this chart, we can see that blowing the material into the mold is the most important process.

Finally, our fourth QFD chart, shown in Figure 5a, compares the manufacturing processes to the quality controls provided by the Quality Control Department. These are the quality control items that will be monitored and controlled during the manufacturing process:

Mold dimensions

Material controls (when material is being injected into the mold) Temperature Pressure Time

Liner attachment inspection Toothpaste flow rate Cap attachment torque Welding controls (when attaching bottom to the sides) Intensity Duration Pressure Labeling pressure Cleanliness and hygiene controls

As we progressed through this ToothBrite project, the QFD charts became more and more specific. The fourth QFD chart is very specific to particular alternative materials and manufacturing process chosen.

This chart tells us that in order to satisfy the customer, during manufacturing we should pay very special attention to the material temperature and the mold dimensions. This may not have been obvious to the manufacturing engineers before this QFD analysis.

Generalizations

This process of linking QFD charts together can continue until dozens of charts have been filled out (see Refs. 6-8), as suggested by the "Waterfall" chart of Figure 1. For examples of using many QFD charts on one Heuristic example, we recommend Refs. 5 and 7. For many examples derived from real manufacturing systems, see Ref. 8, which is arguably the most definitive work on QFD in the English language. QFD can also be applied to the top-level function, then to its subfunctions, and then to their subfunctions. Using QFD to design real systems will involve many, many QFD charts. Managing such a large database will certainly require computer assistance. Such programs are available (e.g., QFD/Capture by International TechneGroup Inc. and QFD plus by Ford Motor Co.). In this article, we have only scratched the surface in the use of QFD charts.

Alternative Approach

The QFD process can become complex and cumbersome, depending on the product complexity. Many times, the detailed four-chart analysis is not possible with available resources. Many QFD analyses in industry only use the first QFD chart. In this case, the Hows can have a different definition. Here, the Hows are listed as "how can we solve it" or "how can we meet a particular customer demand." Therefore, we will change the definition of the Hows in the first QFD chart and compare the result with the original chart. -

Original ToothBrite Phase III	Molding Process (Cap, Body, Bottom)	Create Mold	Blow Material	Remove Container	Insert and Bond Liner	Inserting Toothpaste	Screwing on Top	Ultrasonic Weld Bottom	Pasting or Printing Label	Weights
Double Lead Thread		9	9	3		1	1			324
Size of Hole in Tip		9	9	3		9				1009
Material Thickness			9					3		1149
Material Type		1	9	1	3		1	9	3	4713
Size of Dashpot		3			1					955
Viscosity of Dashpot		9	9	3				3		2677
Weight of Container		3			1					430
Size of Container		9			1	3		1	3	2150
Printing on Label									9	1768
Shape of Container		9	9	3	3			3	9	2958
Score		90930	115470	25617	26548	15855	5037	64919	63123	
Rank		2	1	6	5	7	8	3	4	

(a)

Modified ToothBrite Phase III	Molding Process (Cap, Body, Bottom)	Create Mold	Blow Material	Remove Container	Insert and Bond Liner	Inserting Toothpaste	Screwing on Top	Ultrasonic Weld Bottom	Pasting or Printing Label	Weights	
Double Lead Threads		9	9	3		1	1			1002	
Size of Hole in the Tip	i	9	9	3		9				2485	
(Tube) Material Thickness			9					3		3597	
(Tube) Material Type		1	9	1	3		1	9	3	8139	
Size of the Dashpot		3			1			3		2760	
Viscosity of the Dashpot		9	9	3	1			3		4368	
Weight of the Container		3			1					381	
Size of the Container		9			1	3		1	3	2113	
Printing on Label									9	1946	
Shape of the Container		9	9	3	3			3	9	4034	
Score		143580	212625	43806	41773	29706	9141	119641	84576		
Rank		2		ŝ	9	5	∞	3	4		
										•	

(b)

Ľ

Figure 4. The original (a) and the modified (b) ToothBrite Phase III charts.

(9

								_			
		84576	119641	9141	29706	41773	43806	212625	143580		sidgiəW
5	08£989	1		С	6						Cleanliness and Hygene Controls
4	1 81192	6									Labeling Pressure
3	1118245		6			1					Pressure
10	928923		З								Duration
8	96900†		m			I					Intensity
											Welding Controls
12	69778			6							SuproT trismdasttA qaD
11	767354				6						Toothpaste Flowrate
6	LSGSLE					6					Liner Attachment Inspection
9	528269							З			əmiT
9	578759							3			Pressure
-	5295161							6			Temperature
											Material Control
2	1414225					I	3		6		anoianemid bloM
Rank	Score	Pasting or Printing Label	Ultrasonic Weld Bottom	Screwing on Top	Inserting Toothpaste	Insert and Bond Liner	Remove Container	Blow Material	Create Mold	Molding Process (Cap, Body, Bottom)	Modified ToothBrite Phase IV

Original ToothBrite Phase IV	snoiznamid bloM	Material Control	Temperature	Fressure	1 inc	Linei Auschnein meneren Toothaste Flourate	Toompast Torme	Welding Controls	Intensity	Duration	Pressure	Labeling Pressure	Cleanliness and Hygene Controls	81hgiəW	
Molding Process (Cap, Body, Bottom)						с, н -									
Create Mold	6				┢─	-							-	90930	
Blow Material			6	m	3									115470	
Remove Container	б							84					-	25617	
Insert and Bond Liner	-					6		ļ	-		-			26548	
Inserting Toothpaste		-					6						6	15855	
Screwing on Top		-						6					б	5037	
Ultrasonic Weld Bottom									3	3	6		1	64919	
Pasting or Printing Label												6	1	63123	
Score	692176	-	0526501	346410	346410	726822	C6977	¢¢¢¢†	5051302	<i>LSL</i> #61	618019	201895	405395		
Rank	2		=	ত	6	∞	Ξ	12		10	0	4	5		

Rank

(a)

We have used the ToothBrite example (4) to list the Hows in the first chart as "How we can achieve it" instead of "How we can measure it." The customer requirements are the same for both charts (refer to Fig. 2). The Hows in the modified ToothBrite chart 1 of Figure 2b offer possible solutions for the customer requirements. For example, to meet the customer requirement of Neatness, in the original QFD chart, we have Amount of Mess, Amount of Pull-back, and Cost to Produce as significant measures (Hows). In the modified QFD chart, for Neatness, we are offering possible alternatives-we could possibly have a good suction device, or plastic walls, or rigid wall and a pump arrangement. For the Attractive Container requirement, the important measures in the original charts are Pleasing Appearance and Selling Price. For the same What, the modified QFD chart offers a solution-one can employ a graphic designer. Now, one can look at the scores at the bottom of the chart. Elastic Walls is the most important How in this case and, so, the designer of the toothpaste dispenser should consider elastic walls. Thus, this approach offers solutions after the first chart itself and the scores at the bottom of the chart are useful to determine which alternative should be considered seriously. For small tasks, if one wants to limit the QFD usage to the first chart, this approach still brings good results.

We have gone further to study how the effect of changing these Hows propagates through the four charts. Figures 3–5 compare the original ToothBrite charts with the modified charts. The results after progressing through four phases indicates that changing the Hows definition had almost no effect on the final outcome! Compare the two final charts from Figure 5. After progressing through the whole process, the ranks have hardly changed. Controlling the material temperature is still the most important task. This is an indication of the robustness of QFD analysis.

Bicknell (9) says the Hows "... should be controllable characteristics. They can be described in measurable terms to provide targets for specifications and desired product improvements." Janet Fiero (through personal communication) comments that the Hows of the first chart can be interpreted in different ways, depending on the problem in hand. Our example shows that it does not make a lot of difference.

Sensitivity Analysis

The next step in our research is to validate the robustness of the QFD process, by conducting a sensitivity analysis. We have used examples from the literature and industry to carry out the sensitivity analysis. Given the proprietary nature of these charts, some of them did not have complete information needed to carry out the sensitivity analysis. In such cases, we modified the charts by filling out the missing information to the best of our knowledge and experience without losing the original gist of the charts.

Figure 6 shows four charts of the Pencil example (7,10). These charts go through the design of a pencil as a new product. Figure 7 shows the four charts of a Door System example (American Supplier Institute, 1992). These charts are from the development of a car door system. Figure 8 shows three charts of a Video Game example (11). We have also used the modified ToothBrite example discussed earlier for this sensitivity analysis.

We have used two approaches to conduct this sensitivity analysis. In the first approach, the correlation weights were changed throughout all four charts and the effect of that on the final outcome was observed. In the second approach, we used a two-level fractional factorial design to vary the customer importance weights in different combinations (e.g., for L16, it will be 16 different combinations) and conducted an analysis to see the effect on the final outcome.

Change in Correlation Values

Deciding on the correlation values can be a very timeconsuming process, especially when the chart has many Whats and Hows. The relationships between the Whats and the Hows are defined to be Strong, Medium, Weak, or None. These traditionally have point values of 9, 3, 1, and 0, respectively. It is important to analyze what effect these values have in the final outcome for two reasons. First, as explained earlier, the process gets tedious and there may be a tendency to fill up the rest of the boxes with minimum work and understanding, due to a loss in concentration. If this occurs, the QFD chart may not reflect the outcome as it should be. Second, there may be a conflict in deciding the relationship values. What one team member sees as a strong relationship may look like a medium relation or weak relation to the other team member.

The scale of 9–3–1 resulted from Weber's law. This is a logarithmic scale with a base of 3. Through discussions, we have found that some people feel the need of using different scales and so we did some experiments. We have examined the sensitivity of the QFD method using four different changes:

1. Replace the 9–3–1 scale with a 7–3–1 scale: This deemphasizes the Strong relationship.

	_	_	_	_	_		-
Importance	3	4	5	e	ŝ		
Eraser Dust Generated	0	0	0	0	6	27	
Pressure Cycles to Erase	0	-	0	0	6	31	
Pages Per Pencil	0	6	6	0	-	84	
lloA əlgnA ənilənl	0	0	0	6	0	27	
Lead Dust Generated	0	6	ŝ	0	0	51	
Time Between Sharpenin	0	ŝ	6	0	0	57	
Length of Pencil	3	0	-	0	0	14	
CHART: 1	Easy to Hold	Does Not Smear	Point Lasts	Does Not Roll	Easy to Erase	Score	

Body Graphics Weights	3 0 3 14	0 0 0 57	0 9 0 51	9 0 0 27	0 9 0 84	3 0 0 31	0 0 0 27	378 1215 42
EraserHolder	0	0	0	0	0	-	0	31
Eraser	0	0	0	0	0	6	6	522
əridqard	-	6	6	•	6	ŝ	ε	1916
CHART: 2	Length of Pencil	Time Between Sharpe	Lead Dust Generated	Incline Angle Roll	Pages Per Pencil	Pressure Cycles to Era	Eraser Dust Generated	Score

Diameter	6	0	0	-	0	31752		
Length of Mold	6	0	0	0	0	30618		
CHART: 4	Mold Body	Insert Graphite	Assemble Body	Add Clip	Apply Graphics	Score		
	916	522	31	378	215	42		
Apply Graphics	-	0	0	e e	0	6	1512	
qilO bbA	0	0	0	9	0	0	1134	
Assemble Body	-	6	6	6	3	0	13940	
Insert Graphite	6	0	0	-	-	0	18837	
Mold Body	•	0	0	6	0	0	3402	
CHART: 3	Graphite	Eraser	EraserHolder	Body	Paint	Graphics	Score	

13940 18837 3402

> 0 0 0

0 0 0

0 0 0 6

0 δ φ 0

\$

0

0 0

0

stugisW

Depth of Embossing

Sharpness of Figures

Break Strength

fension of Pocket Clip

Abraidability of Embossing

134 1512

17010 13608 17010

2E+05 1E+05

Pencil example. Figure 6.

- Replace the 9-3-1 scale with a 5-3-1 scale: This deemphasizes the Strong relationship even further. d
 - Replace the 9-3-1 scale with a 9-3-0 scale: This deemphasizes the Weak relationships. ë.
- Replace the 9-3-1 scale with a 4-2-1 scale: This changes the base of the logarithmic scale from 3 to 2. 4

We have analyzed the worst-case situations in the above four changes. We normalized each of the scores by dividing by the largest score and multiplying by 100. For example, if the 9's are replaced with 7 in the first modified ToothBrite chart (Fig. 2b), then the score for Dashpot and Air Chamber drops to 200 and the score for Elastic Walls drops to 251. Normalizing these scores (by dividing by 251, this being the highest score) yields 79 and 100, as shown in Table 1 (third column). These are compared to the original

QFD scores by finding the root mean square (RMS) change. The Root mean square change is calculated using the following formula:

RMS change =
$$\left\{ \left(\frac{1}{n}\right) \sum_{i=1}^{i=n}$$
 [Normalized score (original)

Normalized score (replacement)]²

where n is the number of Hows in a chart.

Figure 9 is the plot of root mean square change rows ing 9-3-1 to 7-3-1 does not have a substantial effect on the outcome. If the scale is changed from 9-3-1 to 4-2-1, the from each chart in Table 1. The largest change is recorded change is minimal. This is an important result, as it indicates when the weights are changed from 9-3-1 to 5-3-1. Chang-

Shape	3	ы	0	0	6	155		Mistake Proofing	0	0	0	0	0	6
Inside Diameter	3	3	0	0	6	1554		Preventative Maintenance	0	0	0	6	0	0
Outside Diameter	3	3	0	0	6	1554		Quality Control Chart .	6	6	6	0	0	0
CHART: 2	Door Closing Effort	Pull Force (Inside)	Dynamic Hold Open Force	Static Hold Open Force	Water Leak Test	Score		CHART: 4	Melt Temperature	Extrude Temperature	Extrude Speed	Cure Temperature	Punch Diameter	Punch Sharpness
								singisW	1554	1554	1554	2394	2394	1386
Importance	8	5	2	5	6	5		Punch Sharpness	0	0	0	1	3	6
Water Leak Test	0	0	0	0	6	6	126	Punch Diameter	0	0	0	0	0	6
Static Hold Open Force	1	0	6	6	0	0	11	Cure Temperature	6	6	6	0	0	0
Dynamic Hold Open Force	1	I	0	6	0	0	58	bssqrbeed	6	6	6	0	0	0
Pull Force (Inside)	I	6	0	0	0	0	53	Extrude Temperature	6	6	6	0	0	•
Door Closing Effort	6	З	0	0	0	0	87	Melt Temperature	ω	6	9	0	0	0
CHART: 1	Easy Close from Outside	Easy Close from Inside	Doesn't Kick Back	Stays Open in Check	Doesn't Leak Water	Doesn't Drip with Door	Score	CHART: 3	Outside Diameter	Inside Diameter	Shape	Material Specification	Material Density	Vent Hole Diameter

126

1386

2394

2394

554

87 5 8 5

\$

φ 6 0

6 0

នរបូឱទេស

Vent Hole Diameter

Material Specification

Material Density

ASI Door System example. Figure 7.

22050

6

Score

22050 9

41958 41958 12474

23310 41958

Score

198450 1653372

23310 41958

c

σ

s1yឱរេ*N*

Education & Training

41958 41958 12474

0 6

> that changing the base of the logarithmic scale used has little impact on the QFD process. Changing the relationships from Weak to None (changing the scale from 9-3-1 to 9-3-0) also has very little effect.

Similar analysis is carried out for the remaining three examples discussed. Table 2 shows the resulting RMS change values for different charts of all three examples. The RMS change is small in all the three charts.

We can also evaluate the change in rankings of the fourth chart Hows. These rankings are important because most teams use them to prioritize their action items. We are using the following formula to show the change in rankings. Say that if the original ranking was $[A_1, A_2, \ldots, A_n]$ and it changed to $[B_1, B_2, \ldots, B_n]$ due to change in correlation values, then the change in rank could be calculated as

Change in rank =
$$\left[\left(\frac{1}{n}\right)\sum_{i=1}^{i=n} (A_i - B_i)^2\right]^{1/2}$$

where n is the number of Hows in the final chart of the QFD experiment.

9, 11, 12, 8, 10, 3, 4, 5]. After changing the correlation values from 9-3-1 to 7-3-1, these ranks changed to [2, 1, 6, 6, 10, 11, 12, 8, 9, 3, 5, 4]. So, using the above formula, we calculated the change to be 0.58, which is very small. ent combinations of correlation values experiments and for all four examples as shown in Table 3. The maximum ranks for the Hows of Chart 4 for the modified ToothBrite To understand this better, refer to Table 3. The original example (from the bottom row of Fig. 5b) were [2, 1, 6, 6, Similarly, the changes in ranks were calculated for differchange in ranks in all four examples was only 1.78!

ences of opinion in deciding the correlation values or change To summarize, this analysis validates the fact that the of scales. Thus, the QFD process remains a useful tool in the product development process, even when it is used by QFD process is robust and is not affected by minor differ-

Results of changing correlation values for the first modified ToothBrite chart											
Chart: 1	Original	Replace	Replace	Replace	Replace						
HOWS	931	931 with 731	931 with 531	931 with 930	931 with 421						
Dashpot & Air Chamber	80	79	79	80	79						
Elastic Walls	100	100	100	100	100						
Rigid Walls and Pump	18	20	22	15	23						
Plastic Walls	66	65	63	65	65						
Paste Viscosity Req.	30	33	38	26	38						
Fixed Amount Dispensed	31	35	40	30	38						
New Cap Design	29	33	40	20	42						
Flat Top or Bottom	38	39	40	38	39						
Squeezable Top & Bottom	34	38	44	28	45						
Inexpensive Materials	31	32	34	29	34						
Simple Manuf. Processes	33	34	36	29	37						
Graphic Designer	37	41	47	34	45						
Tamper Proof Package	22	24	28	20	28						
Root Mean Square Change	0.00	2.57	6.50	3.69	6.54						

Table 1. Results of Changing the Correlation Values for the Modified ToothBrite Example

Results of changing the correlation values for the second modified ToothBrite chart

00					
Chart: 2	Original	Replace	Replace	Replace	Replace
HOWS	931	931 with 731	931 with 531	931 with 930	931 with 421
Double Lead Threads	12	13	14	7	13
Size of the Hole in the Tip	30	36	46	29	42
(Tube) Material Thickness	44	50	60	42	54
(Tube) Material Type	100	100	100	100	100
Size of the Dashpot	33	33	32	32	34
Viscosity of the Dashpot	53	51	47	54	49
Weight of the Container	4	5	7	1	7
Size of the Container	25	28	32	22	31
Printing on Label	23	26	29	19	28
Shape of the Container	49	51	54	43	52
Root Mean Square Change	0.00	3.16	8.20	3.19	5.84

Results of changing the correlation values for the third modified ToothBrite chart

Chart: 3	Original	Replace	Replace	Replace	Replace
HOWS	931	931 with 731	931 with 531	931 with 930	931 with 421
Create Mold	67	70	74	60	74
Blow Material	100	100	100	100	100
Remove Container	20	26	36	16	33
Insert and Bond Liner	19	24	33	17	31
Inserting Toothpaste	13	16	21	13	16
Screwing on Top	4	5	7	0	9
Ultrasonic Weld Bottom	56	60	68	56	67
Pasting or Printing Label	39	43	50	37	47
Root Mean Square Change	0.00	3.74	10.24	3.34	8.52

Results of changing the correlation values for the fourth modified ToothBrite chart

Chart: 4	Original	Replace	Replace	Replace	Replace
HOWS	931	931 with 731	931 with 531	931 with 930	931 with 421
Mold Dimensions	77	85	100	66	83
Temperature	100	100	96	100	100
Pressure (Matt. Control)	33	42	57	33	50
Time	33	42	57	33	50
Linear Attachment Inspect	19	24	31	17	19
ToothPaste Flowrate	13	16	20	13	13
Cap Attachment Torque	4	5	6	0	4
Intensity	20	29	46	18	33
Duration	18	25	39	18	28
Pressure (Welding Control)	58	64	72	56	61
Labeling Pressure	39	43	48	37	39
Cleanliness & Hygiene Ctrl	35	47	68	13	62
Root Mean Square Change	0.00	6.99	19.10	7.29	11.62

Figure 9. Root mean square change due to global changes in correlation values of the modified ToothBrite charts.

heterogeneous groups (consisting of various engineering and management disciplines), where the group members can have different styles of thought process.

Change in Weights of Customer Demands

Some QFD professional facilitators state that determining the importance of the customer demands is the most time-consuming activity in constructing the first chart. Also, what one customer sees as an important requirement may not be so important for another customer. So, there is a probability of conflict generation while determining the importance of the customer demands (Whats). In this situation, it will be useful to discover what effect this can have in the final outcome. Typically, these importance values are assigned on a scale of 1 to 10, 10 being the most important.

Pencil Example	Original	Replace with	Replace with	Replace with	Replace with
	9-3-1	7-3-1	5-3-1	9-3-0	4-2-1
CHART 1	0	3.1	7.8	2.6	5.7
CHART 2	0	1.5	3.8	0.8	2.9
CHART 3	0	3.1	3.6	3.6	6.8
CHART 4	0	3.6	10.4	3.4	8.3

Table 2. RMS Change in Scores Due to Changing the Correlation Values for the Other Examples

ASI Door System	Original	Replace with	Replace with	Replace with	Replace with
Example	9-3-1	7-3-1	5-3-1	9-3-0	4-2-1
CHART 1	0	1.9	6.2	6.4	7.8
CHART 2	0	3.7	9.6	2.5	6.7
CHART 3	0	2.9	8.3	4.4	7
CHART 4	0	0	0.9	1.5	1.2

Video Game Example	Original	Replace with	Replace with	Replace with	Replace with
	9-3-1	7-3-1	5-3-1	9-3-0	4-2-1
CHART 1	0	1.4	3.6	1.8	3.3
CHART 2	0	4.4	11.2	3	9
CHART 3	0	3.3	8.9	4.4	8.1

~

						HOW	'S of C	'hart 4					
Modified ToothBrite Example - Change in Ranks at Chart 4 Original Rank at Chart 4	Mold Dimensions	Temperature	Pressure (Matt. Control)	o Time	Linear Attachment Inspect	📃 ToothPaste Flowrate	🕇 😽 Cap Attachment Torque	o Intensity	b ∈ Duration	Pressure (Welding Control)	Labeling Pressure	u Cleanliness & Hygiene Ctrl	Change in Ranks
Rank after 7-3-1 experiment	2	1	6	6	10	11	12	8	9	3	5	4	0.58
Rank after 9-3-0 experiment	2	1	5	5	9	10	12	7	7	3	4	10	1.78
Rank after 4-2-1 experiment	2	1	5	5	10	11	12	8	9	4	7	3	1.26
			HC	DWS o	f Cha	rt 4							
Pencil Example - Change in Ranks at Chart 4	Length of Mold	Diameter	Break Strength	Tension of Pocket Clip	Sharpness of Figures	Abraidability of Embossing	Depth of Embossing	Change in Ranks					
Original Rank at Chart 4	4	3	1	2	5	7	5	***					
Rank after 7-3-1 experiment	4	3	2	2	5	7	5	0					
Rank after 9-3-0 experiment	3	3	1	2	5	5	5	0.85					
Rank after 4-2-1 experiment	4	3	1	2	5	7	5	θ					
ASI Door System Example - Change in Ranks at Chart 4 Original Rank at Chart 4 Rank after 7-3-1 experiment Rank after 5-3-1 experiment	v v Quality Control Chart	$\omega = \frac{1}{\omega} \frac{1}{\omega}$ Preventative Maintenance	+ + Mistake Proofing S	reation & Training	e e * Change in Ranks								
Rank after 9-3-0 experiment	2	3	4	i	0								
Rank after 4-2-1 experiment	2	3	4	1	0								
				0.00									
		[HUW	S of C	.aart 3			1					
Video Game Example - Change in Ranks at Chart 3	Coating Process	/W I/F Demo	ield Operators - Respond Within 2 Minutes	tervice Locator System	raining Procedures - Validated by Exam	Derational Analysis Procedures	Jhange in Ranks						
Original Rank at Chart 3	5	2	4	6	3	1	***						
Rank after 7-3-1 experiment	5	2	4	6	3	1	0						
Rank after 5-3-1 experiment	4	3	5	6	2	1	0.82						
Rank after 4-2-1 experiment	4	2	5	6	3	i	0.58						
						_							

Table 3. Change in Ranks Due to Change in Correlation Values

Sometimes, the scale is restricted to 1-5 as in Figure 6 (the pencil example) and Figure 8 (the video example).

In this section, the importance of the customer demands were altered by (plus or minus) 1 and the impact was observed on all four charts. We used a design of experiments approach and a two-level fractional factorial design. We will use the pencil example from Figure 6 to explain this analysis. Looking at Figure 6, we realized that the highest number of parameters (either the number of Whats or the number of Hows) in the pencil example is 7. Using a two-level fractional factorial with eight trials (12), we can study up to seven factors (parameters); therefore, we will use a twolevel fractional factorial with eight trials for the pencil example to conduct this analysis. The importance of the customer demands are the factors that are changed ± 1 from the original value. For example, look at Chart 1 in Figure 6. Easy to Hold has an importance value of 3. So, for this customer demand (What), the low and high values are 2 and 4. Therefore, in four instances, we will have the importance of the customer demands (for Easy to Hold) to be 2 and in the other four instances, it will be 4. Table 4 shows the twolevel fractional factorial with eight trials for the pencil example. Because the first chart has only five factors (Whats), the remaining rows represent noise. As we progress through this analysis, we will realize that the effect of the noise on all the responses is 0.

The importance column of chart 1 of Figure 6 is $(3, 4, 5, 3, 3)^{T}$. The superscript T represents the vector transpose operation; that is, we are representing a column with a horizontal row. This column changes in the eight experiments. In the first experiment, this column will become $(2, 3, 4, 2, 2)^{T}$, which is column 2 of Table 4, the two-level fractional factorial with eight trials. When these numbers are used in Chart 1 of Figure 6, the row labeled Score becomes (10, 45, 39, 18, 65, 21, 18), which becomes the top row of Table 5. Eight experiments are run. The last one uses an importance column of $(4, 5, 4, 4, 2)^{T}$, which is the ninth column of Table 4 and produces a Score row of (16, 51, 57, 36, 83, 23, 18), which becomes the eighth row of Table 5. The effect Easy

to Hold can be computed by averaging the four values when importance was low (10, 10, 12, 12) \Rightarrow average 11, subtracting this from the average when the importance was high (18, 18, 16, 16) \Rightarrow average 17, and dividing by 2, giving (17 – 11)/2 = 3. This is the effect of the importance of Easy to Hold on the Length of Pencil. The other 48 cells of Table 5 are computed in a similar manner. As a check on the arithmetic, we note that all entries in the noise rows must be zero and the rest of the lower portion of Table 5 must be identical to chart 1 of Figure 6.

Now, the results of these eight experiments provide values to replace the Weights column in chart 2 of Figure 6. We will carry out eight different experiments for chart 2, as was explained for chart 1. Refer to chart 2 of Figure 6. The nominal weights column is (14, 57, 51, 27, 84, 31, 27)^T. For the first experiment, this will be replaced by (10, 45, 39, 18, 65, 21, 18)^T, which is the first row of Table 5. This process will continue for the remaining charts. Tables 6–8 show the fractional factorial analysis for the remaining charts of the pencil example.

So, how do we analyze these four tables? And what does this analysis tell us? Because all four tables are linked and a change in Table 5 will propagate through to Table 8, we will concentrate on Table 8. Let us consider the factor Length of Mold from chart 4 of Figure 6. The effects of Whats from chart 4 are the Effect rows of Table 8. The average effect will be the average of these seven entries in column 1. So, if you average 729, 243, ..., 2187, 0, 0, then you will get the number 1423. Now, the original score from chart 4 of Figure 6 for Length is 30,618. So the % effect is 4.65% [(1423)(100/30,618)]. This means that changing the importance of the customer demands in chart 1 by ±1 unit produces an average change in the score for the How Length of Mold in chart 4 of only 4.65%. These effects are small. Similarly, the % effect for Break Strength is calculated to be 3.36%. These are shown in Table 9.

A similar analysis was carried out for the modified ToothBrite charts, the ASI Door System charts, and the Video Game charts. These results are shown in Table 10.

Experiment Number >>>	1	2	3	4	5	6	7	8
Easy to Hold	2	2	2	2	4	4	4	4
Does Not Smear	3	3	5	5	3	3	5	5
Point Lasts	4	4	6	6	6	6	4	4
Does Not Roll	2	4	2	4	2	4	2	4
Easy to Erase	2	4	2	4	4	2	4	2

Table 4. Two-Level Fractional Factorial with Eight Trials Array for Pencil Example

Experiment Number							
· 1	10	45	39	18	65	21	18
2	10	45	39	36	67	39	36
3	12	69	63	18	101	23	18
4	12	69	63	36	103	41	36
5	18	63	45	18	85	39	36
6	18	63	45	36	83	21	18
7	16	51	57	18	85	41	36
8	16	51	57	36	83	23	18
Effect Easy to Hold	3	0	0	0	0	0	0
Effect Does Not Smear	0	3	9	0	9	1	0
Effect Point Lasts	1	9	3	0	9	0	0
Effect Does Not Roll	0	0	0	9	0	0	0
Effect Easy to Erase	0	0	0	0	1	9	9
Effect Noise 1	0	0	0	0	0	0	0
Effect Noise 2	0	0	0	0	0	0	0
	Length of Pencil	Time Between Sharpening	Lead Dust Generated	Incline Angle Roll	Pages Per Pencil	Pressure Cycles to Erase	Eraser Dust Generated

 Table 5.
 Two-Level Fractional Factorial Analysis—First

 Chart of Pencil Example

We used a two-level fractional factorial with eight trials for the modified ToothBrite charts, a two-level fractional factorial for the ASI Door System charts, and a Plackett–Burman design for the Video Game charts.

Tables 9 and 10 indicate that changing importance of the customer demands by one point (in either direction) does not have a large effect on the final outcome. This is an important conclusion, as the customer can have differences of

 Table 6.
 Two-Level Fractional Factorial Analysis—Second Chart of Pencil Example

1 I						
Experiment Number			~ .		00.0	•••
1	1468	351	21	255	936	30
2	1594	675	39	471	954	30
3	2232	369	23	267	1476	36
4	2358	693	41	483	1494	36
5	1980	675	39	333	1170	54
6	1854	351	21	441	1152	54
7	1984	693	41	333	1278	48
8	1858	369	23	441	1260	48
Effect Length of Pencil	3	0	0	9	0	9
Effect Time Between Sharpeni	192	9	1	3	162	0
Effect Lead Dust Generated	190	0	0	3	108	3
Effect Incline Angle Roll	0	0	0	81	0	0
Effect Pages Per Pencil	63	162	9	27	9	0
Effect Pressure Cycles to Erase	0	0	0	0	0	0
Effect Eraser Dust Generated	0	0	0	0	0	0
	Graphite	Eraser	Eraser Holder	Body	Paint	Graphics

 Table 7.
 Two-Level Fractional Factorial Analysis—Third

 Chart of Pencil Example
 Chart of Pencil Example

Experiment Number					
1	2295	14403	9919	765	1035
2	4239	15771	15121	1413	1683
3	2403	21831	12591	801	1125
4	4347	23199	17793	1449	1773
5	2997	19323	14913	999	1485
6	3969	18279	12627	1323	1809
7	2997	19467	15421	999	1431
8	3969	18423	13135	1323	1755
Effect Graphite	81	36	84	27	108
Effect Eraser	27	1893	795	9	9
Effect Eraser Holder	27	1821	541	9	36
Effect Body	729	81	729	243	243
Effect Paint	243	603	1872	81	81
Effect Graphics	0	0	0	0	0
Effect Noise 1	0	0	0	0	0
	Mold Body	Insert Graphite	Assemble Body	Add Clip	Apply Graphics

opinion in what they see as the most important customer demand. As long as these differences are not too large, the QFD process is robust enough to withstand the change.

In another experiment, which we will report in a future article, we found that the most important decisions in completing QFD charts were deciding whether each strong and each medium should indeed be a strong or a medium.

 Table 8.
 Two-Level Fractional Factorial Analysis—Fourth

 Chart of Pencil Example

20655	21420	129627	96156	11610	9315	11610
38151	39564	141939	148806	19386	15147	19386
21627	22428	196479	120528	12528	10125	12528
39123	40572	208791	173178	20304	15957	20304
26973	27972	173907	143208	16362	13365	16362
35721	37044	164511	125550	20250	16281	20250
26973	27972	175203	147780	15876	12879	15876
35721	37044	165807	130122	19764	15795	19764
729	756	324	999	1053	972	1053
243	252	17037	7236	108	81	108
243	252	16389	4950	351	324	351
6561	6804	729	8748	2916	2187	2916
2187	2268	5427	17577	972	729	972
0	0	0	0	0	0	0
0	0	0	0	0	0	0
Length of Mold	Diameter	Break Strength	Tension of Pocket Clip	Sharpness of Figures	Abraidability of Embossing	Depth of Embossing
	20655 38151 21627 39123 26973 35721 26973 35721 729 243 243 26973 35721 729 243 26973 35721 729 243 26973 35721 729 243 2697 30 279 2697 30 279 2697 30 279 2697 30 279 2697 30 279 2697 30 279 2697 30 279 2697 30 2697 30 279 2697 30 279 297 20 2697 30 279 20 20 20 20 20 20 20 20 20 20 20 20 20	20655 21420 38151 39564 21627 22428 39123 40572 26973 27972 35721 37044 729 756 243 252 6561 6804 2187 2268 0 0 0 0 1 1 1 1	20655 21420 12962/ 38151 39564 141939 21627 22428 196479 39123 40572 208791 26973 27972 173907 35721 37044 164511 26973 27972 175203 35721 37044 165807 729 756 324 243 252 17037 243 252 17037 243 252 16389 6561 6504 729 2187 2268 5427 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20655 21420 129627 96156 38151 39564 141939 148806 21627 22428 196479 120528 39123 40572 208791 173178 26973 27972 173907 143208 35721 37044 164511 125550 26973 27972 175203 147780 37021 37044 165807 130122 729 756 324 999 243 252 17037 7236 243 252 16389 4950 6561 6804 729 8748 2187 2268 5427 17577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	20655 21420 12962/7 96156 11610 38151 39564 141939 148806 19386 21627 22428 196479 120528 12528 39123 40572 208791 173178 20304 26973 27972 173907 143208 16362 35721 37044 164511 125550 20250 26973 27972 17303 130122 19764 729 756 324 999 10533 243 252 17037 7236 108 2187 2268 5427 17577 972 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1877 372	20655 21420 129627 96156 11610 9315 38151 39564 141939 148806 19386 15147 21627 22428 196479 120527 10125 10125 39123 40572 208791 173178 20304 15957 26973 27972 173907 143208 16362 13365 35721 37044 165510 20250 16281 26973 27972 175203 147780 15876 12879 35721 37044 165807 130122 19764 15795 729 756 324 999 1053 972 243 252 17037 7236 108 81 2187 2268 5427 17577 972 729 0 0 0 0 0 0 0 1387 2268 5427 17577 972 729 0 0

Hows of Chart 4> (Refer to Figure 6 - Chart 4)	Length of Mold	Diameter	Break Strength	Tension of Pocket Clip	Sharpness of Figures	Abraidability of Embossing	Depth of Embossing
Ultimate Effect (In %)	4.65	4.65	3.36	4.16	4.54	4.51	4.54

 Table 9.
 Pencil Example—Results of Two-Level Fractional

 Factorial Analysis

Table 10. Results of Two-Level Fractional Factorial Analysis for the Remaining Examples

Summary

Ultimate Effect (In %)

2.5 2.7

These experiments suggest that the QFD process is robust to small changes in the correlation values and the importance of the customer demands. The most significant changes were caused by changing the correlation values from 9-3-1 to 5-3-1: Eliminating the weak correlation or changing the importance weights by ± 1 unit had little effect. QFD brings together members from various departments of the company. There are members from marketing, application engineering, design engineering, manufacturing engineering, quality engineering, and so forth. Each member has a different way of thinking and a different way of evaluating given the diversity of his or her background. Thus, there are going to be conflicts when it comes to deciding, say, correlation values or the scale for the correlation values in the first chart. Now, conflict generation is a healthy part of the group dynamics, but it can sometimes diminish the purpose and goals of the group. The above analysis indicates that QFD is robust to a certain extent to such conflicts. From the surveys that marketing or application engineering groups carry out as the first step of QFD process, we may see slight variation in what customers think is the most important need. Our analysis indicated that the QFD process supports such variations to a certain extent. So, even with minor conflicts, a group can utilize QFD outcomes effectively.

Acknowledgments

We would like to thank Jeff Cavanough, Curt Hoffmeister, and Tim Stacy at American Supplier Institute (ASI) for providing us the Door System QFD charts. We would also like to thank Professor John Ramberg at the University of Arizona for his helpful comments about the statistical aspects of this article.

References

- 1. Sullivan, L. P., Quality Function Deployment, *Qual. Prog.*, 19(6), 39–50 (1986).
- Hauser, J. R. and Clausing, D. P., The House of Quality, *Harvard Bus. Rev.*, 66(3), 63-73 (1988).
- Griffin, A. and Hauser, J. R., Patterns of Communication Among Marketing, Engineering, and Manufacturing—A Comparison Between Two New Product Teams, *Manag. Sci.*, 38(3), 360–373 (1992).
- Bahill, A. T. and Chapman, W. L., A Tutorial on Quality Function Deployment, *Eng. Manag. J.*, 5(3), 24–35 (1993).
- Chapman, W. L., Bahill, A. T., and Wymore, A. W., *Engineering Modeling and Design*, CRC Press, Boca Raton, FL, 1992.
- 6. Re Velle, J. B., *The New Quality Technology, An Introduction to Quality Function Deployment (QFD) and Taguchi Methods*, Hughes Aircraft Co., Los Angeles, 1990.
- King, B., Better Designs in Half the Time—Implementing QFD—Quality Function Deployment in America, GOAL/ QPC, Methuen, MA, 1987.

GHIYA, BAHILL, AND CHAPMAN

	-					-		_					-
CHART: 1		Software Design	Screen Resolution		info. Access to Technical Matt.	Maintainance and Penair Time		Product Development Process	second i attattidora an tannot	Manufacturing Onerations	commando Surmannum	Importance	
Fasy to Use	-+	9		2	3	1-	0	- 11	9	_	1	4	1
Not Break Fasily	-+	Ó				⊢	° 0		0		3	3	1
Vorgetile Controls		0		-	2	-	<u>,</u>		0		1	2	1
Affordable		2				┝	<u>.</u>		2		2	2	1
Cood Visual Efforta		2		2	0	⊢	2		2		2	5	
Good Visual Effects				<i>y</i>	_9				<u>,</u>		د د	3	
Everybody Can Use It	\rightarrow	0			0	_	1		1			3	
Sturdy Controls		0		0	0		9		3		9	4	
Interruptable Play		9	<u> </u>	0	0		0		1		0	2	
Wide Assortment of Action		9		3	3		0		1		0	5	
No Eye Strain		9		9	0		0		1		9	3	
Don't Get Hurt Using		0		3	0		1		1		9	4	
Score		186	12	29	78	9	97	1	25	1	38		
CHART: 2		Screen Material	S/W Planning Module	Amport Grimmit 1 1 10	User Friendly Contact	# of Comminication I inbe		Training for DEM and CAD		Definition of Mfo Onerations		Weights	
Software Design		0		9	0		9		0		0	186	1
Screen Resolution		9		0	0	1	0		0		0	129	1
Info. Access to Technical Ma	itt.	0		0	9	1	9		0		1	78	1
Maintainance and Repair Tin	ne	3		3	3		9		9		3	97	1
Product Development Proces	0	3		-	- 1		3		9		3	125	1
Monufacturing Operations	-	2	<u> </u>	-		-	-		<u>~</u>		-	129	ł
Rease		2241		000	1110	24	24	2	240	16	7	150	1
Score		2241	20	90	1110	50	524	54	:40	15	/00		
CHART:3	Coating Process	S/W I/F Demo		Field Operators - Respond Within 2 Minutes	Service Locator System		, Training Procedures - Validated by Exam		Operational Analysis Procedures		Weights		
Screen Material	9		'	0		_	0	_	9	_	224	Ľ.	
S/W Planning Module	0	9	2	0	0		0		1		2090	4	
User Friendly Contact	0	0		0	9	2	0		1		1118	3	
# of Communication Links	0	0		9	0		0		0		3624	1	
Training for DFM and CAD	0	0	0		0		9		3		3240	2	
Definition of Mfg. Operations	3	9)	0	3		3		9		1980	5	
Score	2612	7 366	84	326	16 160	20	351	18	509	71			

Figure 8. Video game example.

QFD: VALIDATING ROBUSTNESS

- 8. Akao, Y. (ed.), *Quality Function Deployment: Integrating Customer Requirements into Product Design,* Productivity Press, Cambridge, MA, 1990.
- 9. Bicknell, B., *Total Quality: A Textbook of Strategic Quality Leadership and Planning,* Air Academy Press, Colorado Springs, CO, 1991, Chap. 8.
- Shillito, M. L., ADVANCED QFD—Linking Technology to Market and Company Needs, John Wiley & Sons, New York, 1994.
- 11. Bicknell, B. and Bicknell, K., *The Road Map to Repeatable Success—Using QFD to Implement Change*, CRC Press, Boca Raton, FL, 1995.

12. Montgomery, D., *Design and Analysis of Experiments*, 4th ed., John Wiley & Sons, New York, 1997.

About the Authors: Kinnar Ghiya is a Senior Materials Engineer with Intel Corporation in Chandler, AZ.

A. Terry Bahill is a professor of systems engineering at the University of Arizona in Tucson.

William L. Chapman is a Principal Systems Engineer with Raytheon Systems Company in Tucson, AZ.

~

.