
20 December 2007Vol. 19 No. 4Engineering Management Journal

A Prioritization Process

Rick Botta, BAE Systems
A. Terry Bahill, PE, University of Arizona

requirements might be put in a requirements database. With
either implementation, one of the attributes must be priority.

Why should you prioritize requirements?
1. If the project is budget-constrained, prioritization will help

you decide which requirements should be implemented and
which should be candidates for elimination.

2. If the project is time-constrained, prioritization will help
you decide which requirements should be implemented first.
Often the product is delivered in phases. At each delivery, the
system must have testable functionality. Prioritization helps
you choose the functions to implement in each phase.

3. Prioritizing scenarios and identifying benefits, costs and
dependencies will help create the system architecture.

4. Prioritization improves customer satisfaction by increasing
the likelihood that the customer’s most important
requirements are implemented and delivered first—
customers like to see their funds being used effectively and
wisely.

5. Prioritization will allow you to spend more time and effort
reducing risks associated with hard technical problems and
key performance parameters.

6. You might want to assign your best people to the highest
priority requirements.

7. Prioritizing requirements will help you manage
requirements creep. If requirements being added are
high priority, then they might displace some low-
priority requirements.

8. Prioritizing requirements will reduce discussion time at
meetings and reviews.

9. Prioritizing requirements will help identify the high-
priority requirements for which you should create Technical
Performance Measures (TPMs) (Oakes, Botta, and
Bahill, 2006).

Some requirements are more important than others;
therefore, requirements must be prioritized. Build the most
important features of the system first, making the critical
functionality available to the users as soon as possible and leaving
the less important features for future releases. Requirements
prioritization enables implementation of the highest priority
requirements first. To effectively prioritize requirements, you
should consider risk, criticality to mission success, customer
satisfaction, commitment, architecture, business value, priority
of scenarios, benefit, cost, benefit to cost ratio, implementation
time, when it is needed, frequency of use, safety, complexity,
implementation difficulty, stability, dependencies, infrastructure,
and reuse potential. Individual requirements can be prioritized or
requirements can be grouped into functional categories and these
new categories can be prioritized.

Refereed management tool manuscript. Accepted by Associate Editor Needy.

Abstract: A prioritization process has been developed and
used at Network Systems of BAE Systems. It has been used
to derive weights of importance for the criteria in tradeoff
studies and to prioritize goals, customer needs, capabilities,
risks, directives, initiatives, issues, activities, requirements,
technical performance measures, features, functions and
value engineering activities. This article presents this
prioritization process.

Keywords: Requirements, Priority, Weight of Importance,
Order, Rank

EMJ Focus Areas: Quantitative Methods & Models, Systems
Engineering

Why Is Prioritization Important?
To help select a new car to purchase, assume that you will use
evaluation criteria of five-year life-cycle cost, horsepower, and
safety. The five-year life cycle cost (in U.S. dollars) includes
purchase price, taxes, licenses, loan interest, insurance, gasoline,
and maintenance. The horsepower is the peak SAE net
horsepower. The safety rating is 0 to 5 stars based on the National
Highway Traffic Safety Administration’s front and side crash test
and rollover ratings. Assume that you have narrowed the field
to three cars. One is best on five-year life-cycle cost, the second
car is best on horsepower, and the third car is best on safety.
Which car should you buy? Your answer obviously depends on
which criteria are most important to you. To help you make this
decision, it would be nice to have a prioritization process. This
article describes such a process.

Development of this prioritization process was stimulated by
a need to prioritize requirements, but the resulting prioritization
process is not limited to requirements. It can also be used to
derive weights of importance for tradeoff studies and to prioritize
customer needs, capabilities, risks, activities, and functions. First,
we will discuss some of the reasons that requirements should be
prioritized. Then, we will discuss prioritization of other items
and, finally, we will present the prioritization process.

A requirement is a statement that identifies a capability
needed by a system in order to satisfy customer needs. A functional
requirement defines what, how well, and under what conditions
one or more inputs must be converted into one or more outputs
at the boundary in question in order to satisfy the customer’s
needs. A customer’s need might be to solve a problem, achieve
an objective, or satisfy a contract, standard, or specification
(Bahill and Dean, in press). For small projects the requirements
might be put in an Excel spreadsheet; for large projects, the

21December 2007Vol. 19 No. 4Engineering Management Journal

Prioritization is a negotiation process that involves a wide
range of project stakeholders, including the customer, user,
project manager, chief engineer, architect, maintainer, etc.;
however, it is ultimately up to the customer to determine which
requirements are more important, but obviously, the contractor
is responsible for working with the customer to define the relative
importance. This means that the contractor’s requirements team
cannot prioritize requirements in a vacuum—it must be done
in conjunction with the customer. But getting the customer to
prioritize requirements may not be as easy as it seems.

The real value in prioritizing requirements comes when you
have tight delivery schedules, staffing shortages and/or budget
constraints. The value is delivering something that is useful to the
customer even if you do not deliver all the requirements, since you
have ensured the most important requirements are addressed.

Requirements should be prioritized early in the system
life cycle. Setting relative priorities during the requirements
development phase:
1. Reveals to the contractor what the customer deems important
2. Helps balance customer expectations against available

resources
3. Helps produce realistic schedules
4. Supports design tradeoff decisions
5. Helps formulate the system architecture.

If features are planned for future development, then
prioritization facilitates architecture such that adding low-
priority features later will not require redesign of the architecture.
The product can be developed incrementally with high-priority
requirements in early versions and low-priority requirements in
later versions (Hooks and Farry, 2001).

The preceding paragraphs specifically discussed requirements
prioritization; however, prioritization is also applicable to deriving
weights of importance for the criteria in tradeoff studies and to
prioritizing goals, customer needs, capabilities, risks, directives,
initiatives, issues, activities, use cases, technical performance
measures, features, functions and value engineering activities.
For these other tasks, some things will be different. For example,
in prioritizing design activities, external constraints or changes in
the intended operational environment may make some activities
infeasible; therefore, they will be dropped. This is possible but
not likely with requirements. In deriving weights of importance
for the criteria in tradeoff studies, cost might be treated as an
independent variable and hence not be in the criteria set for the
tradeoff study. An important purpose in prioritizing requirements
and design activities is scheduling the work—this is not true for
prioritizing technical performance measures where all TPMs are
managed throughout. One purpose of prioritization is to identify
features that should be candidates for elimination; this is much
more common for goals, customer needs, and capabilities than it
is for requirements.

When a project is nearing the end of a development phase
(or spiral, iteration, time box) and it appears that you cannot
produce all of the features that were scheduled during an iteration,
do not slip schedule and delay the review until all the features
are finished. Instead, push some low-priority features into the
next iteration. Prioritization of features helps determine which
features get delayed. This approach obviously depends on the
contracted life cycle model. Furthermore, low-priority features
should be renegotiated with the customer to see if they are really
necessary. Changes to customer funding profiles may force low-
priority features to be deleted.

All features will not be implemented equally—some will get
extra-special polish. Companies often seek advice from outside
consultants for the highest priority features. Also, they often
assign their best people to the high-priority features and contract
out the low-priority ones. As a noncommercial example, consider
Little League baseball: the most important positions are pitcher
and catcher. So where do coaches put their best athletes? Pitcher
and catcher. Furthermore, the highest priority features might be
subjected to more reviews and more thorough testing. Even if the
extra testing is not planned, it will happen because of the nature
of regression testing. In regression testing, at the end of a life cycle
phase all completed features are tested. In the next phase, more
features are added. And at the end of this phase, all competed
features are tested—those completed in the second phase as well
as those completed in the first phase. Thus, features finished first
will be tested in every iteration.

Priorities will change as you talk with your customer
and gain a better understanding of your customer’s needs,
as the environment changes, as the stakeholders change, as
various features are implemented, as the system matures as its
architecture develops, and as uncertainty is resolved; therefore,
the priorities of all features should change with time (Gilb and
Maier, 2005).

Criteria That Help Prioritization
Exhibit 1 lists criteria that are useful for prioritization. Cost is
obviously an important criterion in most decisions. Cost should
include money as well as other resources such as time, labor,
finances, overhead, infrastructure, shipping, etc. In purchasing
a new car, cost would include purchase price, taxes, licenses,
loan interest, insurance, gasoline, and maintenance. Benefit
is a measure of the good things that accrue due to acquiring a
feature. This would include performance measures such as speed,
mean time between failures, requests served per minute, market
percentage, quality, convenience, testability, accuracy, etc. In
purchasing a new car, horsepower is an important performance
measure. Some criteria naturally go together, like peanut butter
and jelly; therefore, cost and benefit are often combined into the
benefit to cost ratio. Putting cost in the denominator gives low
priorities to high-cost, low-value features. Of course, if you are
using the benefit to cost ratio, then you should not include cost
and benefit as separate criteria.

In an ideal world, criteria used for prioritization would be
completely independent; however, for modern complex systems
this is not possible. The criteria in Exhibit 1 are meant to be
orthogonal and as independent as possible. It is important that
you do not look for derived effects. For example, features that
affect the system architecture should be given a high priority
because, in general, features that are likely to cause a lot of changes
in other systems should be given a high priority; however, when
assessing features that affect the architecture, do not derive the
conclusion that they subsequently increase cost and risk and,
therefore, give them low priorities. If you continually look for
interactions, you will never finish the prioritization process.

The criteria of Exhibit 1 are not listed in any particular
order, although the top of the list has criteria that are more
general. Of course, the criteria to be used must be tailored for
the particular company and for the type of business. All of the
criteria in Exhibit 1 would not be useful in all industries, and
other criteria would have to be added for some industries. Some
customers may allow no flexibility in requirements or schedule.
This article is written for people who have flexibility in when and

22 December 2007Vol. 19 No. 4Engineering Management Journal

Exhibit 1. Criteria that are Useful in Establishing Priorities

Criteria Rationale

Risk Work on high-risk features first in order to reduce risk; in addition, high-risk features are more likely
to change thereby producing changes in other features. So working the high-risk features first will
reduce the rework due to changing features. Furthermore, if it were impossible to satisfy the high-risk
features and the project were cancelled, you would have saved the money that otherwise would have
been squandered satisfying low-risk features. High-risk features should have high priorities (Jacobson,
Booch, and Rumbaugh, 1999). Risk should be quantified as frequency of occurrence times the severity
of consequences (INCOSE, 2004).

Criticality to Mission Success Satisfy your customer’s critical needs first. These might be stated in the vision or mission statements.

Customer Satisfaction Features that will increase customer satisfaction should get high priorities.

Commitment If you told your boss (or your customer) that you would do something, then it should have high priority.
If the organization said that it wanted a task done, then the task should have high priority.

Architecture Give high priorities to features that will have a large impact on system architecture, because these will
cause changes in many other entities.

Business Value Different features will have different value to the business: some features have tactical usefulness,
whereas others have long-term strategic value. If you are presenting your features to the President
of your business unit, and you can only present three features, which would they be? These features
should have high values for this criterion.

Priority of Scenarios Give high priorities to features involved in scenarios (use cases) that are important for business goals.

Benefit Give high priorities to features that increase performance measures such as speed, mean time between
failures, requests served per minute, etc.

Cost A basic business goal is to produce return on investment (ROI). Therefore, high-cost features should
have low priorities. The cost for each feature would be the summation in dollar values of labor, travel,
and material. This then may have to be converted into the range of values being used for the other
criteria. Other measures that could be used for cost include internal rate of return, net present value,
and payback period.

Benefit to Cost Ratio Benefit and cost are often combined as a ratio. Putting cost in the denominator gives low priorities to
high-cost, low-value features.

Implementation Time Features that will take a long time to implement should have high priorities, to make sure they get
scheduled early.

When it is Needed Features that should be scheduled early, because of desire or constraints, should have high priorities.

Frequency of Use Things that will be used often should have high priorities. For example, in software, code contained
inside nested loops will be executed very often; therefore, it should have high priority and should be
optimized.

Safety Safety-critical features should have high priorities.

Complexity Complex features should have high priorities. You should assign your best people to complex features.

Implementation Difficulty Features that will be hard to implement should have high priorities. Attributes that can make
implementation difficult include large size, tedium, uncertainty, novelty, number of people involved,
and organizational constraints. Complexity and implementation difficulty are independent. For
example, diagnosing illness is complex, but if the diagnosis is correct, implementing the cure is
simple. Whereas describing a program to find 128-bit prime numbers is simple, but implementing the
computation is difficult.

Stability Implement stable features first. Identify features that are likely to change. If the changes have an
external cause, give the feature a low priority, thereby giving the changes a chance to occur before you
work on the feature. But if the changes are likely to be caused by work done on that feature, then give it
a high priority to force the changes early.

Dependencies If item A depends on item B, then B’s priority should be at least as high as A’s. If many other functions
depend on a particular function, then give it a high priority. On the other hand, activities, such as
optimization, that will have to be redone when other parts of the system change, should be given low
priorities.

Infrastructure If a system is a critical part of a bigger system, then it should have a high priority. On the other hand, if it
depends critically on other systems, then perhaps its implementation should be delayed until the other
systems are stabilized.

Reuse Potential If an item is highly reusable, then give it a high priority.

23December 2007Vol. 19 No. 4Engineering Management Journal

how well various features are implemented; however, a list should
not be prioritized if the cost of prioritizing is not far less than the
cost of doing the tasks. For example, for most people, it would not
make sense to prioritize a grocery shopping list.

Deriving Values for the Criteria
The prioritization process consists of first deriving values for all
the criteria for all the features and then combining the data to
reveal the priorities. Common criteria scales include:
a. Low, medium, and high
b. Optional, conditional, and essential
c. Nice-to-have, goal, highly desired, and must achieve
d. Numeric (e.g., 0 to 10)

It is very important, however, to use the same range
for all criteria. You should not use a range of 1 to 3 for one
criterion and 0 to 10 for another (Bahill and Karnavas,
2000). Obtaining a consensus on criteria values might
require a group decision support technique, e.g., voting,
Delphi, the analytic hierarchy process, or specialized facilities
and software.

In an ideal world, to get the criteria values and priorities, you
would first talk to the customer, but the following sequence is more
realistic: The systems engineer assigns straw man values to all the
criteria for all the features. These values are typically numbers
(usually integers) in the range of 0 to 10, where 10 is the most
important. The next step is to meet with specialty engineers and
domain experts. The systems engineer should lead a discussion
of each criterion in Exhibit 1 and try to get a consensus value
for each feature. In the first pass, the engineers might evaluate
each criterion and its context and then take the average value.
After the in-house evaluation, the prioritizations should be
taken to the customer (however many people that might be).
The chief engineer should lead a discussion of each criterion in
Exhibit 1 and try to get consensus values for all the criteria for all
of the features; however, if the customer only looks at one or two
criteria and says the feature is a 10, then it’s a 10. If the customer
says that all criteria are very important, just continue with the
process, because later on in the process the evaluation data may
prioritize the features.

Of course, as with all systems engineering processes,
prioritization is not a waterfall process. It is highly iterative and
many tasks can and should be done in parallel. In the beginning
of a program, no one generally has a good understanding of the
complexity, dependencies, and reuse potential. As knowledge
about the system is developed, the prioritization process will be
refined. Prioritization is a communication tool—the numbers
that are derived are not as important as the understandings.
There are alternatives to the above procedure:
1. Instead of assigning a number between 0 and 10, the systems

engineer, in conjunction with the customer, could rank all
the features. Sometimes this technique works in spite of
being methodologically flawed. It is flawed because we are
adding the weighted scores; therefore we need cardinal
numbers (e.g., if feature A gets a score of 6 and feature B
gets a score of 3, then feature A should have twice as much
worth or utility as feature B), not ordinal (as in rank
order) numbers.

2. The systems engineer can help the customer make pair-wise
comparisons of all the features and then use the analytic
hierarchy process to derive the values (Saaty, 1980). This

would not be a practical approach without a commercial tool
such as Expert Choice.
Tools that implement the analytic hierarchy process add value

by producing a consistency index that shows how consistent the
pair-wise comparisons were. For example, if the domain expert
said that A was preferred to B, and B was preferred to C, then
we would expect him or her to say that A is preferred to C. The
consistency index indicates how consistent the comparisons were
throughout the entire matrix.

Normalization
Values for the criteria could come in a variety of formats, for
example, (low, medium, high), (0 to 10) or natural units that
might run, for example, from one thousand to one million
dollars. In order to combine apples and oranges like these, the
values must be normalized.

The values can be normalized with scoring (utility) functions
(Daniels, Werner, and Bahill, 2001) so that all of the resulting
scores are between 0 and 1. Exhibit 2 shows a typical scoring
function for the cost criterion: higher cost gives a lower score.
A simple program for implementing such scoring functions is
available for free at http://www.sie.Arizona.edu/sysengr/slides/
SSF.zip. If scoring functions are thought to be too complex,

Exhibit 2. Scoring Function for the Cost Criterion

���������������������������������

���

���

���

���

���

���

� �� �� �� �� ���

�����������

��
�

��

then simple linear normalization (as explained in the following
paragraphs) will work.

Suppose that a person is interested in buying one of three
cars: car A produces 290 horsepower, car B produces 240 hp, and
car C produces 170 hp. We want to normalize these values so
they can be combined with other dissimilar data. First we must
choose the input range over which we will normalize. The range
could be legal values, the highest to the lowest values that would
ever be expected, or maximum and minimum constraints given
by the customer. If data are available for typical alternatives and
software is available to update the weights when new alternatives
are introduced, then real data could be used. In this example,
let us choose the highest to lowest values that would ever be
expected. Let us choose 100 to 400 hp. The general formula for
linear normalization is:

∈[0,1]
value

j
 – value

j
 min

scorej = value
j
max – value

j
 min

(1)

where the index j indicates the particular feature being evaluated.
Let the index j be Horsepower, then valuehp = 100

min
 and

valuehp = 400
max

 we get: value
hp

 – 100
scorehp = 400 – 100

24 December 2007Vol. 19 No. 4Engineering Management Journal

Exhibit 3. Linear Normalization of the Horsepower Criterion

scorehp (car-A) =
400 – 100

290 – 100

300

190
= = 0.63

(2)

scorehp (car-B) =
400 – 100

240 – 100
= 0.47 (3)

scorehp (car-C) =
400 – 100

170– 100
= 0.23

 (4)

This linearly normalized function is shown in Exhibit 3.

Exhibit 4. Evaluation Criteria and Values for Three Automobiles

Evaluation Criteria
Car A

Boxster
Car B
S2000

Car C
Miata

Five-year Life Cycle Cost
(U.S. $)

$52,000 $34,000 $22,000

Horsepower (hp) 290 240 170

Safety (stars) 4 5 3

Next, we need to determine the range of each criterion. As
mentioned above, there are several choices for the range. For this
example, let us use the real data from Exhibit 4. For the three cars
that we are examining, the maximum and minimum five-year life
cycle costs are $52,000 and $22,000 (Exhibit 5).

Exhibit 5. Range of Values for Five-year Life Cycle Cost

Value for the
Worst Alternative

Value for the
Best Alternative

Five-year Life Cycle Cost $52,000 $22,000

Next, let us take horsepower. The three cars that we are
examining have a minimum horsepower of 170 and a maximum
of 290 (Exhibit 6).

Exhibit 6. Range of Values for Horsepower

Value for the
Worst Alternative

Value for the
Best Alternative

Horsepower 170 290

Our third criterion is safety. The three cars have minimum
and maximum values of 3 and 5 stars (Exhibit 7).

Exhibit 7. Range of Values for Safety

Value for the
Worst Alternative

Value for the
Best Alternative

Safety 3 5

We now have definitions and ranges, measured from worst
to best, for each of the three criteria that matter the most to us for
selecting a new car. Other characteristics such as color or type of
transmission may also be important considerations in the choice
of a car; however, we are assuming that on all these other criteria
the differences between the cars from which you are choosing are
unimportant. This does not mean that these other characteristics
do not matter, but only that, in the context of this choice, they are
unlikely to vary sufficiently that you will have to make explicit
tradeoffs among them.

���������������

�����

�����

�����

�

���

���

���

���

�

� ��� ��� ��� ���

�����������

��
�

��

Deriving Weights of Importance
There are a dozen methods for deriving numerical values for the
weights of importance for the evaluation criteria (Buede, 2000;
Daniels, Werner and Bahill, 2001; Kirkwood, 1999; Weber and
Borcherding, 1993). These methods can be used by individuals
or teams. If the decision-makers are subject matter experts and
simple qualitative comparisons will be made, then it is often
sufficient to just ask the decision makers, “How important are
each of these criteria? Give each a number between 1 and 10.” We
would not expect a domain expert to give a weight of 0; however,
a weight of 0 can be given to criteria that have no effect on the
output—but whose consideration should be made prominent.
Later the weights can be normalized so that they sum to 1. When
the output values will be used for numerical comparisons in
complex high-risk situations, then more quantitative methods
might be useful. When the weights are to be assigned using both
the decision makers’ relative importance and the expected range
of input values, then the method of swing weights (as explained
in the following paragraphs) can be used. Creating two sets of
weights might be useful—one from the customer’s perspective
and the other from the contractor’s perspective.

The Method of Swing Weights
Let us now explain one particular method—the swing weight
method—using our example of selecting a new car. As evaluation
criteria we will use five-year life cycle cost, horsepower, and safety.
The five-year life cycle cost (in U.S. dollars) includes purchase
price, taxes, licenses, loan interest, insurance, gasoline, and
maintenance. The horsepower is the peak SAE net horsepower.
(The Horsepower to Weight Ratio, however, might have been a
better criterion.) The safety rating is 0 to 5 stars based on the
National Highway Traffic Safety Administration’s front and side
crash test and rollover ratings. Exhibit 4 has values for some
typical cars.

25December 2007Vol. 19 No. 4Engineering Management Journal

Now imagine a hypothetical car that is the worst it can be
on all three criteria. In other words, its five-year life cycle cost
is $52,000, its horsepower is 170, and its safety rating is 3 stars.
Suppose that you can change the value of one (and only one) of
these criteria on this hypothetical car from the worst to the best.
This means that you can change only one of the following:
• Five-year life cycle cost from $52,000 (worst) to $22,000

(best)
• Horsepower from 170 hp (worst) to 290 hp (best)
• Safety from 3 (worst) to 5 (best).

Which one would you want to change? Suppose you say
five-year life cycle cost. That means that you value a $30,000 drop
in price (a change from $52,000 to $22,000) more than you do
either an increase of 120 horsepower or an increase of 2 stars of
safety. This criterion, the one that you most want to change from
worst to best, is the one you weight most highly in the context of
this problem. Assign it a score of 100 points.

Now, which criterion do you value second? Let us say it is
horsepower. Ask yourself, “How much less do I value the 120
horsepower change compared to the $30,000 drop in price?”
Suppose that you value it one-half as much. Then you would
assign it 50 points, or half the weight you gave to the most
important criterion.

Now look at the last criterion—safety. Because this criterion is
ranked below horsepower, it should get fewer points. For example,
if you value it two-thirds as much as horsepower, then give it 33
points. Note that this also means you are saying that safety, with
its 33 points, is only one-third as important for this decision as
the five-year life cycle cost. All that remains is to normalize the
weights so that they add up to 1, as shown in Exhibit 8.

Combining the Data
Now that we have values and weights of importance for the
criteria we must combine them. There are dozens of methods for
combining these data (Daniels, Werner and Bahill, 2001). The
most common is the simple sum of weights multiplied by criteria
values. This additive method is appropriate when the decision-
makers’ preferences satisfy additive independence (Keeney and
Raiffa, 1976), which is the case for most industry applications
we have seen. This method is implemented with Equation 5 to
compute the priority of the ith feature.

Priorityi = wt
Risk

 × Risk
i
 + wt

Complexity
 × Complexity

i

– wt
Cost

 × Cost
i
 + wt

Reuse
 × ReusePotential

i
 + ...

 (5)

This simplistic technique uses very simple mathematics. The
weights and the criteria values are all integers between 0 and 10.
Usually this technique gives good results.

The criteria to be included must be tailored for the individual
decisions. Criteria that do not differentiate between alternatives
can be omitted or be given a weight of zero. Other criteria, such
as security and resources (in addition to the already included
cost and time resources), might be added. IBM has a criterion
of, “Can it be implemented in the future as easily as it can be
added today?”

The following alternative equation gives more importance to
the Cost criterion:

 ∑ wt
j
Criterion

j

n

j=1[]
Costi

i
Priorityi =

(6)

where n is the number of criteria you have chosen to include. If
you use Equation 6, you should, of course, remove both the cost
and the benefit to cost ratio from the criteria set being summed
in the numerator. Using this equation, cost would not need to
have the same range as the other criteria—dollar values could
be used.

Of course, this prioritization process is iterative. The first
pass will show the most important features. These features might
then be scheduled to be implemented first, which would change
their values in the When it is Needed criterion.

This simplistic technique usually works because the purpose
of prioritization is communication. The numbers themselves
should not be used in numerical calculations. If the priority
values are to be used for calculations, then a more sophisticated
technique must be used.

Using Normalized Data
If the priority values are to be used in calculations, then the weights
of importance must be normalized so that the sum of the weights
is 1.0, and the values of the criteria must also be normalized with
scoring (utility) functions (Daniels, Werner and Bahill, 2001) so
that the scores for the criteria are all between 0 and 1.

Earlier we said that high-cost features, features that are likely
to be changed by outside forces, and features that must be redone
as the design progresses should be given low priorities. What does
low priority mean? Does it mean a small weight of importance? No,
because these criteria may be important. Does it mean a negative
weight of importance? No, because the weights are supposed to
be normalized so that they add up to one. It means that a large
value for one of these criteria should reduce the priority score of
the feature under consideration. OK, how can we do this? One
of the reasons for using scoring (utility) functions (even if they
are just simple linear transformations) is to ensure that more is
better for all scores. For example, we might consider less cost to be
better than more cost. The scoring function of Exhibit 2 inverts
the Cost relationship so that a larger output score is better. Our
combining equation now becomes:

Evaluation Criteria
Weight of

Importance
Car A

Boxster
Car B
S2000

Car C
Miata

Five-year Life Cycle Cost (US $) 0.55 $52,000 $34,000 $22,000

Horsepower (hp) 0.27 290 240 170

Safety (stars) 0.18 4 5 3

Exhibit 8. Weights of Importance for Selecting a New Car

26 December 2007Vol. 19 No. 4Engineering Management Journal

Priorityi = wt
Risk

 × RiskScore
i
 + wt

Complexity
 × ComplexityScore

i

+ wt
Cost

 × CostScore
i
 + wt

Reuse
 × ReusePotentialScore

i
 + ...

(7)

If your customer wants to use the benefit to cost ratio instead
of cost, this term could be added to the equation in either of these
forms:

BenefitScore
iPriorityi = wt

BenefitCostRatio
× CostScore

i

+ ... (8)

or
BenefitScore

i
wtBenefit

Priorityi = CostScore
i
wtCost

+ ...
(9)

The wt
Benefit

 and wt
Cost

 in Equation 9 are indeed exponents,
as they must be for the product-combining function (Daniels,
Werner and Bahill, 2001).

Other Fields That Use Prioritization
DARPA’s Image Understanding programs use change detection
algorithms to prioritize imagery for exploitation by image analysts
(Jackson and Pierce, 2002). Cognitive decision models have been
used to prioritize e-mails (Lee, Chandrasena and Navarro, 2002).
Knowledge management activities have been prioritized using a
matrix with levels of potential intervention (goals, knowledge,
business processes, and data) and scopes of intervention
(individual, team, organization and business environment)
(Bornemann and Sammer, 2003). Google prioritizes the search
entries that it presents to the user.

Prioritization is used extensively in the medical field. One
application is to prioritize prevention strategies. For example,
of the four dozen risk factors for cataracts, the highest priority
prevention strategies are to avoid tobacco smoke and avoid UV-B
by using shade, sunglasses, and brimmed hats (McCarty, Nanjan,
and Taylor, 2000).

In the value engineering improvement technique, the value
of a function is defined as the ratio of a function’s worth to its
cost. The goal is to increase value while maintaining quality either
by improving the function or reducing its cost. Value engineering
should use a prioritization process, to ensure that the most
important functions are worked on first.

Other Methods for Prioritization
Other methods that have been used for prioritization include
Quality Function Deployment (Bahill and Chapman, 1993;
Ghiya, Bahill and Chapman, 1999) and the Analytic Hierarchy
Process (Saaty, 1980).

Prioritization is different from performing a tradeoff study.
In a tradeoff study, the criteria are specific to the problem domain
(Daniels, Werner and Bahill, 2001). In the prioritization process
presented in this article, the same criteria (with some tailoring)
should be used for all prioritization tasks. The purpose of a
tradeoff study is to select one or a few alternatives from a large list
(Smith, Son, Piattelli-Palmarini, and Bahill, 2007). The purpose of
prioritization is to prioritize the whole list and possibly eliminate
a few features. Scheduling the development of features is not a
purpose of tradeoff studies.

Completeness of Coverage
In retrospect we asked ourselves if the criteria of Exhibit 1 would
give an even coverage of an organization’s aspirations and needs.
To answer this question we looked at frameworks.

Frameworks help people organize models of their enterprises.
This organization helps ensure interoperability of systems and
helps control the cost of developing systems. The Zachman
framework provides a general schema that can be used to
organize and assess completeness of descriptive representations
for a complex enterprise. To ensure a complete and holistic
understanding of the enterprise, it is necessary to develop models
that address the perspectives and aspects that constitute the rows
and columns, respectively, of the framework (Bahill, Botta and
Daniels, 2006).

Therefore, we mapped the criteria of Exhibit 1 to the rows and
columns of a Zachman framework. Criticality to Mission Success
is in row 1, the scope of the organization. Business Value and
Benefit to Cost ratio are in row 2, the business model. Architecture
is in row 3, the system model. Complexity, Implementation
Difficulty and Dependencies are in row 4, the technical model.
Finally, Reuse Potential is in row 5, the detailed representation.
Now for the columns, in a risk analysis, you look at the high-risk
entities and ask, “What could possibly go wrong?” Hence Risks
are in column 1–What. Implementation Difficulty quantifies
how things are done; hence it is in column 2–How. Architecture
describes the positioning and interconnection of things, so it is in
column 3–Where. Commitments are made to people, therefore
Commitment goes into column 4–Who, along with Customer
Satisfaction. When it is Needed is in column 5–When. Business
Value and Benefit to Cost Ratio have to do with the motivation of
people and the organization, so they are in column 6–Why.

So, although the criteria of Exhibit 1 do not fill all 36 cells of
a Zachman framework, they do cover each row and each column.
Therefore, the criteria of Exhibit 1 should cover the aspirations
and needs of most organizations.

Future Work
We would like many intelligent people in many domains to use
this prioritization process and then give us feedback, such as the
list of criteria that they actually used along with their weights of
importance. We want to know the domain in which it was used, such
as DoD, commercial aerospace, NASA, medicine, government, or
law, and the type of items that were prioritized, such as requirements,
functions, or activities. Proprietary data is not desired, such as the
actual items that were prioritized or their values. We will use this
feedback to expand and refine our criteria set. Perhaps we will
generate different criteria sets for different domains.

Summary
Requirements, goals, customer needs, capabilities, risks, directives,
initiatives, issues, activities, features, functions, technical
performance measures, and weights of importance for the criteria
in tradeoff studies should all be prioritized. Prioritization will help
with budget, schedule, system architecture, customer satisfaction
and risk reduction. Prioritization can be very simplistic using
integers from 0 to 10 for the weights and the values, or it can
be robust, using normalized weights of importance and scoring
functions for the criteria. Sometimes it is useful to create two sets
of priorities—one from the customer’s perspective and the other
from the contractor’s perspective. Exposing these conflicting
objectives often explains existing misunderstandings.

References
Bahill, A. Terry, Rick Botta, and Jesse Daniels, “The Zachman

Framework Populated with Baseball Models,” Journal of
Enterprise Architecture, 2:4 (November 2006), pp. 50-68.

27December 2007Vol. 19 No. 4Engineering Management Journal

Bahill, A. Terry, and William L. Chapman, “A Tutorial on Quality
Function Deployment,” Engineering Management Journal,
5:3 (1993), pp. 24-35.

Bahill, A. Terry, and Frank F. Dean, “Discovering System
Requirements,” in Handbook of Systems Engineering and
Management, Andrew P. Sage and William B. Rouse (Eds.),
John Wiley & Sons, first edition (1999), pp. 175-220.

Bahill, A. Terry, and William J. Karnavas, “Risk Analysis of a
Pinewood Derby: A Case Study,” Systems Engineering 3:3
(2000), pp. 143-155.

Bornemann, Manfred, and Martin Sammer, “Assessment
Methodology to Prioritize Knowledge Management Related
Activities to Support Organizational Excellence,” Measuring
Business Excellence, 7:2 (2003), pp. 21-29.

Buede, Dennis M., The Engineering Design of Systems: Models and
Methods, John Wiley & Sons (2000).

Daniels, Jesse, Paul W. Werner, and A. Terry Bahill, “Quantitative
Methods for Tradeoff Analyses,” Systems Engineering, 4:3
(2001), pp. 199-212.

Ghiya, Kinnar K., A. Terry Bahill, and William L. Chapman, “QFD:
Validating Robustness,” Quality Engineering, 11:4 (1999), pp.
593-611.

Gilb, Tom, and Mark W. Maier, “Managing Priorities: a Key to
Systematic Decision-making,” Proceedings of 15th Annual
International Symposium of INCOSE, Rochester, NY, (July
2005).

Hooks, Ivy F., and Kristin A. Farry, Customer-Centered Products:
Creating Successful Products Through Smart Requirements
Management, AMACOM (2001).

INCOSE, INCOSE Systems Engineering Handbook v2a, (2004),
retrieved March 2007, http://www.incose.org/ProductsPubs/
incosestore.aspx.

Jackson, Pamela, and William G. Pierce, “Artificial Intelligence’s
Role in Advancing the National Imagery and Mapping Agency
(NIMA),” USAWC Strategy Research Project, U.S. Army War
College, Carlisle Barracks, PA, (April 2002), pp. 1-44.

Jacobson, Ivar, Grady Booch, and James Rumbaugh, The Unified
Software Development Process, Addison-Wesley (1999).

Keeney, Ralph L., and Howard Raiffa, Decisions with Multiple
Objectives: Preferences and Value Tradeoffs, John Wiley &
Sons (1976).

Kirkwood, Craig, W., “Decision Analysis,” in Handbook of Systems
Engineering and Management, Andrew P. Sage and William B.
Rouse Eds., John Wiley & Sons (1999), pp. 1119-1145.

Lee, Michael D., Lama H. Chandrasena, and Daniel J. Navarro,
“Using Cognitive Decision Models to Prioritize e-mails,”
Proceedings of 24th Annual Conference of the Cognitive Science
Society, (2002), pp. 478-483.

McCarty, Catherine A., Mukesh B. Nanjan, and Hugh R. Taylor,
“Attributing Risk Estimates for Cataract to Prioritize Medical

and Public Health Action,” Investigative Ophthalmology and
Visual Science, 41:12 (2000), pp. 3720-3725.

Oakes, James, Rick Botta, and A. Terry Bahill, “Technical
Performance Measures,” Proceedings of 16th Annual
International Symposium of INCOSE, Orlando, FL, (July
2006).

Saaty, Tom L., The Analytic Hierarchy Process, McGraw Hill
(1980).

Smith, Eric D., Young Jun Son, Massimo Piattelli-Palmarini, and
A. Terry Bahill, “Ameliorating Mental Mistakes in Tradeoff
Studies,” Systems Engineering, 10:3 (2007), pp. 222-240.

Weber, Martin, and Katrin Borcherding, “Behavioral Influences
on Weight Judgments in Multiattribute Decision Making,”
European Journal of Operational Research, 67:1 (May 1993),
pp. 1-12.

About the Authors
Rick Botta is the director of systems engineering for BAE
Systems in San Diego. He holds a BS in computer science
from California Polytechnic State University, San Luis
Obispo. He has a quarter-century experience in a wide variety
of engineering, engineering management and program
management roles involving development and integration
of complex, software-intensive systems. He is a member
of INCOSE.

A. Terry Bahill, PE, is a professor of systems engineering at
the University of Arizona in Tucson. While on sabbatical from
the University of Arizona, he did research with BAE Systems in
San Diego. He received his PhD in electrical engineering and
computer science from the University of California, Berkeley,
in 1975. Bahill has worked with BAE Systems in San Diego,
Hughes Missile Systems in Tucson, Sandia Laboratories in
Albuquerque, Lockheed Martin Tactical Defense Systems in
Eagan MN, Boeing Information, Space and Defense Systems
in Kent, WA, Idaho National Engineering and Environmental
Laboratory in Idaho Falls and Raytheon Missile Systems
in Tucson. For these companies he presented seminars on
systems engineering, worked on system development teams,
and helped them describe their systems engineering process.
He is a Fellow of the Institute of Electrical and Electronics
Engineers (IEEE), of Raytheon, and of the International
Council on Systems Engineering (INCOSE). He is the
Founding Chair Emeritus of the INCOSE Fellows Selection
Committee. He is a registered professional engineer in
California and Pennsylvania.

Contact: Terry Bahill, PE, Systems and Industrial
Engineering, University of Arizona, Tucson, AZ, 85721-0020;
phone: 520-621-6561; terry@sie.arizona.edu

