
Int. J, Man-Machine Studies (1991) 35, 789-805

Ameliorating the Pregnant Man problem: a
verification tool for personal computer based expert
systems

JOHN M, HEROD AND A. TERRY BAHILL

Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721, USA

(Received 26 June 1989 and accepted in revised form 21 June 1990)

With the increase in expert systems development over the last several years, has
come a need for verification tools that will allow the knowledge engineer to debug
and refine the systems. Although some tools are forthcoming, these tools have
traditionally been concerned with completeness and consistency checking of the
knowledge base itself. Completeness and consistency checking are important aspects
of knowledge base debugging, but there is another aspect that has been largely
ignored, that is determining whether the expert system will ask the user foolish or
useless questions. This aspect of knowledge base debugging is important, because a
system that asks the user foolish or useless questions will quickly lose credibility, and
when the credibility of an expert system is in question, it will be abandoned by its
users. To address this problem, we developed a procedure to help the knowledge
engineer determine whether the system will ask the user foolish or useless questions.
This procedure is an iterative process based on identifying conflicting question pairs.
It has identified four constructions in rule-based expert systems that lead to
inappropriate questioning. This procedure is effective, easy to implement, and has
exhibited benefits, which are not confined to identifying constructions in the
knowledge base that lead to inappropriate questioning. As a result, this procedure
should become a useful tool that can be used by knowledge engineers to build
better, more error free expert systems. We developed and tested the procedure on
personal-computer-based expert systems; we are not sure how it will scale to
main-frame systems.

1, Introduction

If a human tells a computer system that the subject is a male and the computer
subsequently asks if the subject is pregnant, the computer system will lose
credibility. Perhaps not even the worst of knowledge engineers would write a rule
requiring those two questions. However, frequently the knowledge engineer is not
as familiar with the knowledge domain as most readers are familiar with this
example. Furthermore, these two questions might be triggered by rules such as the
following that are widely separated in the knowledge base.

if sex = male and

then ...

if pregnant = yes and

then , . .
789

0020-7373/91/120789 + 16$00.00/0 © 1991 Academic Press Limited

790 J. M, HEROD AND A. T. BAHILL

With such a construction, it is possible to ask the user whether a male subject is
pregnant, unless the conclusion of the first rule precludes the second rule from being
tested. It seems that such lapses in logic are possible in any knowledge base.

The consequences of such a "lapse" for the acceptance of the expert system may
be devastating. It would be difficult to get a user to have confidence in a system that
asked whether a male subject was pregnant. Even if the error were less obvious, this
would still be an undesirable result because it would require the user to answer
additional, unnecessary questions. This can be a source of frustration and may affect
the user's attitude toward the system.

Expert system development has proliferated in the last few years due partly to the
availability of inexpensive expert system shells for personal computers (Harmon,
Maus & Morrissey, 1988). However, except for Bahill (1991), little attention has
been paid to the issues of rule-base validation and verification. Following O'Keefe,
Balci and Smith (1987) validation and verification are distinguished as follows.
Validation refers to building the right system (that is, substantiating that a system
performs at an acceptable level of accuracy), whereas verification refers to building
the system right (that is, substantiating that a system correctly implements its
specifications). This paper is concerned with verification.

Verification has traditionally been identified with consistency and completeness
checking. Consistency checking consists of testing to show that a system produces
expected answers (Cragun & Steudel, 1987). It includes checking for built-in
discrepancies, ambiguities and redundancies in the rules of the knowledge base. It
involves checking for redundant rules (e.g. two rules that succeed in the same
situation and have the same conclusion), conflicting rules (rules that succeed in the
same situation but have conflicting conclusions), subsumed rules (rules that have the
same conclusion but one contains additional constraints on the situations in which it
will succeed), rules with unnecessary conditions (rules that have the same
conclusions and the same conditions except that one rule contains a condition that is
negated in the other rule), rules that contain unreachable conditions (a rule in which
there is no match for the condition either in the initial database or from a fact
asserted by another rule) and circular rules (rules that, if taken as a set, form a cycle)
(Nguyen, 1987; Jafar, 1989). Completeness checking tests to determine whether a
knowledge base is prepared to answer all possible situations that could arise within
its domain (Cragun & Steudel, 1987). Thus, completeness checking is used to find
logical cases that have not been considered by the knowledge engineer resulting in
missing rules. Although several papers have been presented to describe a general
technique for addressing these issues (O'Keefe et al, 1987; Cragun & Steudel, 1987;
Nguyen, 1987; Jafar & Bahill, 1991), all these methods have been based on
analysing the knowledge base directly and have not used knowledge from the expert
to simplify the effort.

2, Development of our verification procedure

We wanted a verification procedure that would help the knowledge engineer avoid
asking foolish or useless questions. To find such a procedure we first looked at
traditional verification processes where the systems are run by the original expert
and/or by other experts in the knowledge domain (Liebowitz, 1988). If, in running

THE PREGNANT MAN PROBLEM 791

the systems, the experts encounter unnecessary or nonsensical questions, they bring
them to the attention of the knowledge engineer. It is then up to the knowledge
engineers to modify the knowledge bases to avoid these problems. We would like to
design a procedure to automate this process. One major difficulty with the current
method is that it depends on the expert (or others) exercising the knowledge base. It
is possible that an instance of inappropriate questioning may slip by, because the
expert seldom exercises all the rules in the knowledge base (Kang & Bahill, 1990).
This is especially likely in a complex system, because the expert often focuses on
specific cases, often those that are particularly difficult. As a result, the expert may
miss problems that occur in cases that are not interesting. Second, this procedure
might fail because the expert does not have time to test all possible cases or case
types that the system is designed to handle. In any event, it must be a requirement
of any process to automate this type of verification that it be capable of addressing
or uncovering all instances of this problem.

Our procedure requires the expert's knowledge. The knowledge engineer may not
have enough experience in the knowledge domain to identify conflicting or
inappropriate questions. Our procedure cannot be based solely on the structure of
the knowledge base, because the type of error that it is designed to detect does not
qualify as a syntax error and consequently will not be exposed as a compile-time
error. Finally, traditional verification algorithms cannot be used because this
problem is not a problem with consistency or completeness of the knowledge base.
What is needed, is a way of identifying questions that are inappropriate to ask under
certain circumstances. Thus, we must identify both the questions and the conditions
for asking questions in the knowledge base.

The approach taken in this paper was to develop a series of matrices that could be
used to query the expert who was the original source of the knowledge. An associate
would not be appropriate because the associate would not be aware of the subtleties
in the knowledge base. The information acquired in this way could be used by the
knowledge engineer to test the knowledge base.

The first step in the process was to create a matrix of all questions in the
knowledge base, the question-question (QQ) matrix. Question identifiers were
placed on each row and column of the matrix as shown in Figure 1. This gave a
systematic way of making sure that all possibilities were checked. This approach is
akin to the analytic hierarchy process, where pair-wise comparisons are performed
and the results are put into matrix formats (Saaty, 1980). The advantage of this

QQ Matrix General Form

9i
92

93

9i 92 93

FIGURE 1. The general form of the QQ matrix. The qt (where i — 1, 2 , . . . , n) are the question identifiers
for question 1, 2 , . . . , n.

792 J. M. HEROD AND A. T. BAHILL

approach, as Saaty notes, is that it is easier to make pair-wise comparisons than it is
to make a large number of simultaneous comparisons.

Once this matrix was constructed, the knowledge engineer could ask the expert to
identify those question pairs that could not be redundant. Expanding our simple
pregnant-male example, suppose that it was also necessary to determine the eye
color of the subject. If q2 was, "What is the sex of the subject?" and q4 was, "What
color eyes does the subject have?" then the expert might identify the (q2, q$) pair as
questions that could not conflict regardless of how they were answered. Thus, both
males and females could have blue, brown, green, or any other color eyes. In this
case, a dash would be placed in the q4 column of the q2 row. An X would be placed
in all boxes that could produce inappropriate questioning. Finally, the main diagonal
is filled with zeros, because no question can be redundant with itself. Only the
upper-right triangle of the matrix has to be filled out, because the matrix is
symmetrical about the main diagonal.

Once the upper-right triangle of the QQ matrix has been filled out, the knowledge
engineer would build a set of matrices for each of the "problematic" question pairs
(the PQ matrices). Building this set of matrices involves two primary tasks.

First, the knowledge engineer must identify the hierarchy between each question
pair to establish a "master" and "subject" question for each pair. This notion of a
question pair hierarchy is intuitively simple but difficult to quantify. It is based on
the way an expert organizes knowledge and the heuristic rules that are applied. To
return to our simple example, we think that a question about the subject's sex
should be asked before a question about whether the subject is pregnant. Therefore,
the question about sex would be the master question and the question about
pregnancy would be the subject question. Although establishing the master/subject
hierarchy in question pairs is difficult to quantify, it is important to: (1) the flow of
questioning; (2) the structure of the knowledge base; and (3) the use of the
procedure outlined in this paper. The reason for this is that inappropriate and
foolish questions in a consultation frequently result from incorrect coding of this
relationship. As will be shown later in this paper, such coding errors include
inappropriate rule order in the knowledge base and reversed premises in a rule.

Second, after the master/subject hierarchy is established for each question pair,
the knowledge engineer, with the aid of the expert, must identify the utilized values
for each "master" question of each pair. A utilized value for an expression can be
defined as a value for an expression that causes at least one premise of at least one
rule to be evaluated as "true". Utilized values are different than legal values. Legal
values constitute the set of values for a given expression that are defined by the
knowledge engineer to be acceptable responses to a question. Thus, if a user
answers a question with a value other than a legal value, an error message should be
displayed and the user should be asked to re-answer the question. By way of example
consider the simple knowledge base shown below.

rule-1
if coat = hair
then type = mammal.

question (coat) = "What is the coat of the animal?",
legalvalues(coat) = (hair, feathers).

THE PREGNANT MAN PROBLEM 793

rule-2
if coat = scales
then type = fish.

"Hair" and "scales" are the utilized values for the attribute "coat"; whereas "hair"
and "feathers" are the legal values for the attribute "coat". In a well-structured
knowledge base, the legal-value set and the utilized-value set will be the same. But,
it is possible, as this example proves, to include as legal values, values that are not
utilized values, and to exclude utilized values from the legal-value set. In this
example, the utilized value "scales" has been excluded from the legal-value set, and
the legal value "feathers" is not contained in the utilized-value set. The requirement
that the knowledge engineer identify all utilized values for each expression has the
added benefit of forcing a comparison of the legal-value set with the utilized-value
set for each expression. If the legal-value set is not equal to the utilized-value set,
the knowledge engineer must resolve the inconsistencies before proceeding. Where
an expression could have: (1) a numeric value (e.g. integer, real etc.); (2) a range
of values (e.g. from 1 to 100); or (3) no legal values, appropriate utilized values or
ranges of utilized values would have to be determined. For the rest of this paper we
will assume that the conflicts between legal values and utilized values has been
resolved, and we will use the term legal values for the result.

Because certain questions would be inappropriate only under certain conditions
(e.g. it would be inappropriate to ask whether the subject was pregnant if the
subject was identified as a male, but not if the subject was identified as a female),
the PQ matrices have to include a listing of the legal values for the "master"
question of each problematic question pair.

The PQ matrices, unlike the QQ matrices would not be square and would possess
the general structure shown in Figure 2. The qx (where x = l, 2,,,., ri) are the
question identifiers for "master" question and the lvxj (where x = 1, 2 , . . . , n, j = 1,
2 , . . . , m) are the legal values for the "master" question, lvxj being the ;th legal
value for the *th question, and the qy (where v = 1, 2 , . . . , n) are the question
identifiers for the "subject" question.

Once these matrices are constructed the knowledge engineer asks the expert to
identify answers (legal or utilized values) to the "master" question that would
conflict with the "subject" question. If it would be inappropriate to ask question qy

when the response to question qx was lvxj, then an X would be put in the c^th row
and lvxj\h column. To use our simple example again, if q2 was, "What sex is the
subject?" and q3 was, "Is the subject pregnant?" with legal values Iv2\ "male" and
Iv22= "female", an X would be made in the q3ih row at the /v21th column. This
would indicate that if the user answered "male" to q2, then q3 should not be asked.
This is shown in Figure 3.

PQ Matrix General Form

1j
**i

<J
*>** *IVX3

FIGURE 2. The general form of the PQ matrix.

794 J. M. HEROD AND A. T. BAHILL

Example PQ Matrix

Pregnant?

What
male

X

is sex?
female

-

FIGURE 3. A specific example of a PQ matrix.

After this matrix is filled out, the knowledge engineer can use it to test the
knowledge base. We investigated several techniques for applying this matrix; the
best seemed to be modifying the knowledge base itself and then running the system.
This is our heuristic for modifying the knowledge base:

2.1. HEURISTIC FOR MODIFYING THE KNOWLEDGE BASE

1. Instruct the shell that more than one value may be assigned to each expression
(this includes expressions that do not appear in question statements). Typical
statements for doing this are multi-valued, Limit and PLURAL.

2. Change the knowledge base so that no questions will be asked if a value for an
expression is not found; for example, for VP-Expert you remove AUTOQUERY
statements, for Guru you provide Find sequences without INPUT commands,
while for M.I you add "noautomaticquestion". This is necessary because testing
is done non-interactively and we do not want the shell to generate a question and
then wait for a human response. Next comment on the questions out of
the knowledge base.

3. Set all expressions equal to all of their legal values. Where legal values have not
been assigned to an expression, the expression should be set equal to all its
utilized values. This requires a series of lines each of which assigns one of the
utilized values for an expression to the expression. To use a simple example,
suppose eye color has three utilized values, blue, brown, and green. Then this
step would require three lines of code of the following form:

eye color = blue
eye color = brown
eye color = green

4. Now the "problem" expressions have to be identified. Looking at the set of PQ
matrices in our example, we would note a potential conflict between "sex =
male" and the question about "pregnant". For these expressions undo step 1
above. That is make them single valued again (unless they were defined as
multi-valued in the original knowledge base). Then, the value for the expression
"sex" would be set to "male" and all other values would be excluded. All values
for the expression "pregnant" would be excluded. That is, no value would be
given to "pregnant" and only the value of "male" would be given to "sex".

5. With the knowledge base modified as described, a consultation would be run,
and the intermediate results (cache) would be examined by the knowledge
engineer.

6. When the consultation is complete, the process would return to step 4 and the
next "problem" expression/question pair would be identified, making the
necessary changes to the knowledge base to test that pair.

THE PREGNANT MAN PROBLEM 795

This process would be continued until all problem expression/question pairs were
tested.

2,2. EVALUATING RESULTS OF OUR PROCEDURE

The output of our procedure might seem confusing to the knowledge engineer. The
system may give nonsensical or contradictory advice. However, this procedure was
not designed to test whether the expert system gives appropriate advice, but
whether the system asks inappropriate questions. This can be determined by looking
at the intermediate results (cache) from each of the consultations. All the
knowledge engineer needs to do is scan the cache and see if a value for the
inappropriate question's expression was sought. In our example, all that is needed is
to determine whether a value for "pregnant" was sought when "sex" was set to
"male". If it was, then it is known that the system would have asked the user
whether the subject was pregnant after the user had indicated that the subject was
male. By examining each saved cache, the knowledge engineer can determine if the
system will ask inappropriate questions in any of the potentially problematic
situations. If so, the knowledge engineer can act appropriately to rectify the
problem,

3, Initial testing

Can our procedure be applied to knowledge bases in general and will it provide the
knowledge engineer with any useful information about the structure and flow of the
knowledge base? To test the usefulness of our procedure, we applied it to several
simple knowledge bases by altering them according to the heuristic outlined above.
The knowledge bases used initially were chosen because: (1) they were simple and
would not be difficult to alter manually; (2) they could be analysed independently to
determine whether our procedure flagged genuine errors; (3) they were repre-
sentative of knowledge bases that are developed using personal computer-based
expert system shells; and (4) the knowledge was simple and did not require
sophisticated experts.

It should be noted that in the subsequent discussions of the implementation of our
procedure on several knowledge bases, an attempt was made to identify the specific
problem flagged by the procedure and correct it to see if our procedure would
correctly identify that the problem had been corrected. It is not within the scope of
our procedure to identify specific problems and identify a means by which the
knowledge engineer can correct the error. Its function is only to indicate that a
problem between question pairs potentially exists and it leaves it up to the
knowledge engineer to identify why that question pair was flagged and how best to
resolve the problem. Problem resolution was addressed only to make sure that our
procedure identified genuine problems and to determine the type of problems our
procedure could identify.

4, Development testing

Knowledge bases from three commonly used personal computer expert system shells
were used. These include M.I from Cimflex Teknowledge Corp., a rule-based

796 J. M. HEROD AND A. T. BAHILL

system, VP-Expert from Paperback Software, which can be used either as a
rule-based system or as an induction system, and IstClass from Programs in Motion,
an induction system. The initial trials included tests of two knowledge bases: the
Animal Classification Expert System (Winston, 1977)t and Teknowledge's Cwine
Expert System. VP-Expert and IstClass were tested by using their induction systems
to generate a knowledge base from an example set based on the "pregnant man"
problem. Of these tests, only the one using the Animal Classification Expert System
will be discussed in detail in this paper. This is done so that the reader can see how
the procedure is implemented in the testing of a knowledge base. The test results of
the other systems and the consequences of the results of those tests will simply be
summarized in this paper. A discussion of the other tests can be found in (Bahill,
1991).

4.1. THE ANIMAL CLASSIFICATION EXPERT SYSTEM

In adapting this system, care was taken not to alter the structure of the knowledge
base itself but simply to supply questions and other constructs that would make the
knowledge base function in the M.I environment. The following are the questions in
the Animal Classification knowledge base:

ga = Of what material is the animal's coat composed?
q2 = How does the animal move?
q3 = Does the animal feed its offspring milk?
q4 = What type of offspring does the animal have?
q5 = What does the animal eat?
q& = What shape are the animal's teeth?
q7 = What type of feet does the animal have?
q8 = How are the animal's eyes positioned?
q9 = What does the animal chew?

qlo = Where does the animal live?
qn = What color is the animal?
ql2 = How long is the animal's neck?
#13 = How long are the animal's legs?
ql4 = What are the animal's markings?

These questions were used to generate the QQ matrix as shown in Figure 4. The
zeros indicate that no question can be redundant with itself. The dashes indicate
pairs of questions that the domain expert said could not conflict. And the X
indicates the pair of questions that could cause inappropriate questioning.

The first four rules of the Animal Classification Expert System are as follows:

rule-1
if coat = hair
then type = mammal.

t The Animal Classification Expert System was chosen for this task because it is a simple, well-known
knowledge base. Obviously it is not a good example of a problem that is amenable to expert system
technology. However, it is an excellent heuristic example because people in general are familiar with the
object, attributes and values, and knowledge engineers are even familiar with the rules and inferencing
procedures. Therefore, they can focus on our validation techniques without learning new domain
knowledge.

THE PREGNANT MAN PROBLEM 797

QQ Matrix for the Animal Classification Expert System

9i
92

93

94

95

96

97

98

99

9io
9n
912
913
914

9i 92 93 94 95 96 9? 9s 99 9io 9n 9i2 9i3 9i4
0 - X

0 -
0

FIGURE 4. QQ matrix for the Animal Classification Expert System.

rule-2
if feeds-offspring = milk
then type = mammal.

rule-3
if coat = feathers
then type = bird.

rule-4
if location = flies
and offspring = eggs
then type = bird.

These rules are used to determine the animal type (i.e., mammal or bird).
Depending on whether the coat of the animal is "hair" or "feathers", the animal
type can be determined without testing any other premise. The same can be said of
the expression "feeds-offspring". That is, if the animal feeds its offspring milk, no
other premise must be tested to conclude that the animal type is "mammal".
Therefore, question-^j about the animal's coat and question-cjr3 about what the
animal feeds its offspring could generate a superfluous question, as is indicated in
Figure 4. The clearest case in which the questions about the animal's coat and what
the animal feeds its offspring would be redundant would be where the user, when
asked about the animal's coat, answers that it is "feathers". In this case, the animal
type would be concluded to be "bird" and asking what the animal feeds its offspring
would not be necessary for determining the animal type.

The QQ matrix in Figure 4, shows that only questions q^ and q3 are potentially
redundant. Most experts would probably make q^ the "master" question and q3 the
"subject" question. Therefore, the PQ matrix shown in Figure 5 can be constructed.

From the PQ matrix for the Animal Classification Expert System, we can see that
we need to test whether the user will be asked "if the animal feeds its offspring
milk" after indicating that the animal's coat is feathers. The Animal Classification
knowledge base was modified using our heuristic and the system was run. The

798 J. M. HEROD AND A. T. BAHILL

FIGURE 5. PQ matrix for the Animal Classification Expert System.
q-i = Of what material is the animal's coat composed?

/un = the legal value hair
Ivl2 = the legal value feathers
q3 = Does the animal feed its offspring milk?
The "X" identifies the legal value of q^ that conflicts with q3.

resulting cache was inspected; it was seen that a value for "feeds-offspring" was
sought. This means that the user would have been asked "if the animal feeds its
offspring milk" even after responding that the animal's coat was feathers. So we
know now that this knowledge base was constructed so that it asks at least one
inappropriate question of the user. The next question for the knowledge engineer is,
"How can the knowledge base be modified so that it will not ask inappropriate
questions of the user?"

By default, most rule-based expert system inference engines, test rules sequen-
tially from the top of the knowledge base to the bottom. Thus, the first rule in the
knowledge base is tested first, the second is tested second and so on until the last
rule is tested. The rule involving "feeds-offspring" occurs before the rule that tests
to see if the animal's coat is feathers. Therefore, in an attempt to fix the appropriate
question problem, we interchanged rule-2 and rule-3 and ran our procedure again.
This time no value was sought for "feeds-offspring" and thus, the system would not
have asked the user this inappropriate question.

What does this exercise tell us about our procedure? First, it can be used to
identify when a knowledge base might be constructed so that an inappropriate
question could arise. Second, it has specifically identified a situation where the rule
order of the knowledge base leads to this type of problem. Third, it has
demonstrated that changing the order of the rules in the knowledge base can solve
the problem.

4.2. THE CWINE EXPERT SYSTEM

Our procedure showed that in the Cwine Expert System it would be a mistake to ask
the user about the type of sauce if the meal did not have sauce.

The knowledge base was altered using our heuristic, the system was run and the
results of cache were evaluated. It was found that the question about the type of
sauce would be asked even if the user indicated that the meal did not have sauce. In
analysing the knowledge base it became clear that the rules were constructed, so
that it would be impossible to rearrange them, as was done with the Animal
Classification Expert System, to prevent the system from testing the rules associated
with the expression "sauce". Teknowledge anticipated this problem and developed
the "presupposition" statement to rectify it. The presupposition statement allows
the knowledge engineer to stipulate the conditions under which a value for an
expression should be sought. This could also be handled with a "screening clause,"
A screening clause is a premise that determines whether or not a value will be

THE PREGNANT MAN PROBLEM 799

sought for an expression in a subsequent premise. In the examples below, if the
value of has-sauce is "no", then the user will not be asked if the sauce is cream.

Knowledge base with a screening clause;
if has-sauce = yes
and sauce = cream
then best-color = white.

Knowledge base with a presupposition:
presupposition (sauce) = has-sauce,
if sauce = cream
then best-color = white.

In testing the Cwine Expert System, our procedure correctly identified the
potential problem of the system asking the user what kind of sauce the meal has
after the user said that the meal does not have sauce. However, our procedure did
not indicate when the problem had been fixed using a presupposition statement.
Because, if M,l determines that the expression has-sauce is no, it concludes that
sauce is unknown, and does not bother to ask the user for a value for "sauce".
Thus, "sauce" is always sought although the shell does not necessarily ask the user
to assign a value to it.

4.3. TESTING ON INDUCTION SHELLS

It is reasonable to assume that our procedure could be extended to other personal
computer rule-based systems. However, there is another class of expert system shell
commonly used on personal computers, namely, induction systems. The question
naturally arises, "Can the problem of developing a knowledge base that by its
construction asks the user inappropriate or foolish questions be developed in the
induction environment, and if so, will our procedure prove useful in that
environment?"

To answer this question two commonly used personal computer expert system
shells were tested, VP-Expert and IstClass. We constructed a simple set of examples
to test whether a "logically-flawed" knowledge base could be induced by these
systems. We used our "pregnant man" paradigm to construct our set of examples.
Although most people are aware of the problem of asking whether a male is
pregnant, this is just a simple example of a more general problem. For example, we
suspect that it would be more difficult for most people to decide whether it was
inappropriate to ask whether a Trimusculus reticulatus (mollusk species) was a
Tadarida brasiliensis mexicana (bat subspecies). (It would be,)

Trials with both VP-Expert and IstClass demonstrated that it was possible to
generate a "logically-flawed" knowledge base through injudicious choice of ex-
amples. This result is not surprising, because a rule (for VP-Expert) or a branch of a
decision tree (for IstClass) is generated for each example. Consequently, if these
shells are given an inappropriate example they will generate an inappropriate rule or
branch. Although this result may seem trivial, the trials with VP-Expert and IstClass
proved helpful in identifying additional constructs that effect inappropriate user
questioning. These include the importance of the position of premises within a rule
and possibility, especially in an induction system, of generating incorrect rules.
Details of these tests can be found in (Bahill, 1991).

800 J. M. HEROD AND A. T. BAHILL

4.4. RESULTS OF THE DEVELOPMENT TESTING

Our procedure can identify four constructions that can lead to inappropriate
questioning of the user. These constructions can be rectified by the knowledge
engineer in one of the following ways:

1. rearranging the position of a rule in the knowledge base, as shown for the
Animal Classification Expert System,

2. rearranging the premises within a rule, e.g. write

IF sex = female
AND pregnant = yes
THEN result = expanded_waistline,

not
IF pregnant = yes
AND sex = female
THEN result = expanded-waistline,

3. inserting screening clauses in the problem rules or using a presupposition
statement, as described in our Cwine example, and

4. removing incorrect rules.

5. Implementation testing
In the development of our procedure outlined in this paper we used simple
knowledge bases to test our procedure and determine the type of errors that it might
identify. Next it was necessary to test our procedure on more sophisticated
knowledge bases. Initially, it was felt that the best source of knowledge bases for
testing our procedure would be found in the 80 expert systems that were generated
by Systems and Industrial Engineering students at the University of Arizona as
projects for a course on expert systems. Unfortunately, most of this source had to be
abandoned because the procedure depends heavily on acquiring information from
the knowledge domain expert, and an expert was available for only one of these
expert systems, VWMod, that was designed to provide advice on modifying a
Volkswagen 1600 cc engine to optimize performance,

A second source of knowledge bases include three expert systems that were
initially built as class projects, were later expanded as Masters projects, and are
currently being prepared for commercial release. In each of these cases, the original
domain expert was available and was willing to participate in our testing.

Stutter is an expert system designed to help with the diagnoses and prognosis of
children who may have begun to stutter. Of its 595 possible question pairs, 45 were
identified as "problematic" question pairs. Because the master question for some of
these pairs contained multi-valued expressions, it was determined that 187 tests
would have to be run to test all the possible "unaccepted-value sets" generated by
those questions. This at first appeared to be an insurmountable task, especially
because our heuristic was being implemented by hand, but it was noticed that most
of the master questions included several subject questions. That is, it was
determined that if the master question was answered with one of its "unaccepted-
value sets" several of its subject questions should not be asked. This allowed testing

THE PREGNANT MAN PROBLEM 801

several question pairs with only one alteration of the knowledge base. Therefore,
the number of tests needed dropped from 187 to 71, So, although it was difficult and
time consuming, it was possible to test all 45 problematic question pairs with only 71
alterations of the knowledge base.

Chromie is an expert system that was designed to help teach medical profes-
sionals, who are not experts in chromosomal abnormalities, how to identify the
abnormality of an unborn or newly born baby to allow them to make an intelligent
referral. Similar to Stutter, Chromie was originally constructed as a student project
in 1985, was later the subject of a Masters project and is currently undergoing
testing in preparation for its commercial release. Chromie, with a total of 60
questions, provided a staggering 1740 possible question pairs. Fortunately, of those
only 67 were identified as potentially problematic. Unlike Stutter, none of the
master questions in the problematic pairs contained multi-valued expressions.
However, as with Stutter, several master questions contained multiple subject
questions and this allowed several question pairs to be tested with one alteration of
the knowledge base.

When all the tests of Chromie had been run, our procedure flagged 62 of the 67
problematic question pairs as containing potential errors. Of these potential errors,
24 had been anticipated by the knowledge engineer and were handled in the
knowledge base using presupposition statements. The remaining 38 had not been
anticipated and came as somewhat of a surprise to the knowledge engineer.

In trying to verify that our procedure had correctly identified potential problems
in the Chromie knowledge base, an inherent weakness in our procedure was
identified. Although our procedure identified several problems that could lead to
inappropriate questioning of the user, it cannot identify what the problem is. Our
procedure can determine that some combination of user inputs can lead to
inappropriate questions but it cannot identify which combinations can. The first
question that we were asked when we informed the knowledge engineer that our
procedure has detected several potential errors between problematic questions pairs
was, "What responses led to the problem?" Unfortunately, without examining the
knowledge base this question cannot be answered by our procedure. Thus, the
procedure shows that inappropriate questioning is possible, but does not indicate
how it is possible.

It also should be mentioned that it is possible that our procedure has identified
"unexpected" user questioning rather than "inappropriate" user questioning in the
Chromie knowledge base. In testing the system the knowledge engineer and the
expert have been running test cases that determine how they will answer questions.
As it turns out, many problems flagged by our procedure resulted from the use of
"unknown" (identified as a legal value). Thus, some of the resulting questioning
may be appropriate under those circumstances. It remains for the knowledge
engineer and her expert to decide whether they want the system to ask additional
questions of the user under these circumstances and how this "unexpected" user
questioning affects the conclusions reached by the system.

The importance of these results is that the procedure identified several potential
problems in the Chromie knowledge base, whether they are instances of inappropri-
ate or unexpected user questioning. It is up to the knowledge engineer to determine
the impact of these potential problems.

802 J. M. HEROD AND A. T. BAHILL

FundEye is an expert system designed to help with the diagnoses of retinal
disease. Similar to Stutter and Chromie, it was originally developed as a student
project, and is now being prepared for commercial release. Initially, FundEye
appeared to pose a significant problem in implementing our procedure. Similar to
Chromie, FundEye contained a large number of questions (80), which yielded a
total of 3160 question pairs that would have to be evaluated. Because of the large
number of question pairs that would have to be evaluated, it was feared that the
task would require a great deal of the expert's time and, thus, might prove to be
impractical. To our surprise, the initial screening of the questions (developing the
QQ matrix), required only a little over one hour to complete. Part of the reason for
this swiftness is that many questions could never conflict. For example, questions
about patient history like the patient's name, and the doctor's name could never
conflict with other questions in the knowledge base. This initial screening identified
only 21 "problematic" question pairs. When all the tests of FundEye had been run,
13 possible inappropriate questionings were flagged. Twelve of these could be fixed
with screening clauses, and the other could be fixed by rearranging the premises.

These expert systems were all relatively large for personal computer-based expert
systems. We doubt that brute force enumeration could be effectively used on these
systems. Our technique has used the knowledge of the expert to reduce the search
space. Frankly, we were surprised that this technique worked, but it did.

The implementation testing has shown that in three of the four knowledge bases
tested, our procedure would identify potential conflicts between question pairs (see
Table 1). Furthermore, most of these conflicts could be rectified in one of the ways
outlined earlier. For example, several of the conflicts detected in the VWMod,
Chromie, and FundEye knowledge bases could be rectified by adding "screening
clauses" to the problem rules. At least one conflict in the FundEye knowledge base
resulted from inappropriate premise ordering and could be rectified by simply
re-ordering the premises in the problem rule.

6, Other potential mistakes detected in verifying these systems

The benefits of implementing our procedure are not confined to the identification of
the constructions described above, however. Our procedure has been helpful to the
knowledge engineer and expert in identifying problems that were not expressly
tested for by our procedure. These include problems with question phrasing,
redundant questions, inconsistencies between "utilized" and "legal" values, incon-
sistencies between the premises of rules and expressions that have numeric values or
that do not have assigned legal values and questionable or suspect rule structures
that do not have a direct effect on user questioning.

Detection of these problems results from our procedure's requiring the knowledge
engineer and the expert to re-evaluate the knowledge base from a different
perspective. Knowledge bases are generally constructed in stages with the knowl-
edge engineer and the expert concentrating their efforts on a particular class of
problems during each stage. This can lead to a fragmented understanding of the
overall structure of the knowledge base. Our procedure forces the knowledge
engineer and the expert to look at the entire system through the mode of user
questioning. This requirement and the need to modify the knowledge base in

TABLE 1
Results of implementation testing of our procedure

Knowledge
base

VWMod
Stutter
Chromic
FundEye

File size
(Kbytes)

27
83
96
72

Number of
questions

16
35
60
80

Number of
question

pairs

120
595

1,740
3,160

Tested
pairs

3
45
67
21

Time spent
altering and

testing
knowledge

bases
(hours)

3-5
12-5
12-3
6-8

Time to make
the QQ and
PQ matrices

(hours)

0-5
1-0
0-8
2-0

Number of
potential

inappropriate
questionings

detected

2
0

62
13

Number of other
potential mistakes

detected

3
14
0

27

804 J. M. HEROD AND A. T. BAHILL

preparation for testing, can lead both the expert and the knowledge engineer to
uncover problems in the knowledge base that might otherwise go undetected.

Modifying the knowledge base in preparation for testing, may uncover problems
that result from having: (1) some utilized values that are not assigned as legal values
(this error can lead to the failure of some rules to fire correctly or to having rules fire
unexpectedly); (2) having multiple questions for a single expression (this error may
cause changes in question structuring not to be implemented as expected); and (3)
omissions in the premises of rules (this error may lead to inappropriate user
questioning as well as causing a rule to fire inappropriately).

We have found that having the knowledge engineer and the expert discuss the
relationship between various questions in the knowledge base, often enabled the
expert to identify redundant questions (which require the user to answer more
questions than are necessary in a consultation), vague or poorly phrased questions
(which do not really address the distinctions that the expert wants to make), and
generalized questions that need to be broken into multiple specific questions.
Implementing our procedure outlined in this paper, also allows the expert to rethink
some of the rules of thumb that the knowledge engineer has coded into the
knowledge base. As a result of this "rethinking" the expert may uncover conflicts in
thinking or may be able to establish new relationships that may increase the
accuracy of the advice ultimately given by the system.

This procedure can accommodate incremental enhancements of the knowledge
base. If a new question is added to the knowledge base, a new row and column are
added to the QQ matrix. Entries in this new row and column must be checked
against the other questions in the knowledge base, but the rest of the matrix remains
unchanged. Further, because the PQ matrices depend only on identified problematic
question pairs, the existing set of PQ matrices does not need to be altered although
additional matrices may need to be added depending on the evaluation of the new
question in the QQ matrix.

7, Limitations

In this paper we only considered pairs of questions that could lead to inappropriate
questioning of the human. It is possible to encounter situations where the
conjunction of two questions would preclude intelligent query of a third. For
example, let

<?! = What is the city?
q2 = What is the date?
q3 = What time is sunset?

If the answer to the first question is Prudhoe Bay, and the answer to the second
question is June 21, then the third question should not be asked.f This quagmire
could be extended to cases where, if three questions have certain answers, then a
fourth question should not be asked. We have not tried to deal with this situation.
We have been told that the theory of colored graphs may provide tools for dealing
with such problems, but we suspect that even for personal computer-based expert
systems this may be intractable.

t The sun never sets on June 21 in Prudhoe Bay because it is above the Arctic circle.

THE PREGNANT MAN PROBLEM 805

The order in which questions are asked is sometimes important. Our concept of
master-subject relationships could help establish the most logical order. But, in
general, our procedure does not deal with question order.

8. Conclusions

This paper has presented a verification procedure that can be applied to personal
computer rule-based expert systems. It allows the knowledge engineer to correct
bugs, and refine the knowledge base. It has been shown that this procedure can be
implemented on relatively sophisticated expert systems without an inordinate drain
on the expert's time or the resources of the knowledge engineer. It has identified
four common errors in rule construction that led to inappropriate user questioning.
However, the benefits of implementing our procedure are not confined to the
identification of these constructions. Our procedure has been shown to be helpful to
the knowledge engineer and expert in the identification of problems that are not
expressly tested for by our procedure. These include problems with question
phrasing, redundant questions, inconsistencies between utilized and legal values,
inconsistencies between the premises of rules and expressions that have numeric
values or that do not have assigned legal values, and questionable or suspect rule
structures that do not have a direct effect on user questioning. Because of the many
benefits of implementing our procedure and because its implementation has not
proven to be insurmountable, our procedure should be a useful tool to help the
knowledge engineer build better, more error-free expert systems.

References

BAHILL, A. T. (1991). Verification and Validation of Personal Computer Based Expert
Systems. Englewood Cliffs, NJ: Prentice-Hall.

CRAGUN, B. J. & STEUDEL, H. J. (1987). A decision-table-based processor for checking
completeness and consistency in rule based expert systems. International Journal of
Man-Machine Studies, 26, 633-648.

HARMON, P., MAUS, R. & MORRISSEY, W. (1988). Expert Systems Tools & Applications,
New York: Wiley.

JAFAR, M. J. (1989). A tool for interactive verification and validation of rule based expert
systems. University of Arizona, Ph.D. dissertation, Department of Systems and
Industrial Engineering.

JAFAR, M. J. & BAHILL, A. T. (1990). Validator, a tool for verifying and validating personal
computer based expert systems. In D. E. BROWN & C. C. WHITE, Eds. Operations
Research and Artificial Intelligence: The Integration of Problem Solving Strategies.
pp. 373-385, Boston: Kluwer.

KANO, Y. & BAHILL, A. T. (1990). A tool for detecting expert system errors. AI Expert,
5(2), 46-51.

LIEBOWITZ, J. (1988). Introduction to Expert Systems. Santa Cruz, CA: Mitchell.
NGUYEN, T. A. (1987). Verifying consistency of production systems. In Proceedings of the

IEEE 3rd Conference on Artificial Intelligence Applications, Kissimmee, FL, pp. 4-8.
O'KEEFE, R. M,, BALCI, O. & SMITH, E. P. (1987). Validating expert system performance,

IEEE Expert, 2(4), 81-90,
SAATY, T. L. (1980). The Analytic Hiearchy Process. New York: McGraw-Hill.
WINSTON, P. H. (1977), Artificial Intelligence. Reading MA: Addison-Wesley.

