
Paradoxical pop-ups: Why are they difficult to catch?
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Professional baseball players occasionally find it difficult to gracefully approach seemingly routine
pop-ups. We describe a set of towering pop-ups with trajectories that exhibit cusps and loops near
the apex. For a normal fly ball the horizontal velocity continuously decreases due to drag caused by
air resistance. For pop-ups the Magnus force is larger than the drag force. In these cases the
horizontal velocity initially decreases like a normal fly ball, but after the apex, the Magnus force
accelerates the horizontal motion. We refer to this class of pop-ups as paradoxical because they
appear to misinform the typically robust optical control strategies used by fielders and lead to
systematic vacillation in running paths, especially when a trajectory terminates near the fielder.
Former major league infielders confirm that our model agrees with their experiences. © 2008 American
Association of Physics Teachers.
�DOI: 10.1119/1.2937899�
I. INTRODUCTION

Baseball has a rich tradition of misjudged pop-ups. For
example, on April, 1961, Roy Sievers of the Chicago White
Sox hit a towering pop-up above Kansas City Athletics’ third
baseman Andy Carey who fell backward trying to make the
catch. The ball landed several feet from third base, far out of
the reach of Carey. It rolled into the outfield, and Sievers
wound up on second with a double.

Some other well-known misplays of pop-ups include New
York Giants first baseman Fred Merkle’s failure to catch a
foul pop-up in the final game of the 1912 World Series, cost-
ing the Giants the series against the Boston Red Sox; St.
Louis first baseman Jack Clark’s botched foul pop-up in the
sixth game of the 1985 World Series against Kansas City;
and White Sox third baseman Bill Melton’s broken nose suf-
fered in an attempt to catch a “routine” pop-up in 1970.

As seen by these examples, even experienced major
league baseball players can find it difficult to position them-
selves to catch pop-ups hit very high over the infield. Players
describe these batted balls as “tricky” or “deceptive,” and at
times they are seen lunging for the ball at the last instant of
the ball’s descent. “Pop-ups look easy to anyone who hasn’t
tried to catch one—like a routine fly ball that you don’t have
to run for,” Clete Boyer said, “but they are difficult to judge
and can really make you look like an idiot.”1 Boyer, a vet-
eran of 16 years in the major leagues, was considered one of
the best defensive infielders in baseball.

Several factors can exacerbate an infielder’s problem of
positioning himself for a pop-up. Wind currents high above
the infield can change the trajectory of a pop-up radically.
Also, during day games the sky might provide little contrast
as a background for the ball—a condition called a “high sky”
by players. Then, there are obstacles on the field—bases, the
pitcher’s mound, and teammates—which can hinder the in-
fielder. But even on a calm night with no obstacles nearby,

players might stagger in their efforts to get to the ball.
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The frequency of pop-ups in the major leagues—an aver-
age of nearly five pop-ups per game2—is sufficiently large
that teams provide considerable pop-up practice for infielders
and catchers. Yet, this practice does not improve the skill of
these players, and they are unable to reach the level of com-
petency in catching “sky-high” pop-ups that outfielders attain
in catching high fly balls, for example. This inability sug-
gests that the technique commonly used to catch pop-ups
might be the factor limiting improvement.

Almost all baseball players learn to catch low, “hump-
back” pop-ups and fly balls before they have any experience
in catching lofty pop-ups. In youth leagues nearly all pop-
ups have low velocities and few exceed a height of 50 feet;
therefore, they have trajectories that are nearly parabolic. Fly
balls, too, have near-parabolic trajectories. Our hypothesis is
that 120� pop-ups do not follow similar trajectories, and
hence major league infielders find pop-ups difficult to catch
because the tracking and navigation method they learned in
their youth is unreliable for high, major league pop-ups.

To consider this hypothesis we first describe the trajecto-
ries of prototypical batted balls, using models of the bat-ball
collision and ball flight aerodynamics. We then develop mod-
els of three kinds of typical nonparabolic pop-up trajectories
that exhibit unexpected behavior around their apices, includ-
ing cusps and loops. Several of these trajectories are fitted
using an optical control model that has been used success-
fully to describe how players track fly balls. For each fit a
prediction of the behavior of infielders attempting to position
themselves to catch high pop-ups is compared with the ob-
served behavior of players during games.

II. SIMULATIONS OF BATTED-BALL
TRAJECTORIES

As students in an introductory physics course learn, the
trajectory of a fly ball in a vacuum is a symmetric parabola

because the only force acting on it is gravity. In the atmo-
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sphere the ball is subject to additional forces as shown sche-
matically in Fig. 1: the retarding drag force FD and the Mag-
nus force FM. The Magnus force was first mentioned in the
literature by a young Isaac Newton in his treatise on the
theory of light,3 where he included a brief description of the
curved trajectory of a spinning tennis ball. Whereas the drag
force always acts opposite to the instantaneous direction of
motion, the Magnus force is normal to both the velocity and
spin vectors. For a typical fly ball to the outfield the drag
force causes the trajectory to be somewhat asymmetric, with
the falling angle steeper than the rising angle,4 although the
trajectory is still smooth. If the ball has backspin, as ex-
pected for such fly balls, the Magnus force is primarily in the
upward direction, resulting in a higher but still quite smooth
trajectory. We will show that the trajectory is qualitatively
different for a pop-up, because a ball-bat collision resulting
in a pop-up will have considerable backspin, resulting in a
significantly larger Magnus force than for a fly ball. More-
over, the direction of the force is primarily horizontal and is
opposite on the upward and downward paths. These condi-
tions will result in unusual trajectories, sometimes with cusps
and loops.

The collision model is identical to that used by Sawicki,
Hubbard, and Stronge5 and by Cross and Nathan.6 The ge-
ometry of the collision is shown in Fig. 2. A standard base-
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Fig. 1. The forces on a baseball in flight with backspin, including gravity
FG, drag FD, and the Magnus force FM. FD acts in the −v̂ direction and FM

acts in the �̂� v̂ direction.

Fig. 2. Geometry of the ball-bat collision. The initial velocity of the ball and
bat are vball and vbat, respectively, and the pitched ball has backspin of
magnitude �i. The bat-ball offset shown in the figure is denoted by D
= �rball+rbat�sin �, where rball and rbat are the radii of the ball and bat, respec-
tively. For the collisions discussed in the text, the entire picture should be
rotated counterclockwise by 8.6°, so that the initial angle of the ball is 8.6°

downward and the initial angle of the bat is 8.6° upward.
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ball �rball=1.43 in. ,mass=5.1 oz� approaches the bat with an
initial speed vball=85 mph, initial backspin �i=126 rad /s
�1200 rpm�, and a downward angle of 8.6° �not shown in the
figure�. The bat has an initial velocity vbat=55 mph at the
point of impact and an initial upward angle of 8.6°, which is
identical to the downward angle of the ball. The bat is a
34-in.-long, 32 oz wood bat, with radius rbat=1.26 in. at the
impact point. If lines passing through the center of the ball
and bat are drawn parallel to the initial velocity vectors,
these lines are offset by the distance D. This distance is the
amount by which the bat undercuts �D�0� or overcuts �D
�0� the ball. In the absence of initial spin on the baseball, a
head-on collision �D=0� results in the ball leaving the bat at
an upward angle of 8.6° with no spin; undercutting the ball
produces backspin and a larger upward angle; overcutting the
ball produces topspin and a smaller upward or even a down-
ward angle. The initial backspin on the pitched ball does not
change these qualitative features. The ball-bat collision is
characterized by the normal and tangential coefficients of
restitution, eN and eT, respectively, with the additional as-
sumption that angular momentum is conserved about the ini-
tial contact point between the ball and bat.6 For eN we use the
parametrization

eN = 0.54 − �vN − 60�/895, �1�

where vN= �vball+vbat�cos � is the normal component of the
relative ball-bat velocity in units of mph.5 We further assume
that eT=0, which is equivalent to assuming that the tangen-
tial component of the relative ball-bat surface velocity, which
is initially equal to �vball+vbat�sin �+�irball, is identically
zero as the ball leaves the bat. This value of eT implies that
the ball leaves the bat in a rolling motion. The loss of tan-
gential velocity occurs as a result of sliding friction. It was
verified by direct calculation that the assumed coefficient of
friction of 0.556 is sufficient to bring the tangential motion to
a halt prior to the end of the collision for all values of
D�1.7 in. Given the initial velocities and our assumptions
about eN and eT, the outgoing velocity v, angle �, and the
backspin � of the baseball can be calculated as a function of
the offset D. These parameters, which are shown in Fig. 3,
along with the initial height of 3 feet, serve as input to the
calculation of the batted-ball trajectory. Note in particular
that both � and � are strong functions of D, and v depends
only weakly on D.

The trajectory of the batted baseball is calculated by nu-
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Fig. 3. Variation of the batted ball speed, initial angle above the horizontal,
and spin with the offset D.
merically solving the differential equations of motion using a
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fourth-order Runge-Kutta technique, given the initial condi-
tions and the forces. The drag and Magnus forces are usually
written as

FD
� = −

1

2
CD�Av2v̂ , �2�

FM
� =

1

2
CL�Av2��̂ � v̂� , �3�

where � is the air density �0.077 lb / ft3�, A is the cross sec-
tional area of the ball �6.45 in., Ref. 2�, v is the velocity, � is
the angular velocity, and CD and CL are phenomenological
drag and lift coefficients, respectively. Note that the direction
of the drag is opposite to the direction of motion, and the
direction of the Magnus force is determined by a right-hand
rule. We utilize the parametrizations of Ref. 5 in which CD is
a function of the speed v and CL is a bilinear function of the
spin parameter S=rball� /v, implying that FM is proportional
to �v. Because the velocity of the ball does not remain con-
stant during the trajectory, it is necessary to compute CD and
CL at each point in the numerical integration. The resulting
trajectories are shown in Fig. 4 for values of D in the range
0–1.7 in., where an initial height of 3 ft. was assumed.

The striking feature of Fig. 4 is the qualitatively different
character of the trajectories as a function of D, or equiva-
lently as a function of the takeoff angle �. These trajectories
range from line drives at small �, to fly balls at intermediate
�, to pop-ups at large �. Particularly noteworthy is the rich
and complex behavior of the pop-ups, including cusps and
loops. We focus on two characteristics that may have impli-
cations for the algorithm used by a fielder to catch the ball:
the symmetry/asymmetry about the apex and the curvature.

Before proceeding, we note that the general features of the
trajectories shown in Fig. 4 are universal and do not depend
on the particular model used for either the ball-bat collision
or for the drag and lift. For example, using collision and
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Fig. 4. Simulated trajectories of pop-ups, fly balls, and line drives with drag
and spin-induced forces. These trajectories were produced when an 85 mph
fastball with 1200 rpm backspin collided with the sweet spot of a bat mov-
ing at 55 mph. Each trajectory was created by a different offset D �in inches,
indicated near the apex of each trajectory� between the bat and ball, as
defined in Fig. 2.
aerodynamics models significantly different from those used
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here, Adair finds similar trajectories with both cusp-like and
loop-like behavior.4 Models based on equations in Watts and
Bahill10 result in similar trajectories.

We first examine the symmetry or lack thereof of the tra-
jectory about the apex. Without the drag and Magnus forces,
all trajectories would be symmetric parabolas. The actual
situation is more complicated. As seen in Fig. 4, baseballs hit
at low and intermediate � �line drives and fly balls� have an
asymmetric trajectory, with the ball covering less horizontal
distance on the way down than it did on the way up. This
feature is known intuitively to experienced outfielders. For
larger � the asymmetry is smaller, and pop-ups hit at a very
steep angle are nearly symmetric. How do the forces con-
spire to produce these results?

We address this question by referring to Figs. 5 and 6 in
which the time dependence of the horizontal components of
the velocity and the forces are plotted for a fly ball
�D=0.75 in., �=33°� and a pop-up �D=1.6 in., �=68°�. The
initial decrease of the drag force for early times is due to the
particular model used for the drag coefficient, which experi-
ences a sharp drop near 75 mph. The asymmetry of the tra-
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jectory depends on the interplay between the horizontal com-
ponents of the drag and Magnus forces, FDx and FMx. For
forward-going trajectories �vx�0�, FDx always acts in the −x
direction, in contrast to FMx which acts in the −x or +x di-
rection on the rising or falling part of the trajectory, respec-
tively. The relative magnitudes of FDx and FMx depend
strongly on � and �. For fly balls � and � are small enough
�see Fig. 3� that the magnitude of FDx is generally larger than
the magnitude of FMx, as shown in Fig. 5. Therefore Fx is
negative throughout the trajectory. For such conditions there
is a smooth continuous decrease in vx, leading to an asym-
metric trajectory, because the horizontal distance covered
prior to the apex is greater than that covered after the apex.
The situation is qualitatively different for pop-ups, because
both � and � are significantly larger than for a fly ball. As a
result, the magnitude of FMx is much greater than the mag-
nitude of FDx. Figure 6 shows that Fx�FMx, so that Fx acts
in the −x direction before the apex and in the +x direction
after the apex. Therefore, the loss of vx while rising is largely
compensated by a gain in vx while falling, resulting in near
symmetry about the apex. Moreover, for this particular tra-
jectory the impulse provided by Fx while rising is nearly
sufficient to bring vx to zero at the apex, resulting in cusp-
like behavior. For even larger values of �, Fx is so large that
vx changes sign prior to the apex, then reverses sign again on
the way down, resulting in the loop pattern.

We next address the curvature of the trajectory,
C�d2y /dx2, which is determined principally by the inter-
play between the Magnus force FM and the component of
gravity normal to the trajectory FGN=FG cos �. It is straight-
forward to show that C is proportional to the instantaneous
value of �FM −FGN� / �vx

2 cos �� and in particular that the sign
of C is identical to the sign of FM −FGN. In the absence of a
Magnus force, the curvature is always negative, even if drag
is present. An excellent example is provided by the inverted
parabolic trajectories expected in the absence of aerody-
namic forces.

The trajectories shown in Fig. 4 fall into distinct catego-
ries, depending on the initial angle �. For small enough �, C
is negative throughout the trajectory. If C is initially nega-
tive, then it is always negative, because FM is never larger
and FGN is never smaller than it is at t=0. For our particular
collision and aerodynamic model, the initial curvature is
negative for � less than about 45°. For intermediate �, C is
positive at the start and end of the trajectory, but experiences
two sign changes, one before and one after the apex. The
separation between the two sign changes decreases as � in-
creases, until the two values coalesce at the apex, producing
a cusp. For larger values of �, C is positive throughout the
trajectory, resulting in loop-like behavior such as the D
=1.7 in. trajectory, where the sign of vx is initially positive,
then changes to negative before the apex, and finally changes
to back positive after the apex.

All the simulations discussed so far assume that the spin
of the baseball remains constant throughout the trajectory.
Because the spin plays such a major role in determining the
character of the trajectory, it is essential to examine the va-
lidity of that assumption. To our knowledge there have been
no experimental studies on the spin decay of baseballs, but
there have been two such studies for golf.7,8 In Ref. 8 a
model was proposed for the spin decay of a golf ball in
which the torque responsible for the decay is expressed as

2
R�ACMv , where R is the radius of the ball, CM =�R� /v is
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the “coefficient of moment,” and � is a dimensionless con-
stant expressing the proportionality of CM to R� /v. By
equating the torque to Id� /dt, where I=0.4MR2 is the mo-
ment of inertia, the spin decay constant � can be expressed as

� �
1

�

d�

dt
= �M

R2� 0.4

	��v
. �4�

In Ref. 8 measurements of � were used to determine
��0.012, corresponding to �=20 s for v=100 mph. The
measurements in Ref. 7 can be similarly interpreted with
�=0.009, corresponding to �=25 s at 100 mph. To estimate
the spin decay constant for a baseball, we assume Eq. �4�
applies, with M /R2 appropriately scaled for a baseball and
with all other factors the same. Using M /R2=2.31 and
2.49 oz / in.2 for a golf ball and baseball, respectively, the
decay time for a baseball is about 8% longer than for a golf
ball, or 22–27 s at 100 mph and longer for smaller v. A
similar time constant for baseball was estimated in Ref. 9
possibly using the same arguments as we have used here.
Because the trajectories we have examined are in the air 7 s
or less, we conclude that our results are not affected by spin
decay. Adair4 has suggested a much smaller decay time of
order 5 s, which does not seem to be based on experimental
data. A direct check of our calculations shows that the quali-
tative effects depicted in Fig. 4 persist even with a decay
time as short as 5 s.

III. OPTICAL CONTROL MODEL FOR TRACKING
AND NAVIGATING BASEBALLS

In a seminal article Chapman11 proposed an optical control
model for catching fly balls, today known as optical accel-
eration cancellation �OAC�. Chapman examined the geom-
etry of catching from the perspective of a moving fielder
observing an approaching ballistic target that is traveling
along a parabola. He showed that in this case, the fielder can
be guided to the destination by selecting a running path that
keeps the image of the ball rising at a constant rate in a
vertical image plane. Mathematically, the tangent of the ver-
tical optical angle to the ball increases at a constant rate.
When balls are headed to the side, other optical control strat-
egies become available.12,13 We will consider balls hit di-
rectly toward the fielder, so we will emphasize predictions of
the OAC control mechanism.

Chapman assumed parabolic trajectories because of his
�incorrect� belief that the drag and Magnus forces have a
negligible effect on the trajectory. We now know that the
effects of these forces can be considerable, as discussed in
Sec. II. Nevertheless, numerous perception-action catching
studies confirm that fielders appear to utilize Chapman’s type
of optical control mechanism to guide them to interception,
and in particular OAC is the only mechanism that has been
supported for balls headed in the sagittal plane directly to-
ward fielders.12,14–16 Further support for OAC has been
found with dogs catching Frisbees as well as functioning
mobile robots.13,17

Extensive research on the navigational behavior of base-
ball players supports that perceptual judgment mechanisms
used during fly ball catching can generally be divided into
two phases.12,18 During the first phase, while the ball is still
relatively distant, ball location information is largely limited
to the optical trajectory �that is, the observed trajectory path

of the image of the ball�. During the second phase, other cues
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such as the increase in optical size of the ball and the stereo
angle between the two eyes also become available and pro-
vide additional information for final corrections in fielder
positioning and timing. The control parameters in models
like OAC are optical angles from the fielder’s perspective,
which help direct the fielder’s position relative to the ongo-
ing ball position. Considerable work exploring and examin-
ing the final phase of catching has been done by perception
scientists19,20 and some recent speculation has been done by
physicists.21 It is generally agreed that the majority of fielder
movement while catching balls takes place during the first
phase in which fielders approach the destination region
where the ball is headed. We focus here on control models
like OAC that guide fielder position during the initial phase
of catching. Thus for example, we would consider the fa-
mous play in which Jose Canseco allowed a ball to bounce
off his head for a home run to be a catch, in that he was
guided to the correct location to intercept the ball.

An example of how a fielder utilizes the OAC control
strategy to intercept a routine fly ball to the outfield is given
in Fig. 7. This figure illustrates the side view of a moving
fielder using OAC control strategy to intercept two realistic
outfield trajectories determined by our aerodynamics model
described in Sec. II. As specified by OAC, the fielder runs
forward or backward as needed to keep the tangent of the
vertical optical angle to the ball increasing at a constant rate.
Because the trajectory deviates from a parabola, the fielder

Fig. 7. Optical acceleration cancellation �OAC� with moving fielders and
realistically modeled trajectories as the interception control mechanism for
moving fielders. The outfielder starts at a distance of 250 ft from home
plate. OAC directs the fielder to approach the desired destination along a
smooth, monotonic running path. Shown are side views of the ball moving
from left to right, and the fielder moving from the picture of eyeball at the
right. The left diagram is the case of OAC directing fielder forward to catch
a D=1.25 in. trajectory. The right diagram is the case of OAC directing
fielder backward to catch a D=1.0 in. trajectory. In both cases, OAC pro-
duces a near constant running velocity along the path to the ball.
compensates by altering his/her running speed. Geometri-
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cally the OAC solution can be described as the fielder keep-
ing the image of the ball rising at a constant rate along a
vertical projection plane that moves forward or backward to
remain equidistant to the fielder. For fly balls such as that
shown in Fig. 7, the geometric solution is roughly equivalent
to the fielder moving in space to keep the image of the ball
aligned with an imaginary elevator that starts at home plate
and is tilted forward or backward by the amount correspond-
ing to the distance that the fielder runs. As can be seen in Fig.
7 these outfield trajectories are notably asymmetric, princi-
pally due to air resistance, yet OAC still guides the fielder
along a smooth, monotonic running path to the desired des-
tination. This simple, relatively direct navigational behavior
has been observed in almost all previous perception-action
catching studies with humans and animals.17

Most models of interceptive perception-action assume that
real-world fly ball trajectories remain sufficiently similar to
parabolic for robust optical control strategies like OAC to
produce simple, monotonic running path solutions. Support-
ing tests have confirmed simple behavior consistent with
OAC in relatively extreme interception conditions including
catching curving Frisbees, towering outfield blasts, and short
infield pop-ups.12,13,15–17 We have shown that there is a class
of paradoxical high infield pop-ups which deviate from nor-
mal parabolic shape in ways dramatic enough to lead fielders
using OAC to head off in the wrong direction or bob forward
and back. In the following we illustrate how a fielder guided
by OAC will behave with the three paradoxical pop fly tra-
jectories that we discussed in Sec. II.

We first examine the most extreme paradoxical trajectory
of the group, the case of D=1.7 in. shown in Fig. 8. This
trajectory does a full loop between the catcher and pitcher,
finally curving back out on its descent and landing about
30 ft from home plate. Given the extreme directional
changes of this trajectory, we might expect an infielder be-
ginning 100 ft from home plate to experience difficulty
achieving graceful interception. Yet, as can be seen Fig. 8,
this case results in a relatively smooth running path solution.

Fig. 8. Side view of the horizontal and vertical trajectory of a pop-up being
fielded by the third baseman as seen by the first baseman. The dashed lines
show the third baseman’s gaze from his present position to the ball’s present
position. The balls show the trajectory at half-second increments. The “eye”
shows the fielder’s position at the start of the trajectory. The fielder moves in
the direction shown by the arrows and exhibits little change in direction with
a brief back turn near the end. This trajectory is for a D=1.7 in. pop-up.
When the fielder maintains OAC throughout his approach, he
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initially runs quickly forward, then slightly overshoots the
destination, and finally lurches back. In practice, near the
interception point, the fielder is so close to the approaching
ball that it is likely that the availability of other depth cues
like stereo disparity and the rate of change in the optical size
of the ball will mitigate any final lurch, and result in a fairly
smooth overall running path to the destination.

Second we examine the case of a pop fly resulting from
the bat-ball offset D=1.6 in. in Fig. 9. Here the horizontal
velocity initially decreases and approaches zero velocity near
the apex. Then after the apex the Magnus force increases the
horizontal velocity. Of greater impact to the fielder is that
this trajectory’s destination is near where the fielder begins.
Thus from the fielder’s perspective, the trajectory slows in
the depth direction before the discontinuity takes place such
as to guide the fielder to run up too far and then later to
reverse course and backtrack to where the ball is now accel-
erating forward. In this case the normally reliable OAC strat-
egy leads the fielder to run up too far and in the final second
lurch backward.

We next examine a pop fly that lands just beyond the
fielder, the D=1.5 in. condition in Fig. 10. In this case OAC
leads the fielder to initially head back to very near where the
ball eventually lands, but then soon after change direction
and run forward, only to have to run back again at the end.
When a fielder vacillates or “dances around” this much, it
does not appear that he is being guided well to the ball des-
tination. Yet, this seemingly misguided movement is speci-
fied by the OAC control mechanism. Thus, the assumption
that fielders use OAC leads to the prediction that even expe-
rienced, professional infielders are likely to vacillate and
make a final lurch backward when navigating to catch some
high pop-ups. Former major league infielders have affirmed
to us that pop-ups landing at the edge of the outfield grass
�100–130 ft from home plate� are the most difficult to catch.

It is notable that in each of the cases depicted in Figs.
8–10, the final movement by the fielder prior to catching the
ball is backward. This feature can be directly attributed to the
curvature of the trajectory, as discussed in Sec. II. For a
typical fly ball the curvature is small and negative, so the ball
breaks slightly toward home plate as it nears the end of its

Fig. 9. Side view of a fielder using OAC to run up to a pop fly from the
D=1.6 in. condition. In this case the fielder dramatically changes direction
near the end.
trajectory. For pop-ups the curvature is large and positive, so
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the ball breaks away from home plate, forcing the fielder to
move backward just prior to catching the ball.

IV. SUMMARY

Using models of the bat-ball collision and ball flight aero-
dynamics, we have shown that the trajectories of pop-ups
can have unexpected features, such as loops and cusps. We
examined the running paths that occur with these dramati-
cally nonparabolic trajectories when a fielder utilizes optical
acceleration cancellation, a control strategy that has been
shown to be effective for tracking near-parabolic trajectories.
We found that utilizing this strategy for these unusual pop-
ups does not always lead to a smooth running path to inter-
cept the ball.
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