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A general technique for finite memories
data manipulation and smooth predictions

FERENC SZIDAROVSZKY,* CHAD-YEN Wu^ AND A. TERRY

Abstract, Filters are used to help separate signals from noise. They are
also used as predictors and for signal processing; for example, they can be used to
calculate present or future values of position, velocity and acceleration. In this paper
a general technique for finite memories data manipulation and smooth predictions
is described. In their conventional implementation a matrix inversion must be
performed for each new calculation. This paper presents a general technique which
is based on the difference equation using a least-squares criterion for predictions.
The difference equation approach has a major advantage over the matrix approach,
because it is not necessary to compute the matrix inversion.

AMS Subject Classifications. 68P05.

1. Introduction

Filters are used to separate signals from noise. They can also be used as
predictors and for signal processing; for example, they can be used to calcu-
late present or future values of position, velocity and acceleration. Correct
choice of the filter coefficients will ensure the least mean squared error.

Many adaptive filters are available, for example, two-point-linear predic-
tors [1], fivepoint-quadratic predictors [1], Kalman filters [2], least-mean-
square (LMS) adaptive filters [3-4], recursive-least-square (RLS) adaptive
filters [5-6], lattice-filter adaptive filters [7-8], and other forms of adaptive
filters [9-10], A tutorial review of lattice structures and their use in adaptive
prediction of time series data is provided in [11]. Friedlander concludes that
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the adaptive least squares lattice (LSL) has a number of practical advan-
tages compared to gradient adaptive techniques. In recent years, adaptive
prediction techniques have become more popular than other techniques as
suggested in [12] and [10], All these adaptive filters try to minimize the
mean squared error between the actual and predicted signal; so they are
called least squares adaptive filters. They are designed to minimize the sum
of the squared errors:

(i)

where JV is the number of points that the adaptive filters use for each adap-
tive procedure, y ( t i ) is the position and y(ti) is the predicted position at
time tj. Least squares adaptive filters use the second-order statistics of an
observed process y(ti). In most practical applications these statistics are not
known a priori and must be estimated from data. If the process is known
to be stationary and if a large amount of data are available, it is possible to
estimate the autocorrelation sequence and compute the least squares adap-
tive filters. In practice, signals are often nonstationary, having time-varying
statistics. To account for these changing statistics, the process of estimat-
ing second-order statistics and computing adaptive filter coefficients needs
to be carried out in an iterative fashion. Such a procedure for predicting
a time series without prior knowledge of its statistics is called an adaptive
processing.

In this paper we derive a general technique for finite memories (block
processing) data manipulation and smooth prediction. In the conventional
(matrix) approach, a matrix inversion must be preformed for each new set
of data (finite memories or block). However, with our new method, which
is based on the difference equation using a least-squares criterion for pre-
dictions, it is not necessary to compute the matrix version. Therefore, the
difference equation approach is better than the matrix approach.

In section 2, our general approach is derived and verified mathematically.
In section 3 we discuss some numerical examples such as the two-point linear
predictor (TPLP), the fivepoint quadratic predictor (FPQP), the nine-point
cubic predictor (NPCP), the first-order acceleration predictor, the second-
order acceleration predictor, and the third-order acceleration predictor. A
recursive identity method is included as an appendix.
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2. The general approach

In traditional block processing (finite memories) techniques, a matrix
approach is used to derive formulas for the adaptive filters. In this paper
a different approach, which is based on the difference equation, is used to
derive formulas for adaptive filters. The difference equation approach has
a major advantage over the matrix approach because it does not require
matrix inversion.

Consider a <?th order polynomial equation as an input signal q < N — I
of the form
(2) y(ti) = do + dri + . . . + dgt? .

Assume that the output signal of the predictor is given at the future time
tj-f-a as

m

(3)

where yW(ti+a) is the jth derivative of y(ti+a) and Aj represents the coef-
ficients of the output signal. We want to predict this output signal a-steps
ahead of time by using past observations in the form

m N-l

(4) £ AjyW(ti+0) = £ aky(ti-k) ,
j=o *=o

where y(ti-k) is the past signal at time ^_fc, a& represents the coefficients
of the difference equation, and N is the order of the difference equation. In
equation (4) we must have equality, if the predictor is to produce no system
error.

From the theory of digital process [13]

(5) y(ti+a) = e°TDy(ti),

where D is the differential operator and T is the sampling period. Therefore
y^(ti+a) and y('ti-k] can be rewritten as

00 £

(6) yM(ti+a) =

and

(7) »(*,_») = e-kTDy(ti) = f)
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Substituting equations (6) and (7) into (4) gives the relation

°° f /v
E = E «* E

j=0

For simplicity, define Aj = 0 for j > m, and observe that the derivative of
y(ti) with, order greater than q are zero as the consequence of equation (2).
Hence equation (8) can be rewritten as

E
J=o

(aT)J , A (aT)j-i (aT)0'
J!

(9)

= E
"JV~1

where in the left hand side of equation (9) we have introduced the new
variable a J = I + j. By comparing the coefficients of the same derivatives
for both sides of equation (9) we get the conditions

(10)
(aT) J-s

J!

where 5 = min{g;m}. Simple algebra leads to equations

N-l

(11)

with

(12) Oj =

= aj, J = 0,1,2,,..,
k=0

J! (a77
J!

(aT) j-i

(J-l)!
At

(aT)<

For minimizing the mean-square-error coefficient and also reaching zero sys-
tem error, we have to minimize the Lagrangian [14], which can be written
as

N-l

(13) L(a, A) = E a2k - 2A0

k=0
ak ~

V^1

LA;=:0

- a.

where
a = [CQ, ai, , . . ,ajv-i] A = [Ao, AI, , . . , Xq] .
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Simple diiferentiation of equation (13) with respect to a/, shows that for

- 2A0 ~(14) *»
and for j — 0,1,... ,g,

(15)
/N-l

= -*(£
\fc=o

- a,-

Setting equations (14) and (15) to zero respectively yields the following sys-
tem of linear equations:

(16)

and

(17)

... + \kq = 0 ( 0 < A < JV-1 )

JV-l

k=0

In order to simplify these equations introduce the following notation

(18) V =

/ 1
1
1

, 1 /

0
1
2

A7 _ n

0
1

22 ...

f A7 _ -M2

0

1

29

' AJ _ r

\ -

-I V A fa.
T I

ZT Q J U

then equations (16) and (17) can be rewritten in block form as

(19)

where / is the identity matrix, and

(20) a = [a0,«!,..., aq]T,

From the first block-row of equation (19) we conclude that

(21) -a + KA = n,

that is,
(22)
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The second block-row of equation (19) implies that

(23) VTa = a,

and by substituting equation (22) into equation (23) we have that

(24) (

Hence the following algorithm can be proposed for the solution of the
prediction problem:

Step 1, Consider matrix JJ_ = Y?V. as

JV-l '
(25) t*y=

rri

Step 2. Construct vector a = [QQ, #1, . . . , c*9] using equations (12);

•Sttep 3, Solve the (g + 1) x (q + 1) size linear equation (24),

Step 4- Obtain the coefficient vector a by using equation (22).

The above method has several special properties. Before illustrating it
by particular cases, these special features will be discussed,

1. Matrices V and U_ depend on only the selected integers q and JV,
and they are independent of the selected output-model and measurements.
Consequently they have to be computed only once and tabulated with their
inverses and (if needed) with their Cholesky's factorial form.

2. Matrix U_ is positive definite, since the rank of V_ is q + 1, which can
be seen from the fact that the (q + 1) x (g-f 1) matrix obtained from the first
(q -f 1) row of V. is a Vandermonde-matrix. This fact has two important
consequences. First, it guarantees that linear equation (24) has a unique
solution. Second, equation (24) can be solved by the numerically stable
Cholesky's factorization method.

3. For fixed values of q and JV, the output-model and measurements
y(ti — k) are shown up only in the components of vector a. Once fixed q
and JV are given, matrix (HI/"1) is tabulated, then the coefficient vector
a can be obtained by multiplying this matrix by vector a. The number of
operations in this multiplication equals TV x (q+ 1), since the type of matrix
VIZ"1 is N X (q-\- 1), and vector a is (q+ 1) dimensional. Similarly one may
verify that the number of additions and subtractions equals N X q.
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4, In computing and/or tabulating matrix V_U_~~*} for fixed values of
q and N useful recursive relations can be used, which make the computa-
tional procedure less expensive. In this paragraph these recursions will be
introduced. We shall consider two cases:

Case 1: q is replaced by q + 1 (for q < N — 1) ;

Case 2: N will be increased by one.

By using these procedures the results for different values of (q^N] can be
obtained according to the following scheme.

Assume first that the value of q is increased by 1. Then

(26)

where U_g and LLq+i are matrix U. with q and q-\- 1, respectively. Furthermore,
#Q and q can be described as

(27) 40 =

and //
(28) q=(

V
And the inverse of matrix (26) can also be expressed in block form as

(29) ' !£, = ,(£ f

We may assume that the inverse matrix is symmetric, since the same as-
sumption holds for matrix ILq+i - The definition of inverse implies that

that is,

(31) -
J/ + 9Q5 = 1

From the second equation of (31) we have

(32) l = Ulgs
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By substituting equation (32) into the third equation of (31) we obtain

(33) 5 = TT^T- 'qo-flLg^q

and by introducing vector JZ^"1? = L, equation (33) can be rewritten as

(34) s = ^ .
90-r r

Note that r is easy to obtain, since the inverse U~l is assumed to be known
from previous computations. After the value of s is computed, from equation
(32) we have
(35) y = -rs,

and from the first equation of (31) we conclude that

(36) X = U.-\L - qy_T} = U.-1 - LyT .

Hence the inverse of U_q can be obtained according to the following steps:

Step L Compute r = LL^£>

Step 2. Obtain 5,y and X_ by using equation (34), (35) and (36), respec-
tively.

Note that the computation of q needs only integer operations, so it is
inexpensive. Assuming that g is known, the entire procedure requires 0(q2)
floating point operations.

Now consider the second case, where N is increased by 1. Let LLiN) anc'
V_(N+I) denote matrix JZ with N and N + 1 respectively. Then

(37)

/ I N N2 ... \V N2

N2

V . . .

= U (N) B.
,T

with
r „ _ n T

(38) n =

First we shall prove that
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The assertion is verified by the multiplication

(40)

= Z + anTI - «Tr/-i „'n LL(N)&

= + n. s

Introduce vector U7^n = TTI, which can be easily computed, since IZTJm
is known from previous computations. Then equations (37) and (39) can be
combined to yield

In applying this formula, first vector ra is to be determined, which requires
(g+ I)2 floating-point operations. The computation of the coefficient of the
second term of equation (41) needs ( g + l ) + 2 = = g + 3 operations, and the
final use of equation (41) needs 2\' +(g+1) -f (^ -f i) operations, when we
used the symmetry of the matrix involved, (we must compute the elements in
and above the diagonal only). The total number of floating-point operations
required to solve equation (41) is 0(<?2), namely

(42) 2(( ?+l)2 + 3(<? + l) + 2,

which is again much cheaper than the direct solution of linear equations (24),
which needs at least 0(q3} operations.

3. Numerical examples

The above procedures will be now illustrated by numerical examples.
Example 1, Select q = 1, and m =• 1 with AQ =), AI = 1. In this case

the output is y (t,-+a), so a first order velocity predictor is to be found. By
using equation (12) we have

(43) OD = (.1).
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and

(44)
T'

Furthermore, ]7 can be computed from equation (25) to yield

N
(45) IL = (

since it is well known that

(46)

and

(47)

JV(JV-l) \ 1

N(N-l) ]V(JV-1)(2JV-1) I '
2 6 /

N-l JV(JV- 1)

k=0

Hence equation (24) has the form

u_fx°

,
H

(48)

that is,

(49)

Simple calculation shows that the solution is

(50)

N(N-l) A . JV(JV-1)(2^-1) x _ 1
o ^0 ~1 -- R ^1 — ~T

— 6
~~ T(JV+1)JV

Hence from equation (22),, we have

/ I 0 \ 1

(51) Ao + 2Aa

V A o + (JV-l)Aj

That is, for k = 0,1,2,,,., N - 1, equation (51) implies that

6 . -12
(52) ak =

T(N
6JV-6- 6(JV - 2fc - 1)

T(N + 1)N(N-1J~ T(N2-1)N '
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In summary, the first order velocity prediction has the form:

(53)

As a special case, set N = 2. Then ao and ai can be computed from equation
(52) to yield

(54) a0 =
T(3)2

and

(55)
_ 6(2-2-1) _ ±

Gl ~ T(3)2 " T '

Therefore the prediction at time (tj+ci\f the first order velocity predictor is

(56)

which coincides with the well known backward difference estimation
Example 2. By selecting q = 1 and N = 3 from equation (45) we know

that

^ V3 5

and easy calculation confirms that
/ 5 _ i

(58) IT1 = Ji ±<
V 2 2

First we shall increase the value of q by 1 (case 1), letting q + I = 2.
Using equations (58), (27) and (28), we have

5 _1

5i i5 i ,
2 2

(59)

and

(60)

Then
(61)

9o =

' 2

Ar=0

5c i
6 2
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and from equations (34), (59), (60) and (61)
i

1 1 3
(62) 3 = —J = 49 = - .

17-[5,9] I / ) i ( ~ 3
\ /

Then from equations (35) and (36) we have,

(63) £ = -

and
/ 5 _!\\ - ( 6 2 i _ f 3 ) f I _«M

— ~ I _I 1 J I 9 M 2» 6 )
\ 2 ' \ /
f £ — I \i 1 \ 1 — 2

(64) = ( -1 I' ) - I' -fi ) = -3 ll
\  2 / \1 u / V 2 2

Hence, from equations (29), (62), (63) and (64) we have

( 1 — - - \3 13 _o j
— o o —" I •

M £ I

2 ~"3 g /

This result can be checked out by verifying that the product of the computed
matrix U^1 and

/3 3 5 \) 1 / 2 = 3 5 9

\ 9 17/

equals the identity matrix, as it actually does. Equation (66) is derived from
equation (26).

Example 3. Select again q = 1 and N = 3. In this example N will be
increased by 1 (case 2), and the recursive algorithm for increasing N will be
illustrated. Using the notation of the algorithm and equations (66) and (38)
we know that

(67) %)=(3 J ) .

and
/ /"* o \I ol T(68) n = [1,3J ,

and since

(69) £<~3)=(_\
\ 9A A
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(70) m = £ (>=(A 7) (3) = (7
I _ 1 \ 1 \ 2

51 1
2 2

In order to apply equation (41) for updating the inverse of U_(N+I)-> we ^r

compute

(71)

and(72, -i^-^i
Therefore, from equation (41) we have

UT<\ 6,
1

~ 2
5
6

~ 2

I >
2

2 ^
_ i >

2

2 >

) - - (' 10 1
i 3 j
- —

' 10 (

'-r
^ 1 y

^ 9̂

^""3

h - ^ n/ ( 3' -1 ^
_ 2 \

3 I = 1i ; v
T
10

~To

3
10

5

This result can be easily checked by observing that (from equation (25))

( V3 7,0 y*3 7,1 \ o £. \ z^=o ^ A _ M b \3 U v-3 ,,2 J ~ I 6 14 J

2-,A-=0A> 2^k=0h J \  J^^/

and verifying that the product of H(4) and the computed inverse gives the
identity matrix, as it actually does.

4, Computer simulation

All predictors were tested with out battery of input signals that included:
sinusoids, triangular waveforms, parabolic waveforms, cubic waveforms, and
saccadic eye movements [15]. The frequencies of the periodic waveforms were
10 Hz and their amplitudes were 5 degrees. The saccades were 10 degrees
in amplitude. The step size was one millisecond. Computer programs were
written in the C programming language and were run on a VAX 11/750
with the UNIX operating system. Mean squared errors for 340 msec of
steady state tracing for the two-point linear predictor (TPLP), the five-point
quadratic predictor^FPQP), and the nine-point cubic predictor (NPCP) are
summarized in Tables 1,2 and 3.
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Table 1. Mean squared error of the TPLP (deg2)

1-step
5-step

10-step

Sinusoids
0.00019
0.04315
0.57151

Triangular
0.00317
0.17426
1.21980

Parabolic
0.00025
0.05420
0,68814

Cubic
0.00032
0.06770
0.83497

Saccades
0.00036
0.15814
0.64623

Table 2, Mean squared error of the FPQP (deg2)

1-step
5-step

10-step

Sinusoids
0.00001
0.00217
0.05967

Triangular
0.00558
0.45051
4.68845

Parabolic
0.00005
0.01068
0.19786

Cubic
0.00009
0.01919
0.34535

Saccades
0.00020
0.02032
0.35592

Table 3. Mean squared error of the NPCP (deg2)

1-step
5-step

10-step

Sinusoids
0.00000
0.00014
0,00634

Triangular
0.01014
1.34976

24.70490

Parabolic
0.00009
0.01922
0.44180

Cubic
0.00016
0.03648
0.83840

Saccades
0.00038
0.03618
0.78299

The sinusoid seemed to be the easiest for all predictors. While the tri-
angular wave with its abrupt turn arrounds was the most difficult for all
predictors. The NPCP predicted the sinusoids the best. The TPLP pre-
dicted the triangular (linear) wave the best. While the FPQP predicted the
parabolic (quadratic), cubic and saccades the best. We think the FPQP
did better on the cubic waveform than the NPCP, because of the junctions
between the individual cubic segments that were joined to form the periodic
waveform. None of these predictors did well for long range prediction, e.g.,
20 or 100 steps; other predictors worked better in this range [14, 16].

5. Conclusion

In conclusion, we have presented a general technique to design predictors
without the need for matrix inversions. Our technique can compute an
arbitrary number of points into the past, present or future. It can be used
for position, velocity, or acceleration. The general methodology is illustrated
in particular formulae.
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Appendix: A recursive identity

In deriving particular formulas (as for example in Example 1), closed
form representations of the sum as

JV-l
st = £ k< (i > o)

Jfc=0

seemed to be useful. Such representations can be derived in a recursive
manner as follows.

Obviously SQ — N — 1, and therefore the initial sum is known. Consider
now the identity

which is a simple application of the binomial theorem. By substituting
fc=l,2,...,JV — 1 into the above identity we obtain the following equations

•*•

(JV ~ 1}1 + (N ~ 1)0 (fc = ̂  ~ !) •

By adding these equations and cancelling the terms 2^+1 , 3^+1 , . . . , ( JV
from both sides we obtain the equation

- 1j.

from which we derive that
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This equation gives a recursive way to compute the quantities Sf.
Recursion (Al) is illustrated as

Sl = \ — ~

TV - 1 27V2 - TV _ N(N - 1)(2N - 1}

3

and similarly

[]V3 + TV2 + JV

and so on.
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