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Optimizing Baseball and Softball Bats

A. Terry Bahill

Abstract Collisions between baseballs, softballs and bats are complex and there-
fore their models are complex. One purpose of this paper is to show how complex
these collisions can be, while still being modeled using only Newton’s principles
and the conservation laws of physics. This paper presents models for the speed and
spin of balls and bats. These models and equations for bat-ball collisions are
intended for use by high school and college physics students, engineering students
and most importantly students of the science of baseball. Unlike in previous papers,
these models use only simple Newtonian principles to explain simple collision
configurations.

1 Précis of This Endeavor

This paper has two primary purposes: first, to help a batter select or create an
optimal baseball or softball bat and second, to create models for bat-ball collisions
using only fundamental principles of Newtonian mechanics (Table 1). We note that
force, velocity, acceleration, impulse and momentum are all vector quantities,
although we do not specifically mark them as such.

Newton’s principles of motion are idealized as

I. Inertia. Every object either remains at rest or continues to move at a constant
velocity, unless acted upon by an external force.

∑F =0 ⇔ dv ̸dt =0
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Table 1 List of variables, inputs, parameters, constants and their abbreviations

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

βbat− knob β Angular velocity of the bat
about the knob

rad/s rpm

CoE Conservation of energy Joules
CoM Conservation of momentum kgm ̸s
CoAM Conservation of angular

momentum
kgm2 ̸s

CoR Coefficient of restitution of
a bat-ball collision

0.55 0.55

dbat Length of the bat 0.861 m 34 in.
dbat− cm− ss dcm− ss

d

Distance from the center of
mass to the sweet spot,
which we define as the
Center of Percussion

0.134 m 5.3 in.

dbat− knob− cm dkcm Distance from the center of
the knob to the center of
mass

0.569 m 22.4 in.

dbat− knob− ss dkss Distance from the center of
the knob to the sweet spot

0.705 m 27.8 in.

dbat− pivot− cm Distance from the pivot
point to the center of mass

0.416 m 16.4 in.

dspine− cm Distance from the batter’s
spine to the center of mass
of the bat, an
experimentally measured
value

1.05 m 41 in.

dbat− ss− end Distance from the sweet
spot to the barrel end of the
bat

0.149 m 5.9 in.

g Earth’s gravitational
constant (at the UofA)

9.718 m/s

Iball I1 Moment of inertia of the
ball with respect to its
center of mass

0.000079 kg m2

Ibat− cm I2 Moment of inertia of the bat
with respect to rotations
about its center of mass

0.048 kg m2

Ibat− knob Ik Moment of inertia of the bat
with respect to rotations
about the knob

0.341 kg m2

Ibat− pivot Moment of inertia of the bat
with respect to the pivot
point between the hands

0.208 kg m2

(continued)
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Table 1 (continued)

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

KEbefore Kinetic energy of the bat
and the ball before the
collision

375 J

KEafter Kinetic energy of the bat
and the ball after the
collision

216 J

KElost Kinetic energy lost or
transformed in the collision

158 J

mball m1 Mass of the baseball 0.145 kg 5.125 oz
mbat m2 Mass of the bat 0.905 kg 32 oz
m̄ m̄= mballmbat

mball +mbat
0.125 kg 4.4 oz

μf Dynamic coefficient of
friction for a ball sliding on
a wooden bat

0.5

rball r1 Radius of the baseball 0.037 m 1.45 in.
rbat r2 Maximum allowed radius

of the bat
0.035 m 1.37 in.

pitch speed Speed of the ball at the
pitcher’s release point

−46 −92a mph

vball− before v1b Velocity of the ball
immediately before the
collision, 90% of pitch
speed

−37 m/s −83a mph

vball− before−Norm v1bN Normal component of
curveball velocity before
collision, vball− before cos 6

◦

−36.8 m/s −82.3 mph

vball− before−Tan v1bT Tangential component of
curveball velocity before
collision, vball− before sin 6

◦

−3.9 m/s −8.7 mph

vball− after v1a Velocity of the ball after the
collision, often called the
launch speed or the batted-
ball speed.

41.6 m/s 93 mph

vbat v2 Velocity of the bat. If a
specific place or time is
intended then the subscript
may contain cm (center of
mass), ss (sweet spot),
before (b) or after (a).

(continued)
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II. Impulse and Momentum. The rate of change of momentum of a body is
directly proportional to the force applied and is in the direction of the applied
force.

F =
dðmvÞ
dt

⇔F =ma

Table 1 (continued)

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

vbat− cm− before v2cmb Velocity of the center of
mass of the bat before the
bat-ball collision.

23 m/s 51 mph

vbat− cm− after v2cma Velocity of the center of
mass of the bat after the
collision.

10.4 m/s 23 mph

vbat− ss− before v2ssb Velocity of the sweet spot
of the bat before the
collision.

26 m/s 58a mph

vbat− ss− after v2ssa Velocity of the sweet spot
of the bat after the collision.

12 m/s 27 mph

ωball− before ω1b Angular velocity of the ball
about its center of mass
before the collision. This
spin rate depends on the
particular type of pitch.

±209 rad/s ±2000 rpm

ωball− after ω1a Angular velocity of the ball
about its center of mass
after the collision

±209 rad/s ±2000 rpm

ωbat− before ω2b Angular velocity of the bat
about its center of mass
before the collision

Near zero

ωbat− after ω2a Angular velocity of the bat
about its center of mass
after the collision

−32 rad/s −303 rpm

ωspine− before Angular velocity of the
batter’s arms and the bat
about the spine

21 rad/s 201 rpm

aThe equations of this paper concern variables right before and right after the collision, not at other
times. For example, a pitcher could release a fastball with a speed of 92 mph, by the time it got to
the collision zone it would have slowed down by 10% to 83 mph. Therefore, in our simulations we
used 83 mph for vball− before
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Stated differently, the change of momentum of a body is proportional to the
impulse applied to the body, and has a direction along the straight line upon which
that impulse is applied. An impulse J occurs when a force F acts over an interval of
time Δt, and it is given by J =

R
Δt Fdt. Since force is the time derivative of

momentum, it follows that J =Δp=mΔv. Applying an impulse changes the
momentum.

III. Action/reaction. For every action there is an equal and opposite reaction.
IV. Restitution. The ratio of the relative speeds after and before the collision is

defined as the coefficient of restitution (CoR). The relative speed of two
objects after a collision is a fixed fraction of the relative speed before the
collision, regardless of whether one object or the other is initially at rest or
the objects are approaching each other. The CoR models the energy lost in a
collision.

In this paper, we will use these four principles of Newton. We will also use the
overarching conservation laws that state, energy, linear momentum and angular
momentum cannot be created or destroyed. These laws are more general than the
principles and apply in all circumstances.

2 Bat-Ball Collisions

In this paper, we are modeling a point in time right before the bat-ball collision and
its relationship with another point just after the collision. We are not modeling the
behavior (1) during the collision, (2) long before the collision (the pitched ball) or
(3) long after the collision (the batted-ball). The flight of the ball has been modeled
by Bahill et al. (2009).

My model is for a head-on collision at the sweet spot (ss) of the bat, which I
define to be the Center of Percussion (Bahill 2004). Figure 1 is a diagram of such a
collision. All figures are drawn for a right-handed batter. This type of analysis was
done by Watts and Bahill (1990, 2000). It would produce a “line drive” back to the
pitcher.

Fig. 1 Model for a collision at the sweet spot (ss) of the bat
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3 Equations for Bat-Ball Collisions

3.1 Collisions at the Center of Mass

The literature is abound with linear collisions at the center of mass of an object. In
these, kinetic energy is transformed into heat in the ball, vibrations in the bat,
acoustic energy in the “crack of the bat” and deformations of the bat or ball. The
Coefficient of Restitution (CoR) models the energy that is transformed in a fric-
tionless head-on collision between two objects. The equation for the kinetic energy
lost in a head-on bat-ball collision at the center of mass (Dadouriam 1913, Eq. (XI),
p. 248; Ferreira da Silva 2007, Eq. 23; Brach 2007, Eq. 3.7) is

KElost =
m̄
2

collision velocityð Þ2 1−CoR2
1b

� �
where m̄=

mballmbat

mball +mbat

KElost =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2
1b

� � ð1Þ

3.2 Collisions at the Sweet Spot

3.2.1 Coordinate System

We use a right-handed coordinate system with the x-axis pointing from home plate
to the pitching rubber, the y-axis points from first base to third base, and the z-axis
points straight up. A torque rotating from the x-axis to the y-axis would be positive
upward. Over the plate, the ball comes downward at a 10° angle and the bat usually
moves upward at about 10°, so later the z-axis will be rotated back 10°.

3.2.2 Assumptions

We made the following assumptions:

A1. We assumed a head-on collision at the sweet spot of the bat.
A2. We neglected permanent deformations of the bat and ball.
A3. We assumed that there were no tangential forces during the collision.
A4. In this paper, we did not model the moment of inertia of the batter’s arms.
A5. Collisions at the Center of Percussion produce a rotation about the center of

mass, but no translation of the bat.
A6. The collision duration is short, for example, one millisecond.
A7. Because the collision duration is short and the swing is level, we ignored the

effects of gravity during the collision.
A8. The Coefficient of Restitution (CoR) for a baseball wooden-bat collision at

major-league speeds is about 0.55.
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A9. The dynamic coefficient of friction has been measured by Bahill at μf =0.5.
This agrees with measurements by Sawicki et al. (2003) and Cross and
Nathan (2006).

A10. Air density affects the flight of the batted-ball. And air density is inversely
related to altitude, temperature and humidity, and is directly related to
barometric pressure. Of these four, altitude is the most important factor
(Bahill et al. 2009). We did not consider these four parameters in this paper,
because they are for the flight of the ball, not the collision.

3.2.3 Experimental Validation Data

The experimental data in Table 1 are based on the following assumptions. The
batter is using a Louisville Slugger C243 wooden bat and is hitting a regulation
major-league baseball. The ball speed at the plate is −83 mph. The velocity of the
sweet spot of the bat is 58 mph: this is the average value of the data collected from
28 San Francisco Giants measured by Bahill and Karnavas (1991). These velocities
produce a CoR of 0.55 and a batted-ball speed of 97 mph, as will be shown in
Table 7. Using an ideal launch angle of 31°, we find a batted-ball spin of
−2100 rpm (Baldwin and Bahill 2004). With these values, the ball would travel 350
feet, which could produce a home run in all major-league stadiums.

3.2.4 The Model

The model of this paper is for a collision at the sweet spot of the bat with spin on
the pitch. The model for the movement of the bat is a translation and a rotation
about the center of mass. It has five equations and five unknowns, which are shown
in Table 2.

Definition of Variables

To visualize these variables please refer to Fig. 2.

Inputs vball− before,ωball− before, vbat− cm− before,ωbat− before andCoR
vball− before is the linear velocity of the ball in the x-direction before the collision.
ωball− before is the angular velocity of the ball about its center of mass before the

collision.
vbat− cm− before is the linear velocity of the center of mass of the bat in the

x-direction before the collision.
ωbat− before is the angular velocity of the bat about its center of mass before the

collision.
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Fig. 2 This figure shows vball− before, vbat− cm− before, vball− after and dcm− ssωbat, which are used to
define the coefficient of restitution

CoR2b is the coefficient of restitution.
Outputs vball− after, ωball− after, vbat− ss− after, ωbat− after andKElost

vball− after is the linear velocity of the batted-ball in the x-direction after the
collision.

ωball− after is the angular velocity of the ball about its center of mass after the
collision.

vbat− ss − after is the linear velocity of the sweet spot of the bat in the x-direction
after the collision.

ωbat− after is the angular velocity of the bat about its center of mass after the
collision.

KElost is the kinetic energy lost or transformed in the collision.
We want to solve for vball− after,ωball− after, vbat− cm− after,ωbat− after andKElost.
We will use the following fundamental equations of physics: Conservation of

Energy, Conservation of Linear Momentum, the Definition of Kinematic CoR,
Newton’s Second Principle and the Conservation of Angular Momentum.

Condensing the Notation for the Equations

First, we want to simplify our notation. We will now make the following substi-
tutions. These abbreviations are contained in Table 1, but for convenience, we
repeat them here.

dcm− ss = d

Ibat = I2
mball =m1

mbat =m2

vball− before = v1b
vball− after = v1a

vbat− cm− before = v2b
vbat− cm− after = v2a

ωbat− before =ω2b

ωbat− after =ω2a

These substitutions produce the following equations.
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Conservation of Energy

The law of conservation of energy states that energy will not be create or destroyed.

1
2
mballv2ball− before +

1
2
Iballω2

ball− before +
1
2
mbatv2bat− cm− before +

1
2
Ibatω2

bat− before

=
1
2
mballv2ball− after +

1
2
Iballω2

ball− after +
1
2
mbatv2bat− cm− after +

1
2
Ibatω2

bat− after +KElost

ð2Þ

m1v21b +m2v22b + I2ω2
2b = +m1v21a +m2v22a + I2ω2

2a + 2KElost ð2sÞ

In the label (3s), “s” stands for short.

Conservation of Linear Momentum

The law of conservation of linear momentum states that linear momentum will be
conserved in a collision if there are no external forces. We will approximate the
bat’s motion before the collision with the tangent to the curve of its arc as shown in
Fig. 2. For a collision anywhere on the bat, every point on the bat has the same
angular velocity, but the linear velocities will be different, which means that
vbat− before is a combination of translations and rotations unique for each point on
the bat. Conservation of momentum in the direction of the x-axis states that the
momentum before plus the external impulse will equal the momentum after the
collision. There are no external impulses during the bat-ball collision: therefore, this
is the equation for Conservation of Linear Momentum

mballvball− before +mbatvbat− cm− before =mballvball− after +mbatvbat− cm− after ð3Þ

m1v1b +m2v2b =m1v1a +m2v2a ð3sÞ

Definition of the Coefficient of Restitution

The kinematic Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as
the ratio of the relative velocity of the two objects after the collision to the relative
velocity before the collision.

In our models, for a collision at the sweet spot (ss) of the bat we have

CoR2b = −
vball− after − vbat− cm− after − dcm− ssωbat− after

vball− before − vbat− cm− before − dcm− ssωbat− before
ð4Þ

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b
ð4sÞ

These variables are illustrated in Fig. 2. A note on notation: ωbat− after is the
angular velocity of the bat about its center of mass after the collision and
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vbat− cm− before is the linear velocity of the center of mass of the bat in the
x-direction before the collision: this is a combination of translation and rotation.

Newton’s Second Principle

Watts and Bahill (1990) derived the following equation from Newton’s second
principle that states that a force acting on an object produces acceleration in
accordance with the equation F =ma. If an object is accelerating, then its velocity
and momentum is increasing. This principle is often stated as; applying an
impulsive force to an object will change its momentum. According to Newton’s
third principle, when a ball hits a bat at the sweet spot there will be a force on the
bat in the direction of the negative x-axis, let us call this −F1, and an equal but
opposite force on the ball, called F1. This force will be applied during the duration
of the collision. When a force is applied for a short period of time, it is called an
impulse. According to Newton’s second principle, an impulse will change
momentum. The force on the bat will create a torque of − dcm− ssF1 around the
center of mass of the bat. An impulsive torque will produce a change in angular
momentum of the bat.

− dcm− ssF1tc = Ibatðωbat− after −ωbat− beforeÞ

Now this impulse will also change the linear momentum of the ball.

F1tc =mballðvball− after − vball− beforeÞ

Multiply both sides of this equation by dcm− ss and add these two equations to get

dcm− ssmballðvball− after − vball− beforeÞ= − Ibatðωbat− after −ωbat− beforeÞ ð5Þ

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ ð5sÞ

For now, we have ignored ωball. We will reconsider this later.

Conservation of Angular Momentum

The initial and final angular momenta comprise ball translation, ball rotation, bat
translation and bat rotation about its center of mass.

Linitial =Lfinal

m1v1bd+ I1 +m1d2
� �

ω1b + I2ω2b

= +m1v1ad+ I1 +m1d2
� �

ω1a + I2ω2a
ð6sÞ
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Summary of abbreviations that will be used in the following sections, with units:

C= v1b − v2b − dω2b m ̸s

D=
m1d2

I2
unit less

K = ðm1I2 +m2I2 +m1m2d2Þ kg2 m2

L= v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ kg2 m3 ̸s

m̄=
m1m2

m1 +m2
kg

Note that none of these abbreviations contains the outputs
vball− after,ωball− after, vbat− cm− after,ωbat− after andKElost. The most useful abbrevia-
tions are the ones that are constants independent of velocities after the collision.
These abbreviations are only used during the derivations. They are removed from
the output equations. We will now use the Newtonian principles in Eqs. (3)–(5) to
find vball− after, vbat− cm− after, andωbat− after.

Finding Ball Velocity After the Collision

First, we solve for vball− after.
Start with Eq. (5) and solve for ω2a

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

This equation was derived from Eq. (5). We will use this expression repeatedly.
We know that for baseball and softball ω2b is close to zero, but for generality, we
will leave it in for as long as we can.

Next, we use Eq. (4) and solve for v2a

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b

CoR2b v1b − v2b − dω2bð Þ= − v1a + v2a + dω2a

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− dω2a

This equation was derived from Eq. (4). We will use this expression repeatedly.
Next, substitute ω2a into this v2a equation. We put substitutions in squiggly braces
{} to make it obvious what has been inserted.
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v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− d ω2b −
dm1

I2
ðv1a − v1bÞ

� �

Let D= m1d2
I2

and C= v1b − v2b − dω2b

v2a = v1a + Df gðv1a − v1bÞ+CoR2b Cf g− dω2b

v2a = v1að1+DÞ− v1bD+CoR2bC − dω2b

Now substitute this m2v2a into Eq. (3)

m1v1b +m2v2b =m1v1a + m2v1að1+DÞ−m2Dv1b +m2CoR2b C−m2dω2bf g

Replace the dummy variables C and D and

v1a m1 +m2 +
m1m2d2

I2

� �
= v1b m1 +

m1m2d2

I2
−m2CoR2b

� �
+m2v2b

+m2CoR2bv2b +ω2bm2dð1+CoR2bÞ

Multiply by I2.

v1a m1I2 +m2I2 +m1m2d2
� 	

= v1b m1I2 +m1m2d2 −m2CoR2bI2
� 	

+m2v2bI2
+m2CoRv2b I2 +ω2bm2dI2ð1+CoR2bÞ

Rearrange

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1+CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

ð7Þ

This equation was derived from Eqs. (3)–(5).
Now we want to rearrange this normal form equation into its canonical form.

LetK = m1I2 +m2I2 +m1m2d2
� �

L= v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

v1a =
v1b m1I2 −m2I2CoR2b +m1m2d2ð Þ

K
+

L
K

add v1b −
v1bK
K


 �
to the right side

Optimizing Baseball and Softball Bats 193



v1a = v1b +
v1b m1I2 −m2I2CoR2b +m1m2d2ð Þ− v1b m1I2 +m2I2 +m1m2d2ð Þ

K
+

L
K

v1a = v1b +
− v1bm2I2ð1+CoR2bÞ+L

K

Finally, we get the canonical form:

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2
ð8Þ

This equation was derived from Eqs. (3)–(5).

vball− after = vball− before −
vball− before − vbat− cm− beforeð ÞmbatIbat 1 +CoR2bð Þ−ωbat − beforembatdIbatð1+CoR2bÞ

mballIbat +mbatIbat +mballmbatd2cm− ss

Finding Bat Velocity After the Collision

We solve for vball− after. As before, we start with Eq. (5) and solve for ω2a

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

Next use Eq. (4) and solve for v2a

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− dω2a

We will use this expression repeatedly. Substitute ω2a into this v2a equation. I put
the substitution in squiggly braces {} to make it obvious what has been inserted.

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− d ω2b −
dm1

I2
ðv1a − v1bÞ

� �

Let C= v1b − v2b − dω2b

v2a = v1a +
m1d2

I2
ðv1a − v1bÞ+CoR2b Cf g−ω2bd

Equation (7) in the previous section is
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v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

K

� �

Put this into both places for v1a in the v2a equation above.

v2a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

K

� �

+
m1d2

I2
ð v1b −

v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ
K

� �
− v1bÞ

+CoR2bC−ω2bd

Now multiply by K

Let us break up the v1b − v2bð Þ terms and substitute C= v1b − v2b − dω2b.

v2aK = v1bK − v1bm2I2 1+CoR2bð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ
− v1bm1m2d2 1 +CoR2bð Þ+ v2bm1m2d2 1 +CoR2bð Þ+ω2bm1m2d3ð1+CoR2bÞ
+ v1bCoR2b K − 2bvCoR2b K −ω2bdKð1+CoRÞ

Rearrange

v2aK = v1bK − v1bm2I2 1 +CoR2bð Þ− v1bm1m2d2 1 +CoR2bð Þ+ v1bCoR2b K

+ v2bm2I2 1 +CoR2bð Þ+ v2bm1m2d2 1 +CoR2bð Þ− v2bCoR2b K

+ω2bm2dI2ð1+CoR2bÞ+ω2bm1m2d3ð1+CoR2bÞ−ω2bdKð1+CoRÞ

Now let us break up the 1+CoR2bð Þ terms.

v2aK = v1bK − v1bm2I2 − v1bm2I2CoR2b − v1bm1m2d2 − v1bm1m2d2CoR2b + v1bCoR2b K

+ v2bm2I2 + v2bm2ICoR2b + v2bm1m2d2 + v2bm1m2d2CoR2b − v2bCoR2bK

+ω2bm2dI2 +ω2bm2dI2CoR2b +ω2bm1m2d3 +ω2bm1m2d3CoR2b −ω2bdK −ω2bdKCoR2b

Are any of these terms the same? No. OK, now let’s substitute
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K = m1I2 +m2I2 +m1m2d2ð Þ and hope for cancellations.

The terms in color cancel, leaving

v2aK = v1bm1I2ð1+CoR2b Þ+ v2bð−m1I2CoR2b +m2I2 +m1m2d2Þ−ω2bm1dI2ð1+CoR2bÞ

Continuing

Finally divide by K

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ

This equation was derived from Eqs. (3)–(5) and (7). We can change this into
our normal form by first combining the two terms over one common denominator.

v2a = v2b
m1I2 +m2I2 +m1m2d2ð Þ
m1I2 +m2I2 +m1m2d2ð Þ +

ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2ð Þ

=
v2b m1I2 +m2I2 +m1m2d2ð Þ+ ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ

and then simplifying

v2a =
v2b −m1I2CoR2b +m2I2 +m1m2d2ð Þ+ v1bm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
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or we can write this more compactly as

v2aK = v2b −m1I2CoR2b +m2I2 +m1m2d2
� �

+ v1bm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

Finding the Bat Angular Velocity After the Collision

Now we want to find ω2a (the angular velocity of the bat after the collision) in terms
of the input parameters. We know that ω2b is about zero, but for generality, we will
leave it in for now.

This is v1a from the canonical form of Eq. (7).

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

� �

From Eq. (5) solve for ω2a

ω2a =ω2b −
m1d
I2

ðv1a − v1bÞ

Substitute v1a into this equation for ω2a

Finally

ω2a =ω2b +
v1b − v2bð Þm1m2d 1+CoRð Þ−ω2bm1m2d2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

This equation was derived from Eqs. (5) and (7). We can change this into our
normal form by first combining the two terms over one common denominator.

Cancel duplicate terms and we get the normal form
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ω2a =
ω2b m1I2 +m2I2 −m1m2d2CoR2bð Þ+ v1b − v2bð Þm1m2d 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

Three Output Equations in Three Formats

Wewill now summarize by giving equations for vball− after, vbat− cm− after and ωbat− after

in three formats. First normal form

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

v2a =
v2b −m1I2CoR2b +m2I2 +m1m2d2ð Þ+ v1bm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =

ω2b m1I2 +m2I2 −m1m2d2CoR2bð Þ+ v1b − v2bð Þm1m2d 1+CoR2bð Þ
m1I2 +m2I2 +m1m2d2

Second canonical form

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =ω2b +

v1b − v2bð Þm1m2d 1+CoR2bð Þ−ω2bm1m2d2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2

Now let

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

and we get our reduced canonical form:

v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

Please note that A is not a constant. It depends on the inputs v1b, v2b and ω2b.
Also, notice that ωball does not appear in these output equations. It will appear later.
We now want to add the equation for conservation of energy, Eq. (2).
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Adding Conservation of Energy and Finding KElost

This approach, of adding conservation of energy to the bat-ball collision equations,
is unique in the science of baseball literature. For a head-on collision at the center of
mass of the bat, we had that

KElost− config− cm =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2
1b

� � ð9Þ

However, for a collision at the sweet spot this equation for kinetic energy lost is
not valid, because we now also have angular kinetic energy in the rotation of the bat.
There are no springs in the system and the bat swing is level, therefore there is no
change in potential energy. Before the collision, there is kinetic energy in the bat
created by rotation of the batter’s body and arms plus the translational kinetic energy
of the ball. In Fig. 2, the sweet spot is the distance dcm− ss from the center of mass.

KEbefore =
1
2
mballv2ball− before +

1
2
mbatv2bat− cm− before +

1
2
Iballω2

ball− before +
1
2
Ibatω2

bat− before

As always, ω means rotation about the center of mass of the object. The collision
will make the bat spin about its center of mass. If the collision is at the Center of
Percussion for the pivot point, it will produce a rotation about the center of mass,
but no translation.

KEafter =
1
2
mballv2ball− after +

1
2
mbatv2bat− cm− after +

1
2
Iballω2

ball− after +
1
2
Ibatω2

bat− after

We now add kinetic energy of the rotating curveball. We will add two terms with
ball spin 1

2 Iballω
2
ball− before and

1
2 Iballω

2
ball− after

� �
to the Conservation of Energy

equation, to create

1
2
mballv2ball− before +

1
2
mbatv2bat− cm− before +

1
2
Iballω2

ball− before +
1
2
Ibatω2

bat− before

=
1
2
mballv2ball− after +

1
2
mbatv2bat− cm− after +

1
2
Iballω2

ball− after +
1
2
Ibatω2

bat− after +KElost

KEbefore =KEafter +KElost

The KEbefore and the KEafter > are easy to find. It is the KElost that is hard to find.

In the next section on “Adding Conservation of Angular Momentum,” we will
prove that for head-on collisions without friction ωball− before =ωball− after. Therefore,
the ball spin terms in these conservation of energy equations cancel resulting in

0=m1v21b +m2v22b + I2ω2
2b −m1v21a −m2v22a − I2ω2

2a − 2KElost
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From before, we have

A=
v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
v1a = v1b −Am2I2
v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

ω1a =ω1b

Substituting v1a, v2a and ω2a into the new conservation of energy equation yields

KElost =
1
2

m1v21b +m2v22b + I2ω2
2b −m1 v1b −Am2I2ð Þ2

−m2 v2b +Am1I2ð Þ2 − I2 ω2b +Am1m2dð Þ2
( )

Now we want to put this into the form that we had for Eq. (1). The following
derivation is original. First, expand the squared terms.

Rearrange

2KElost = 2v1bAm1m2I2 − 2v2bAm1m2I2 −A2m2
1m2I22 −A2m1m2

2I
2
2 − 2ω2bAm1m2d+A2m2

1m
2
2d

2� �
I2

factor

2KElost =Am1m2I2 2ðv1b − v2bÞ−Aðm1I2 +m2I2 +m1m2d2Þ− 2ω2bd
� 	

Substitute A

2KElost =Am1m2I2 2ðv1b − v2bÞ− v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
ðm1I2 +m2I2 +m1m2d2Þ− 2ω2bd

� �
2KElost =Am1m2I2 2ðv1b − v2bÞ− v1b − v2bð Þ 1+CoR2bð Þ+ dω2b − 2ω2bd½ �
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factor ðv1b − v2bÞ out of the first two terms

2KElost =Am1m2I2 v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

substitute A

2KElost =
v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
m1m2I2 v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

2KElost =
m1m2I2

m1I2 +m2I2 +m1m2d2
v1b − v2bð Þ 1+CoR2bð Þ− dω2bf g v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

After a little bit of algebra we get

2KElost =
m1m2I2

m1I2 +m2I2 +m1m2d2
v1b − v2bð Þ2ð1−CoR2

2bÞ− 2 v1b − v2bð Þω2bd+ω2
2bd

2
h i

KElost =
1
2

m1m2I2
m1I2 +m2I2 +m1m2d2

v1b − v2bð Þ2ð1−CoR2
2bÞ− 2 v1b − v2bð Þω2bd+ω2

2bd
2

h i

This is a general result. It is original and unique. For a collision at the center of
mass, d = 0. Therefore,

KElost =
1
2

m1m2

m1 +m2
v1b − v2bð Þ2ð1−CoR2Þ

When we substitute, m̄= m1m2
m1 +m2

we get

KElost =
m̄
2

v1b − v2bð Þ2ð1−CoR2Þ ð10Þ

Which is the same as the following equation that has been derived in the
literature.

KElost =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2� �

Adding Conservation of Angular Momentum

In this section, we will prove that for a head-on collision without considering
friction for a pitch of any spin there will be no change in the spin of the ball. To do
this we will use the law of conservation of angular momentum about the center of
mass of the bat. When the ball contacts the bat, as shown in Fig. 3, the ball has
linear momentum of mballvball− before. However, the ball does not know if it is
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translating or if it is tied on a string and rotating about the center of mass of the bat.
Following conventional physics, we will model the ball as rotating about the bat’s
center of mass at a distance d= dcm− ss. Therefore, the ball has an initial angular
momentum of mballdcm− ssvball− before about the bat’s center of mass. In addition, it is
possible to throw a curveball so that it spins about the vertical, z-axis, as also shown
in Fig. 3. We call this a purely horizontal curveball (although it will still drop due to
gravity, more than it will curve horizontally). The curveball will have angular
momentum of Iballωball− before where Iball = 0.4mballr2ball about an axis parallel to the
z-axis. However, this is its momentum about its center of mass and we want the
momentum about the center of mass of the bat. Therefore, we use the parallel axis
theorem producing Iball +mballd2ð Þωball− before.

The bat has an initial angular momentum of Ibatωbat− before. It also has an angular
momentum about the bat’s center of mass of due to the bat translation momentum
mbatdvbat− before, however, in this case d=0 because the center of mass of the bat is
passing through its center of mass. L is the symbol used for angular momentum.
I guess all the cool letters (like F, m, a, v, I, ω, d, etc.) were already taken, so they
were stuck with the blah symbol L. Therefore, the initial angular momentum about
the center of mass of the bat is

Linitial =m1v1bd+ I1 +m1d2
� �

ω1b + I2ω2b

All of these momenta are positive, pointing out of the page.
For the final angular momentum, we will treat the ball, as before, as an object

rotating around the axis of the center of mass of the bat with angular momentum,
mballvball− afterdcm− ss. Now we could treat the bat as a long slender rod with a
moment of inertia of mbatd2bat ̸12, where dbat is the bat length. However, this is only
an approximation and we have actual experimental data for the bat moment of
inertia. Therefore, the bat angular momentum is Ibatωbat− after. Thus, our final
angular momentum about the center of mass of the bat is

Lfinal =m1v1ad+ I1 +m1d2
� �

ω1a + I2ω2a

Fig. 3 This figure shows vball− before, vball− before, ωball, dcm− ss and ωbat, which are used in the
conservation of angular momentum equation
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The law of conservation of angular momentum states that the initial angular
momentum about some axis equals the final angular momentum about that axis.

Linitial =Lfinal
m1v1bd+ I1 +m1d2ð Þω1b + I2ω2b =m1v1ad+ I1 +m1d2ð Þω1a + I2ω2a

Previously we used Eq. (5), Newton’s second principle and solved for ω2a.

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ ð11Þ

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

So let us substitute this into our conservation of angular momentum equation
above.

m1v1bd+ I1ω1b +m1ω1bd2 + I2ω2b =m1v1ad+ I1ω1a +m1ω1ad2 + I2 ω2b +
dm1

I2
ðv1b − v1aÞ

� �

We want to solve this for ω1a

We have now proven that for a pitch with any spin about the z-axis, the spins
before and after are the same. What about a pitch that has spin about the z-axis and
also about the y-axis, like most pitches? The collision will not change ball rotation.
As shown above, it will not change the spin about the z-axis. We could write
another set of equations for angular momentum about the y-axis. However, the bat
has no angular momentum about the y-axis, so there is nothing to affect the ball spin
about the y-axis. In conclusion, a head-on collision between a bat and a ball will not
change the spin on the ball. Some papers have shown a relationship between ball
spin before and ball spin after, but they were using oblique collisions (Nathan et al.
2012; Kensrud et al. 2016) (Table 3).

The numbers in the Excel simulation satisfy the following checks: (1) Conser-
vation of linear momentum, (2) Conservation of angular momentum, (3) Coefficient
of restitution, (4) Newton’s second principle, an impulse changes momentum,
(5) Conservation of energy and (6) Kinetic energy lost. Table 4 shows the kinetic
energies for the same simulation.

The first purpose of this paper is to model bat-ball collisions using only New-
ton’s principles and the conservation equations. We did it. Our equations are
complete, consistent and correct.
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3.2.5 Analytic Sensitivity Analysis

The second purpose of this paper is to show how the batter can select and tailor an
optimal baseball or softball bat. From the viewpoint of the batter, the only model
output that is important is the speed of the batted-ball. Therefore, we will now find the
sensitivity of the batted-ball speed, vball− after, with respect to the system parameters.
The eight system parameters are vball− before, mball, Ibat, mbat, CoR2b, dcm− ss,
vbat− cm− before and ωbat− before. For baseball and softball, the batted− ball speed, v1a,
is the most important output. The larger it is the more likely the batter will get on base
safely (Baldwin and Bahill 2004). Therefore, let us start with v1a from Eq. (7).

Table 4 Kinetic energies

KE ball linear velocity before 99.3
KE bat linear velocity before 304.2
KE ball angular velocity before 1.7
KE bat angular velocity before 0.0
KE before total 405.2
KE ball linear velocity after 136.1
KE bat linear velocity after 77.2
KE ball angular velocity after 1.7
KE bat angular velocity after 25.2
KE after 240.2
KE loss 165.0
KE after + KE loss 405.2

Table 3 Simulation values for bat-ball collisions at the sweet spot

SI units (m/s, rad/s, or J) Baseball units

Inputs

vball− before −37 −83 mph
ωball− before 209 2000 rpm
vbat− cm− before 26 58 mph
ωbat− before 0.1 1 rpm
CoR2b 0.55
Outputs

vball− after 43 97 mph
ωball− after =ωball− before

vbat− cm− after 13 29 mph
ωbat− after −32 −310 rpm
KElost 165
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v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

In order to perform an analytic sensitivity analysis we first need the partial
derivatives of v1a with respect to the eight parameters. These partial derivatives are
often called the absolute sensitivity functions. Move the minus sign and simplify
the numerator.

v1a = v1b +
1+CoR2bð Þ − v1b + v2bð Þm2I2 +ω2bm2dI2½ �

m1I2 +m2I2 +m1m2d2ð Þ

Let K = m1I2 +m2I2 +m1m2d2ð Þ
H = 1+CoR2bð Þ − v1b + v2bð Þm2I2 +ω2bm2dI2½ �
v1a = v1b +

H
K

∂v1a
∂v1b

= 1−
m2I2 1 +CoR2bð Þ

K
unitless

∂v1a
∂ω2b

=
m2dI2 1 +CoR2bð Þ

K
m

∂v1a
∂CoR2b

=
− v1b + v2bð Þm2I2 +ω2bm2dI2

K
m ̸s

∂v1a
∂v2b

=
m2I2 1 +CoR2bð Þ

K
unitless

Alternatively, we could start with

v1a = v1b −Am2I2

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

v1a = v1b −
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �
m2I2

∂v1a
∂v2b

=
m2I2 1 +CoR2bð Þ

K

This gives the same result. For the following partial derivatives, we need the
derivative of a quotient.

f ðxÞ
gðxÞ

� �′
=

gðxÞf ′f ′ðxÞ− f ðxÞg′ðxÞ
gðxÞ½ �2

∂v1a
∂d

=
1+CoR2bð ÞKm2ω2bI2 − 2Hm1m2d

K2 1 ̸s

Optimizing Baseball and Softball Bats 205



∂v1a
∂m2

=
K 1+CoR2bð Þ − v1b + v2bð ÞI2 +ω2bdI2f g−H I2 +m1d2ð Þ

K2 m ̸kg s

∂v1a
∂m1

= −
ðI2 +m2d2ÞH

K2 m ̸kg s

∂v1a
∂I2

=
K 1+CoR2bð Þ − v1b + v2bð Þm2 +ω2bm2d½ �−H m1 +m2ð Þ

K2 1 ̸kgm s

∂
2v1a

∂v2b∂m2
=

I2 1 +CoR2bð Þ K −m2ðI2 +m1d2Þ½ �
K2 1 ̸kg

In the above partial derivatives, units on the left and right sides of the equations
are the same. This is a simple, but important accuracy check. We perform such a
dimensional analysis on all of our equations.

We did not show the derivations of all of the second-order partial derivatives.
We choose the interaction of the bat mass and the bat speed, above, because it was
expected to be large based on principles of physiology. Additionally, the forth-
coming discussion on optimizing the bat suggests an interaction between the bat
mass and moment of inertia. Therefore, we will now derive one more interaction
term, the interaction between bat mass and moment of inertia, Ibat and mbat.

Given

∂v1a
∂m2

=
K 1+CoR2bð Þ − v1b + v2bð ÞI2 +ω2bdI2f g−H I2 +m1d2ð Þ

K2

Find ∂
2v1a

∂I2∂m2

We will be dealing with I2, so let us isolate it. First replace K and H, ∂v1a
∂m2

becomes
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The numerator ∂v1a
∂m2

of becomes

. .

Now we want to form the semirelative-sensitivity functions, which are defined as

S ̃Fα =
∂F
∂α

����
NOP

α0

where NOP and the subscript 0 mean that all functions, inputs and parameters
assume their nominal operating point values (Smith et al. 2008).
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ṽ1a
v2b =

m2I2 1 +CoR2bð Þ
K

����
NOP

v2b0

S
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Table 5 gives the nominal input and parameter values, along with a range of
physically realistic values for collegiate and professional batters and the semirela-
tive sensitivity values. The bigger the sensitivity is, the more important the variable
is for maximizing batted-ball speed.

The right column of Table 5 shows that the most important variable, in terms of
maximizing batted-ball speed, is the speed of the bat before the collision. This is
certainly no surprise. The second most important variable is the coefficient of resti-
tution,CoR2b. The least important variables are the angular velocities,
ωball− before and ωbat− before. The sensitivities to distance between the center of mass
and the sweet spot of the bat, dcm− ss, and themass of the ball,mball, are negative,which
merelymeans that as they increase the batted-ball speed decreases. Cross (2011)wrote
that in his model the most sensitive variables were also the bat speed followed by the
CoR. His sensitivity to the mass of the ball was also negative. The bottom two rows of
Table 5 show that the interaction terms are small, which means that the model is well
behaved. For example, the interaction of the mass of the bat with the bat speed is
smaller than either the influence of the mass of the bat by itself or the bat speed by
itself. The interaction of bat mass and moment of inertia is surprisingly small.

3.2.6 Optimizing with Commercial Software

We applied What’s Best!, a subset of the LINGO solvers, to our model. We con-
strained each variable to stay within physically realistic limits under natural con-
ditions. Such values are shown in Table 5. We have previously gotten good results
using this technique when doing empirical sensitivity analyses (Bahill et al. 2009).
Then we asked the optimizer to give us the set of values that would maximize
batted-ball speed. The optimizer applied a nonlinear optimization program. The
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results were the same as in Table 5! That is, for variables with positive sensitivities,
the optimizer choose the maximum values. For variables with negative sensitivities,
the optimizer choose the minimum values. Using all of the optimal values at the
same time increased the batted-ball speed from 43 to 56 m/s (96–125 mph). Using
this optimal set of values only changed the sensitivities slightly.

1. The numerical sensitivity values mostly increased. This is a direct result of the
definition of the semirelative sensitivity function where the partial derivative is
multiplied by the parameter value. If parameter values increase, then the sen-
sitivities increase.

2. However, and most importantly, the rank order stayed the same except that the
batted-ball speed became more sensitive to vball− before than to mbat. In the
optimal set, both of these sensitivities increased, but because the value of
vball− before changed from 37 to 40 m/s whereas the value of mbat only changed
from 0.90 to 0.96 kg, the change in the sensitivity to vball− before was bigger.

This all means that the sensitivity analysis is robust. Its results remain basically
the same after big changes in the variables.

We then tried a different optimization technique. Instead of constraining each
variable to stay within realistic physical limits, we allowed the optimizer to change
each variable by at most ±10% and then give us the set of values that maximizes
batted-ball speed. The numerical values changed but the rank order stayed the same,
except for vball− before and mbat just as it did with the realistic values technique.

Both empirical sensitivity analyses and optimization can constrain each variable
to stay within specified realistic physical limits or change each variable by a certain
percentage. Both techniques gave the same results. However, we prefer the former
technique (Bahill et al. 2009).

We found an interesting relationship between the sensitivity analyses and opti-
mization: they gave the same results! For variables with positive sensitivities, the
optimizer chooses the maximum values. For variables with negative sensitivities,
the optimizer chooses the minimum values. But of course, this finding is not
original. Sensitivity analyses are commonly used in optimization studies (Choi and
Kim 2005). These studies typically apply sensitivity analysis after optimization.
They try to find values or limits for the objective function or the right-hand sides of
the constraints that would change the decisions. However, in our study, we applied
optimization after the sensitivity analysis and we had only one variable in our
objective function. Therefore, our problem was much simpler than sensitivity
analyses in the optimization literature.

3.2.7 Optimizing the Bat

The second purpose of this paper is to help the batter acquire an optimal baseball or
softball bat. Therefore, we ask, How can the batter use these sensitivity and opti-
mization results to select or customize an optimal bat? First, it is no surprise that bat
speed, vbat− cm− before, is the most important variable in Table 5. Its effect is shown

210 A.T. Bahill



in Fig. 4, where the slope of the line is the absolute sensitivity. For decades, Little
League coaches have taught their boys to practice and gain strength so that they
could increase their bat speeds. They also said that it is very important to reduce the
variability in the bat swings: Every swing should be the same. “Don’t try to kill the
ball.” Given our new information, we now recommend that Little League coaches
continue to give the same advice: increase bat speed and reduce variability. Practice
is the key. Baldwin (2007), a major-league pitcher with a career 3.08 ERA, saga-
ciously wrote that if you lose a game, don’t blame the umpire or your teammates;
just go home and practice harder.

Our measurements of over 300 batters showed that variability in the speed of the
swing decreases with level of performance from Little League to Major League
Baseball. For major leaguers the bat speed standard deviations were typically
around ±5% (Bahill and Karnavas 1989), which is a very small value for physio-
logical data.

The variable with the second largest sensitivity is the coefficient of restitution
(CoR). The CoR of a bat-ball collision depends on where the ball hits the bat. It is
difficult, but absolutely essential, for the batter to control this. He or she must hit the
ball with the sweet spot of the bat. The CoR also depends on the manufacturing
process. The NCAA now measures the Bat-ball Coefficient of Restitution (BBCOR)
for sample lots coming off themanufacturing line. Therefore, amateurs are all going to
get similar BBCORs. However, a lot can still be done with theCoR for aluminum and
composite bats. For example, the performance of composite bats typically improves
with age because of the break-in process; repeatedly striking the bat eventually breaks
down the bat’s composite fibers and resinous glues. ‘Rolling’ the bat also increases its
flexibility. Rolling the bat stretches the composite fibers and accelerates the natural
break-in process simulating a break-in period of hitting, say, 500 balls.

For wooden bats, the batter could try to influence the CoR by choosing the type
of wood that the bat is made of. Throughout history, the most popular woods have
been white ash, sugar maple and hickory. However, hickory is heavy, so most

Fig. 4 The most important variable in our model is the bat speed at the sweet spot before the
collision. For this figure, first we computed the batted-ball speed with vball− after

= vball− before −AmbatIbat and then we plotted the batted-ball speed as a function of the bat sweet
spot speed before the collision. Remember that A is not a constant, it depends on the velocity of the
ball and bat before the collision and on the angular velocity of the bat before the collision
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professionals now use ash or maple. A new finding about bat manufacturing is that
the slope of the grain has an effect on the strength and elasticity of the bat. As a
result, the wood with the straightest gain is reserved for professionals and wood
with the grain up to 5° off from the long-axis of the bat is used for amateurs.
Furthermore, the manufacturer’s emblem is stamped on the flat grain side of ash
bats so that balls collide with edge grain as shown in Fig. 1, whereas the emblem is
stamped on the edge grain side of maple bats because they are stronger when the
collision is on the flat grain side.

The next largest sensitivities are for the mass of the ball and its speed before the
collision, mball and vball− before. However, the batter can do nothing to influence the
mass of the ball or the ball speed before the collision, so we will not concern
ourselves with them. Likewise, the batter has no control over the ball spin,
ωball− before, so we will ignore it when selecting bats. Now if this discussion were
being written from the perspective of the pitcher (Baldwin 2007), then these three
parameters would be very important.

The next most important variable in Table 5 is the mass of the bat. Therefore, we
will now consider the mass and other related properties of the bat. The sensitivity of
the batted-ball speed with respect to the mass of the bat is positive, meaning (if
everything else is held constant) as the mass goes up so does the batted-ball speed.
However, everything else cannot be held constant, because the heavier bat cannot
be swung as fast (Bahill and Karnavas 1989) due to the force-velocity relationship
of human muscle. This physiological relationship was not included in the equations
of this paper because in this paper we only modeled the physics of the collision,
notwithstanding physiology trumping physics in this case. The net result of physics
in conjunction with physiology is that lighter bats are better for almost all batters
(Bahill 2004).

Perhaps due to this general feeling, back in the 1960s and 70s, it was popular for
professionals to ‘cork’ the bat. This reduced the mass of the bat, but because it also
reduced the moment of inertia, it did not improve performance significantly (Nathan
et al. 2011). However, it is now legal to make a one to two-inch diameter hole 1.25
in. deep into the barrel end of the bat. Most batters do this because it makes the bat
lighter with few adverse effects. Other bat parameters that are being studied include
the type of wood (density, strength, elasticity and straightness of the grain) and the
type of materials (density, strength, break-in period and vibrational frequency).

For an aluminum bat, some batters reduce the thickness of the barrel wall by
shaving the inside of the barrel. This reduces the bat mass, which according to
physics and physiology, increases batted-ball speed.

The distance between the center of mass of the bat and the sweet spot, dcm− ss, is
the next most important parameter. We presumed that the sweet spot of the bat was
the center of percussion (CoP) of the bat. All batters try to hit the ball on the sweet
spot of the bat. To help the batter, manufacturers of aluminum bats have been
moving the CoP by moving the internal weight from the end of the bat toward the
knob http://www.acs.psu.edu/drussell/bats/cop.html. It is now an annual game of
cat and mouse. The manufacturers move the CoP, then the rule makers change their
rules, then the manufacturers move … etc.
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Finally, we come to the moment of inertia of the bat, Ibat, with respect to its center
of mass. The physics, revealed with the sensitivity analysis, states that although the
moment of inertia is one of the least important variables, it would help to increase its
value. More importantly, physiology showed that all batters would profit from using
end-loaded bats (Bahill 2004). There are many ways to change the moment of inertia
of a bat. Most aluminum bats start with a common shell and then the manufacturer
adds a weight inside to bring the bat up to its stated weight. The important question
then becomes, where should the weight be added? It has been suggested that they
add weight in the knob because this would comply with the regulations and would
not decrease bat speed. However, the results of Bahill (2004) show that they should
add the weight in the barrel end of the bat making it end loaded. This will increase
the batted-ball speed. For a wooden bat, the moment of inertia can be changed by
cupping out the barrel end, adding weight to the knob or tapering the barrel end.
Assume that the end of the barrel of a bat is only used to “protect” the outside edge of
the plate: no one hits home runs on the end of the bat. Therefore, a professional could
use a bat where the last 3 in. (7 cm) was tapered from 2½ inches (6.4 cm) down to
1¾ of an inch (4.4 cm). This would decrease the weight, decrease the moment of
inertia about the center of mass and would move the sweet spot 2% closer to the
knob: these changes would probably benefit some players. However, such modifi-
cations would have to be individually designed for each player.

Most people can feel the difference between bats with different moments of inertia.
In 1985, a coach with the San Francisco Giants showed us a legal custom-made bat
with a large moment of inertia created by leaving it with a huge knob. He presumed
that his players already understood the influence of bat weight on bat speed so he was
trying to expand their understanding to the influence of bat moment of inertia on the
speed of the swing. One of our University of Arizona softball players described our
biggest moment of inertia bat, “That’s the one that pulls your arms out.”

The bat moment of inertia is the only parameter under the control of the batter for
which a consensus does not exist in the science of baseball literature. The bat
moment of inertia is an enigma because for most, but not all, batters as the bat
moment of inertia goes up the bat speed goes down, and at the same time the batted-
ball speed goes up (Bahill 2004; Smith and Kensrud 2014). For Bahill’s (2004)
batters, 20% had positive slopes for bat speed versus moment of inertia, for moments
of inertia in the range of 0.03–0.09 kgm2. Therefore, he showed the actual data for
all players rather than averaging them, because averaging graphical data is usually
meaningless. Perhaps more physiological studies would help clear up this issue. Our
best generalization is that all batters would profit from using end-loaded bats. Smith
and Kensrud (2014) concluded their paper with “Batter swing speed decreased with
increasing bat inertia, while … the hit-ball speed increases with bat inertia.”

Summarizing, these are the most important factors for understanding bat per-
formance: bat weight, the coefficient of restitution, the moment of inertia and
characteristics of humans swinging the bats.

In the future, it will be possible to see how the coefficient of friction μf affects the
batted-ball speed. Then we will be able to decide if the varnish or paint on the bat
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should be made rough-textured or smooth, or if bats should be rubbed or oiled in
order to improve bat performance.

To improve bat performance manufacturers could reduce the variability of bat
and ball parameters. Major-league bats were custom made for us by Hillerich and
Bradsby Co. The manufacturing instructions were “Professional Baseball Bat,
R161, Clear Lacquer, 34 in., 32 oz, make as close to exact as possible, end brand—
genuine model R161 pro stock, watch weights” emphasis added. The result was six
bats with an average weight of 32.1 oz and a standard deviation of 0.5! This large
standard deviation surprised us. We assume there is the same variability in bats used
by major-league players.

There is also variability in the ball. We assume that the center of mass of the ball
is coincident with the geometric center of the ball. However, put a baseball or
softball in a bowl of water. Let the movement subside. Then put an X on the top the
ball. Now spin it and let the motion subside again. The X will be on top again. This
shows that for most baseballs and softballs the center of mass is not coincident with
the geometric center of the ball.

3.2.8 Summary of Bat Selection

These sensitivity and optimality analyses show that the most important variable, in
terms of increasing batted-ball speed, is bat speed before the collision. This is in
concert with ages of baseball folklore and principles of physiology. Therefore,
batters should develop strength, increase coordination and practice so that their
swings are fast and with low variability.

These analyses show that the next most important parameter is the coefficient of
restitution, the CoR. Engineers and bat regulators are free to play their annual cat
and mouse game of increasing CoR then writing rules and making tests that prohibit
these changes. Indeed, most recent bat research has gone into increasing the CoR of
bat-ball collisions.

Pitch speed, ball spin and the mass of the ball are important. However, the batter
cannot control them. Therefore, they cannot help the batter to choose or modify a
bat.

The next most important parameter is the bat mass, mbat. However, physics
recommends heavy bats, whereas the force-velocity relationship of muscle rec-
ommends light bats. In this case, physiology trumps physics. Each person’s pre-
ferred bat should be as light as possible while still fitting within baseball needs,
regulations and availability.

The last interesting parameter from the sensitivity analysis and the optimization
study is the bat moment of inertia, Ibat. These studies suggest that a larger bat
moment of inertia would be better. However, a lot of the physics literature rec-
ommends smaller moments of inertia. Conversely, an experimental physiology
study stated that all players would profit from using end-loaded bats (Bahill 2004).
Therefore, this is the only parameter under the control of the batter for which a
consensus does not exist in the science of baseball literature.
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The second purpose of this paper is to show what the batter can do to achieve
optimal bat performance. The most important thing is practice. Next, batters should
select lightweight bats. They should then select bats that increase the CoR by all
legal means. Finally, they should choose bats with a larger moment of inertia, bats
that are often called end-loaded.

3.2.9 The Ideal Bat WeightTM

So far, the equations in this paper were equations of physics. However, we
repeatedly mentioned physiology. Now is the time to step back and look at phys-
iology. This section is based on Bahill and Karnavas (1991).

Our instrument for measuring bat speed, the1 Bat ChooserTM, has two vertical
laser beams, each with associated light detectors. Our batters swung the bats
through the laser beams. A computer recorded the time between interruptions of the
light beams. Knowing the distance between the light beams and the time required
for the bat to travel that distance, the computer calculated the speed of the sweet
spot, which we defined as the center of percussion. We told the batters to swing
each bat as fast as they could while still maintaining control. We said, “Pretend you
are trying to hit a Nolan Ryan fastball.”

In our experiments, each batter swung six bats through the light beams. The bats
ran the gamut from super-light to super heavy; yet they had similar lengths and
weight distributions. In our developmental experiments, we tried about four dozen
bats. We used aluminum bats, wooden bats, plastic bats, heavy metal warm-up bats,
bats with holes in them, bats with lead in them, major-league bats, college bats,
softball bats, Little League bats, brand-new bats and bats made in the 1950s.

In one set of experiments, we used six bats of significantly different weights but
similar lengths of about 34 in. (89 cm), with centers of mass about 23 in. from the
end of the handle (see Table 6).

In a 20-min interval, each subject swung each bat through the instrument five
times. The order of presentation was randomized. The selected bat was announced
by a speech synthesizer, for example: “Please swing bat Hank Aaron, that is, bat
A.” (We named our bats after famous baseball players who had names starting with
the letter assigned to the bat.)

For each swing, we recorded the bat weight and the speed of the center of mass,
which we converted to the speed of the center of percussion. However, that was as
far as physics could take us; we then had to look to the principles of physiology.

Physiologists have long known that muscle speed decreases with increasing
load. This is why bicycles have gears; gears enable riders to maintain the muscle
speed that imparts maximum power through the pedals, while the load, as reflected
by the bicycle speed, varies greatly. To discover how the muscle properties of
individual baseball players affect their best bat weights, for each player, we plotted

1Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.
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bat speeds as a function of bat weight to produce graphical numerical models
known as the muscle force-velocity relationships (see Fig. 5). The red Xs represent
the average of the five swings of each bat; the standard deviations were small for
physiological data.

Over the past 75 years, physiologists have used three equations to describe the
force-velocity relationship of muscles: straight lines, hyperbolas and exponentials.
Each of these equations has produced the best fit for some experimenters, under
certain conditions and with certain muscles. However, usually the hyperbola fits the
data best. In our experiments, we tried all three equations and chose the one that had
the best fit to the data of each subject’s 30 swings. For the data of the force-velocity
relationships illustrated in Fig. 5, we found that a hyperbola provided the best fit.

Fig. 5 Measured bat speed
(red Xs), a hyperbola fit to this
data (blue dots) and the
calculated batted-ball speed
(black triangles) for a 90 mph
pitch to one of the fastest San
Francisco Giants

Table 6 Test bats used by major-league players

Name Weight
(oz)

Weight
(kg)

Distance
from knob
to center of
mass (in.)

Distance
from knob
to center of
mass (m)

Average
sweet spot
speed
(mph) from
Fig. 5

Description

D 49.0 1.39 22.5 0.57 88 Aluminum bat filled
with water

C 42.8 1.21 24.7 0.63 74 Wooded bat, filled
with lead

A 33.0 0.94 23.6 0.60 65 Wooded bat
B 30.6 0.87 23.3 0.59 65 Wooden bat
E 23.6 0.67 23.6 0.60 61 Wooden bat
F 17.9 0.51 21.7 0.55 60 Wooden handle

mounted on a light
steel pipe with a 6 oz
weight at the end
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These curves indicate how bat speed varies with bat weight. We now want to
find the bat weight that will make the ball leave the bat with the highest speed and
thus have the greatest chance of eluding the fielders. We call this the
maximum-batted-ball-speed bat weight. To calculate this bat weight we must
couple the muscle force-velocity relationships to the equations of physics.

For the major-league player whose data are shown in Fig. 5, the best fit for his
force-velocity data was the hyperbola, ðmbat + 11Þ× ðvbat− before − 36Þ=
1350 units are ounces and mph, blue dots. This batter had some of the fastest
swing speeds on the team. When we substituted this equation into the batted-ball
speed equation, Eq. (7), we were able to plot the ball speed after the collision as a
function of bat weight, black triangles in Fig. 5.

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

ðmbat + 11Þ× ðv2b − 36Þ=1350
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m2 + 11

� �
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m1I2 −m2I2 CoR2b +m1m2d2ð Þ

K
+
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� �
m2I2 1 +CoR2bð Þ

K
+ω2b

m2dI2ð1+CoR2bÞ
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In this equation, I2 is also a function of m2. This curve shows that the
maximum-batted-ball-speed bat weight for this subject is about 45 oz, which is
much heavier than that used by any batters. However, this batted-ball speed curve is
almost flat between 30 and 49 oz. This player normally used a 32-oz bat. Evidently
the greater control permitted by the 32-oz bat outweighed the one per cent increase
in speed that could be achieved with the 45-oz bat.

However, the maximum-batted-ball-speed bat weight is not the best bat weight
for any player. Because a lighter bat will give a batter better control, more accuracy
and more time to compute the ball’s impact point. Obviously, a trade-off must be
made between batted-ball speed and control. Because the batted-ball speed curve is
so flat around the point of the maximum-batter-ball-speed, we believe there is little
advantage in using a bat as heavy as the maximum-batter-ball-speed bat weight.
Therefore, we have defined the 1ideal bat weightTM to be the weight where the ball
speed curve drops 1 per cent below the maximum-batter-ball speed. Using this
criterion, the ideal bat weight for this batter is 31.75 oz. We believe this gives a
good trade-off between distance and accuracy.

As can be seen from the batted-ball speed equation, both v1a and the ideal bat
weight increase with pitch speed. However, we do not recommend that a batter use
a heavier bat against a fire-baller, because heavier bats increase the swing time and
decrease the prediction time.

The ideal bat weight is specific to each individual; it is not correlated with
height, weight, age, circumference of the upper arm, or any combination of these
factors, nor is it correlated with any other obvious physical factors. Although, Bahill
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and Morna Freitas (1995) mined our database of 163 subjects and 36 factors and
determined some rules of thumb that could make suggestions.

3.2.10 Bat Speed

Throughout this paper we have used a before collision bat speed of 58 mph
(26 m/s). This is the average sweet spot speed that we measured for 28 members of
the San Francisco Giants baseball team. However, our subjects were not paid and
therefore they were not highly motivated: furthermore, they did not actually hit a
ball: both of these circumstances increase the variance of swing speeds. Some
studies in the literature filtered their data and only included selected batters, usually
the fastest. Internet sites that are trying to sell their equipment and services cite
sizzling bat speeds between 70 and 90 mph (31–40 m/s). We think that these
numbers are bogus. The big web sites such as mlb.com, espn.com/mlb/and hit-
trackeronline.com give the leaders in many categories, meaning that they a have
selected the 20 fastest players out of 750. This would be misleading if the reader
thought that these statistics were representative of major-league batters, which they
do.

Table 7 gives average sweet spot speeds for six studies of male college and
professional batters. When multiple bats were used, we chose the wooden bats
closest to that described in Table 1.

Figure 4 shows that the average major-league batter has a high enough bat speed
to occasionally hit a home run, when the batted-ball has the ideal spin and launch
angle. However, over half of major-league batters seldom hit homeruns. Indeed, of
the 2200 active players listed by MLB.com half of them have never hit a home run
in their major-league careers. Our equations show that a ball velocity before the
collision, v1b, of 83 mph (37 m/s) and a bat sweet spot speed, v2b, of 58 mph

Table 7 Bat sweet spot speed before the collision

Average speed of
the sweet spot (m/s)

Average speed of the
sweet spot (mph)

Subjects References

32 71 Unknown King et al. (2012)
31 69 7 selected male

professional baseball
players

Welch et al. (1995)

30 68 19 male baseball
players

Crisco et al. (2002)

26 58 28 San Francisco Giants Database of Bahill
and Karnavas (1989)

26 58 7 male college baseball
players

Koenig et al. (2004)

26 58 17 male college
baseball players

Fleisig et al. (2002)
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(26 m/s) would produce a batted-ball speed, v1a, of 97 mph (43 m/s), which would
be almost enough for a home run in any major-league stadium. Our rule of thumb is
that it takes a batted-ball speed of 100 mph (45 m/s) to produce a homerun. The
following is Eq. (7).

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

For a major league wooden bat, as described in Table 1,

v1a = − 0.28v1b + 1.28v2b + 0.17ω2b

where the units are either mph and rpm or m/s and rad/s. Remember that v1b is a
negative number. So far, we have made no approximations; everything has been
exactly according to Newton’s principles. But now we will create our rule of thumb
by rounding, substituting ω2b = 0 and using pitch speed instead the speed of the ball
at the beginning of the collision.

vbatted− ball = − 0.25vpitch− speed + 1.3vbat− before

For oblique collisions, the batted-ball speed would be less, but backspin on the
ball in flight would keep it up in the air longer, so those two effects partially cancel
out (Kensrud et al. 2016).

Most recent studies of bat speed have used video cameras and commercial
prepackaged software to measure and compute bat speed. There are no calibration
tests. Most of these systems report higher bat speeds than other methods of mea-
suring bat speed. On television, the batted-ball speed is often called the exit speed
or the exit velocity.

3.2.11 Seeing the Collision

When a baseball bat moving at 58 mph (26 m/s) hits a baseball traveling in the
opposite direction at 83 mph (37 m/s) there is a violent collision, which was shown
in figure 5.3. Table 5.3 shows that during the collision the kinetic energy in the
motion of the bat changes by 81 Joules (J): a loss of 106 J in linear translational
kinetic energy, a gain of 25 J in angular kinetic energy. Notably, 81 J is equivalent
to dropping a bowling ball from your waist onto your toe or having a dove fly into
your windshield while you are driving down a highway at 80 mph (130 km/hr).

Frame by frame analysis of high-speed video of a major-league batter showed
that at the beginning of the collision there was (1) a big abrupt change in the ball
velocity as it swung from negative to positive, (2) a sudden drop in the linear
velocity of the sweet spot of the bat and (3) a sharp change in the angle of the bat.
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Now, imagine a film of Ted Williams hitting a baseball. His swing is smooth and
graceful although the kinetic energy of his bat changes by 202 Joules during a
collision. The reason his swing seems so smooth is that we mainly visualize the
movement of his body, arms, hands and the bat. We model this movement with the
bat’s angular rotation about the knob, β. The change in this angular motion is not
visually obvious because it is just a short small jerk (a few degrees) in the middle of
a big swinging motion. Hence, what we see does not change much. On the other
hand, the bat’s linear translational motion, β, decreases from 26 to 13 m/s. How-
ever, we do not visualize this translational motion well, because his swing looks
like a big rotation: it does not look like a translation. As a result, the movement that
we visualize well, does not change much. Whereas, the movement that changes a
lot, β, is not visualized well. This explains why people do not perceive an abrupt
jerk when the bat and ball collide.

What about the batter? Would he be able to see the effects of this violent
collision? Probably not. Bahill and LaRitz (1984) showed that no batter can keep
his eye on the ball from the pitcher’s release point to the bat-ball collision. Their
graduate students fell behind when the ball was 9 ft (2.7 m) in front of the plate.
Comparatively, their major-league baseball player was able to keep his position
error below 2° until the ball was 5.5 ft (1.7 m) from the plate. Then he fell behind.
This finding runs contrary to baseball’s hoary urban legend that Ted Williams could
see the ball hit his bat. However, in reality, Ted Williams could not see the ball hit
his bat. In a letter that he sent to Bahill dated January 23, 1984 he wrote,

Received your letter and have also had a chance to read your research, and I fully agree
with your findings.

I always said I couldn’t see a ball hit the bat except on very, very rare occasions and that
was a slow pitch that I swung on at shoulder height. I cam[e] very close to seeing the ball
hit the bat on those occasions.

In summary, the bat-ball collision is violent. But nobody perceives it, because
(1) even in slow motion, the spectator only sees the smooth movement of the batters
body, arms, hands, and bat, which glide continuously, (2) movements that change
abruptly, such as the bat’s linear translational velocity, are difficult to visualize
because they are so quick, (3) batters are not able to see the bat-ball collision at all
and (4) the bat-ball collision only lasts one millisecond. This explains why nobody
sees an abrupt jerk when the bat hits the ball, not even Ted Williams.

4 Summary

One purpose of this paper was to show how complicated bat-ball collisions could be
while still being modeled using only Newton’s principles and the conservation
laws. The model of this paper is the most complex configuration for which our
model is valid. Our model was explained with Figs. 1 and 3. The five equations that
we used were listed in Table 2.
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The following canonical form equations comprise our model for bat-ball
collisions.

KElost =
1
2

m1m2I2
m1I2 +m2I2 +m1m2d2

v1b − v2bð Þ2ð1−CoR2
2bÞ− 2 v1b − v2bð Þω2bd+ d2ω2

2b

h i

v1a = v1b −
v1b − v2bð Þm2I2 1+CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

where v2b = vbat− trans− before + dcm− ssωbat− before

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =ω2b +

v1b − v2bð Þm1m2d 1+CoR2bð Þ−ω2bm1m2d2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2

ω1a =ω1b

If we let

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

then we get

v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

ω1a =ω1b

A second purpose of this paper was to show how the individual batter can find
and customize an optimal baseball or softball bat for him or herself. The sensitivity
analysis and optimization study of this paper showed that the most important
variable, in terms of increasing batted-ball speed, is bat speed before the collision.
However, in today’s world, the coefficient of restitution and the bat mass are
experiencing the most experimentation trying to improve bat performance.
Although, the bat moment of inertia provides more room for future improvement.
Above all, future studies must include physics in conjunction with physiology in
order to improve bat performance.
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