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Open-Loop Experiments for Modeling the
Human Eye Movement System

A. TERRY BAHILL, SENIOR MEMBER, IEEE, AND DEBORAH R. HARVEY

Abstract—Open-loop experiments were used to develop a linear model
for a physiological system. The specific system studied was the eye
movement system; however, the technique presented may be applied gener-
ally to other physical systems. Human smooth-pursuit eye movements were
measured in response to sinusoidal, step, ramp, and step-ramp target
motions in the normal closed-loop condition and in the open-loop condi-
tion. The human responses were compared to the outputs of four models,
and the best match was provided by the K/(TS + 1) model. Simulation
results suggested that in the open-loop condition, the human often changed
control strategy, for example by turning off the saccadic system and
making no position-correcting saccades, in spite of large positional errors.

THE HUMAN smooth-pursuit eye movement system is
a unique and enigmatic system. Although the system

has a large time delay, humans can learn to track targets
with no phase lag. They can do this if the target waveform
is predictable, the velocity is continuous, and the accelera-
tion is limited [1]. A simple example of such a waveform is
a sinusoid. A complex example of such a waveform is a 90
mile per hour curveball thrown by a major league pitcher
[2]. Traditionally the input to this system was considered to
be target velocity, although position and acceleration may
play a role [3], [4].

The technique of opening a loop on a system is an
important tool in systems analysis. Therefore, it is not
surprising that several recent papers have discussed open-
ing the loop on the smooth pursuit system [5]-[10]. How-
ever, the results of these studies are confusing and con-
tradictory.

This paper discusses the trials and tribulations of our
open-loop experiments on the smooth pursuit system. The
purpose of this research was to develop a model for this
system. The purpose of this paper is to explain our tech-
nique. This paper could be used as a tutorial for construct-
ing simple models of physical systems. Before discussing
the experimental results, we think some detailed comments
about opening a feedback loop are in order.

OPENING THE LOOP ON A SYSTEM

A linear system can be schematically represented as a
closed-loop system, as shown in Fig. l(a), or as an open-loop
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system, as shown in Fig. l(b). Consider the closed-loop
system shown in Fig. l(a). One common technique for
studying such a system is to open the loop, as shown in
Fig. l(c), and then to study the response of the open-loop
system. The open-loop transfer function is the total effect
encountered by a signal as it travels around the loop, that
is

Gol(s) = G(s)H(s).

Note that this is not the input-output transfer function of
the system with its loop opened (which would be G(s)\r is this the transfer function of the equivalent intact

open-loop system shown in Fig. l(b). When we open the
loop on a closed-loop system, bizarre behavior usually
results. In response to a step disturbance, a closed-loop
system with its loop opened will usually vary its output
until some nonlinearity limits it. For instance, if R(s) in
Fig. l(c) is a step and G(s) is a pure integrator, the error
will be constant and the output will increase linearly until
the system becomes nonlinear.

Often the success of an engineering analysis depends on
being able to open the loop on a system. If it is an
electrical circuit, one might merely cut a wire. If it is a
human physiological system, such an approach is not feasi-
ble, and other techniques must be developed [11], [12].

Saccadic System

There is an easy way to open the loop on the saccadic
eye movement system. Look a few degrees to the side of a
camera when someone triggers a flash. There will be an
afterimage a few degrees off your fovea. Try to look at the
afterimage. You will make a saccade of a few degrees, but
the image (being fixed on the retina) will also move a few
degrees. You will then make another saccade, and the
image will move again. Thus, no matter how you move
your eye, you cannot eliminate the error and put the image
on your fovea. This is the same effect as if someone opened
the loop on an electronic system by cutting a wire (Fig.
l(c)). Therefore, this is a way of opening the loop on the
saccadic system. There is another simple way to study
open-loop saccadic behavior. Gaze at the blue sky on a
sunny day and try to track your floaters (sloughed collagen
fibers in the vitreous humor). These hair-like images move
when the eye moves; therefore, your initial saccades will
not succeed in getting them on the fovea. However, with a
little practice, one can learn to manipulate these images,
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Fig. 1. (a) Closed-loop control system, (b) Equivalent open-loop repre-
sentation, (c) Closed-loop representation with its loop opened. Many
analysis techniques require the study of the open-looped system of (c).
(From [12, p. 215]).

because they are not fixed on the retina and a human can
rapidly learn to manipulate the system. This latter point
often confounds attempts to open the loop on a physiologi-
cal system. The experimenter closes a switch that sup-
posedly opens the loop, but the human quickly changes
control strategy, thus altering the system under study.

The most common experimental technique for opening
the loop on the eye movement system, pioneered by Young
and Stark in 1962 [13], employs electronic feedback as
shown in Fig. 2. The position of the eye BE is continuously
measured and is summated with the input target signal 6T.
For the eye movement system H = 1, because if the eye
moves 10°, the image on the retina also moves 10°. If the
eye movement monitor and associated amplifiers are care-
fully designed so that //' = !, then any change in actual
eye position is exactly cancelled by the change in measured
eye position. Thus the error signal E is equal to the target
signal. This is the same effect as if the feedback loop had
been cut. The target position in space (TPS) is the sum of
the input signal and the measured eye position; care must
be taken to keep this position within the linear range of the
eye movement monitor.

When this technique is used on the saccadic system, the
target is given a small step displacement, say 2° to the
right. After about 200 ms, the eyes saccade 2° to the right.
During this movement, the target is moved 2° farther to
the right, so that at the end of the saccade the target is still
2° to the right. After another 200-ms delay, the eyes
saccade another 2° to the right, and the target is moved
another 2°, maintaining the 2° retinal error. The saccadic
eye movements are not effective in changing the retinal
error; therefore the loop has been opened. In this open-loop
condition the subject produces a staircase of 2° saccades
about 200 ms apart, until the measuring system becomes
nonlinear. This type of open-loop saccadic tracking is
shown in Fig. 3.

Fig. 2. Electronic technique for opening the loop on the, human eye
movement system.
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Fig. 3. Output of the saccadic system in the open-loop situation; the
staircase of saccades is typical. The step target was presented im-
mediately after an open-loop sine wave, which explains the position of
the eye and target at the beginning of the data segment. The time
between the arrows shows an example of measurement of the saccadic
system latency.

Smooth-Pursuit System

Electronic feedback has also been used to open the loop
on the smooth-pursuit system [5], In these experiments the
target was moved sinusoidally and the experimenters waited
for the eye to respond. When the eye moved, they added
the measured eye position signal to the sinusoidally moving
target (as shown in Fig. 2). Thus the eye movements
became ineffective in correcting the retinal error and the
feedback loop was, in essence, opened. In contrast to
open-loop saccadic experiments, open-loop smooth-pursuit
experiments do not stabilize the image on the retina; but
rather the target is moved across the retina in a controlled
manner.

Leigh et al. [8] reported an unusual way of studying
open-loop smooth-pursuit behavior in a patient with one
paralyzed eye. They presented the target to the paralyzed
eye while the movements of the mobile eye were moni-
tored. This is a clever technique, but clearly it cannot be
used with normal subjects.

MODEL FOR OPEN-LOOP DATA

Modeling is circular; the form of the model must be
assumed before the experimental data can be analyzed and
used to make the model. For example, a common way to
model a system is to apply sinusoidal inputs of varying
frequencies, record the output of the system, and construct
Bode diagrams for the ratio of the output to the input. But
this already assumes the form of the model; i.e., a linear
system. To illustrate further, suppose you applied an input
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Fig. 4. Input and output of a hypothetical system that could be modeled
as either a time-varying system, a nonlinear system, or a linear system.

of r = 2 sin w/ sweeping the frequency between 0 and 1 Hz
in 10 s, i.e., / = ?/10. And you found the resulting output
to be y = ( — l/w)coswf, as shown in Fig. 4. Because we
are looking for a transfer function, we would ignore the
transients in the first second. If we also ignored phase
information, three models for this system would pop into
mind.

1) Time Varying System: G = — 5/(2n7), where the gain
is a function of time.

2) Nonlinear System: G = - 2/velocity, where the gain
is a function of input velocity.

3) Linear System: G = -1 /2s, where the gain is a
function of frequency.
The choice between these three is usually made before the
experimental data are analyzed.

Most engineering studies assume linear systems and plot
gain as a function of frequency. However [5], [8] implicitly
assumed a nonlinear model and plotted gain as a function
of target velocity. Nonetheless, as shown above, if there are
no a priori data to suggest otherwise, then the system can
be analyzed more easily as a linear system. For example,
the open-loop gains Gol of [5], [8] can be fit by either the
nonlinear function G0, = 4/07 as they did, or by the linear
function Gol = 0.2//w, where w is stimulus frequency and
BT is target velocity. The point is, if your model for the
system is linear, then the open-loop gain data should be
plotted as a function of frequency; if your model is nonlin-
ear, then the open-loop gain data can be plotted as a
function of target velocity, or any other appropriate vari-
able.

Wyatt and Pola [6] assumed a linear model to analyze
their data; they plotted their open-loop gains as a function
of frequency. However, their open-loop gains were unusu-
ally high, often over ten. Most studies report open-loop
gains ranging from four (at 2°/s) to two (at 10°/s), while
Wyatt and Pola's ratio ranged from about 12 to five over
the same interval. When Mack et al [7] attempted to
replicate Wyatt and Pola's experiment, they found open-
loop gains in the four to two range. We think this dis-
crepancy results from the subjects' varying degrees of prior
experience in eye movement experiments. Because in Wyatt
and Pola's subsequent study [9], the authors themselves
had large open-loop gains, but their naive subjects had

gains in the normal range. And in our experiments, our
most experienced subject (ATB) had open-loop gains more
than twice as large as our other subjects.

Such intersubject variabilities led Cushman et al, [10] to
conclude that

...caution is necessary when drawing inferences about
human oculomotor system characteristics from [open-loop]
experiments. This conclusion agrees with Tamminga's con-
clusion that '...in an open-loop condition pursuit eye
movements primarily reflect idiosyncrasies of the particular
subject used in the experiment.'

Although open-loop experiments are difficult to perform,
in this paper we will show that it is possible to get
meaningful results; that is, individual behavior that is
repetitive from day to day, with intersubject differences
dependent only on the subject's experience.

MODELS FOR THE SMOOTH-PURSUIT SYSTEM

The purpose of running open-loop experiments is to
derive data to help model the system. So before developing
our model, let us review some previous models of the
human smooth-pursuit system. The earliest model for the
smooth pursuit branch is the sampled data model devel-
oped by Young and Stark [13]. As a result of more recent
evidence [14], [15] the pursuit branch is no longer viewed as
a sampled data system but rather as a continuous one.

There is one physically realizable model capable of over-
coming the time delay in the smooth pursuit branch and
producing zero-latency tracking; the target-selective adap-
tive control model (TSAC) [16]-[18] shown in Fig. 5. The
exact details of this model are not important, so we will
only present a short explanation for the various elements.

The input to the smooth-pursuit branch is velocity, ergo,
the first differentiator. The limiter prevents any velocities
greater than 70°/s from going through this branch.
Lisberger et al. [4] call this element an acceleration saturat-
ing nonlinearity. The next element, K/(rs + 1), a first-
order lag called a leaky integrator, was suggested by three
experimental results. First, humans can track ramps with
zero steady-state error [19]-[23]. Second, open-loop experi-
ments have demonstrated that the frequency response of
the smooth pursuit branch has a slope of approximately
— 20 dB per decade [6]. Third, eye acceleration is directly
proportional to retinal error velocity [4]. The anatomical
location for this leaky integrator is most likely the brain
stem [24]. The closed-loop gain of the smooth-pursuit
system is about unity. Therefore, the gain K must be
greater than one; it has been estimated from open-loop
experiments to be between two and four [7], [25], [26].

The e~sT term represents the time delay in the system; a
value of about 150 ms is currently accepted. The saturation
element prevents the output of any velocities greater than
60°/s, the maximum velocity produced by the pursuit
branch of most humans. The final integrator changes veloc-
ity signals into the position signals used by the extraocular
plant.
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Fig, 5. Target-selective adaptive control model.

The smooth-pursuit models of Young et al [27], [28]
added a corollary discharge pathway to give eye position
information in addition to retinal error information. The
TSAC model also included a pathway providing eye posi-
tion information. However, in this model the information
was processed by the adaptive controller before it was sent
to the smooth-pursuit branch. This additional processing
element allowed open-loop experiments to be performed
on the model. Several investigators have suggested that
perceived target velocity is the stimulus for the smooth-
pursuit system [29]. In this context Rj of Fig. 5 represents
this perceived velocity. The adaptive controller of Fig. 5
must be able to predict future target velocity, and it must
know and compensate for the dynamics of the rest of the
system [18].

Our experiments were designed to eliminate the effects
of most of these elements; we only studied the effects of
Ke~sT/(TS + 1). The adaptive controller was eliminated by
using unpredictable target waveforms or by only looking at
the first few seconds of tracking. A unique target waveform
(to be described later) eliminated the need for the saccadic
system. And the limiter and saturation elements were
eliminated by using low target velocities.

The original TSAC model used a gain of 4 and a pure
integrator in the forward path of the pursuit branch.
However, this combination yielded a closed-loop time con-
stant of 250 ms, and our start-up transient data indicated
that this time constant should be smaller. The purpose of
this research was to find a better model for this element.
We considered the following: a pure integrator, (K/s}\
first order lag, K/(TS + 1); a critically damped
second-order system; and an overdamped second-order
system. Our experiments helped determine the form of the
model and the parameter values.

EXPERIMENTAL METHODS

We used the DDA dark pupil Oculometer to measure
eye movements [30]. It used an X - Y photodiode (Selcom
Co., type 2L24) to detect the horizontal and vertical
position of the centroid of the pupil. The pupil was il-

luminated by infrared light. The infrared light and the
image of the eye were reflected off an infrared mirror, so
that the only intrusion in the subject's field of view was the
infrared mirror, which appeared as a lightly tinted piece of
glass. For most subjects the instrument was easily adjusted
to achieve linearity for a 30° horizontal range and a 20°
vertical range. This instrument uses an 85-Hz analog low-
pass filter, producing records that are as linear, as low in
noise, and as high in bandwidth as our standard photoelec-
tric system [12].

The target was a small (3 mm in diameter) red laser dot
projected on a white screen 172 cm in front of the subject.
The target voltage drove a galvanometer that had a small
mirror attached. The movement of the mirror deflected the
laser beam to produce a moving dot on the screen. The
band widths for the galvanometer and the DC amplifier
exceeded 200 Hz. Subjects viewed the target binocularly in
a dimly illuminated room (however vision was photopic).

Data were collected and analyzed with a PDF 11/34
minicomputer. Target and eye movement data were passed
through a 12-bit analog-to-digital converter sampling at
1000 Hz, and the data were then filtered and stored on a
disk for future calculations. Calibration factors were de-
rived from segments of the data when the subject tracked a
target that jumped between points ±5° from the primary
position. Calibration factors for each eye were computed
by averaging one to two seconds of data from four to ten
manually selected periods when the eye was stationary and
looking at the target.

Our digitized eye position records have a bandwidth of
80 Hz. The eye velocity was calculated with a two-point
central difference algorithm [31], The eye velocity records
had 3-dB bandwidths of 8.9 Hz.

Vergence eye movements were eliminated by displaying
the target on a screen a fixed distance from the head. It
was speculated that the infrared mirror in front of the right
eye might produce a Pulfrich illusion of motion in depth
[32]. However, our subjects did not report seeing this effect.
If they tried to track this illusion, vergence eye movements
of less than two minutes of arc would have been necessary.
Vestibulo-ocular movements were eliminated by restraining
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the subjects' heads with a bite bar and a head rest. Smoothly
moving targets were presented to elicit smooth-pursuit
movements and minimize unwanted saccadic movements.
Seven subjects participated in the experiments. Informed
consent was obtained after the equipment and the experi-
mental procedure had been explained.

Experimental Technique

In this study we opened the loop by adding an external
electronic feedback loop that canceled the effects of the
natural feedback loop (Fig. 2). While the subject tried to
track a smoothly moving target, we measured eye position
with the DDA oculometer and moved the target an angular
distance equivalent to the eye movement. Thus eye move-
ments became ineffective in correcting the retinal error,
and the feedback loop was opened. However, after much
trepidation, we conjecture that this technique only works
for a few seconds, after which eye movements become
capricious due to involvement of high-level cortical
processes, such as the predictive mechanism mentioned
earlier.

After calibration data had been taken, the subject was
presented with five types of target waveforms: step dis-
placements with the feedback loop opened; sine waves with
the feedback loop closed; sine waves with the feedback
loop opened; ramps with the feedback loop opened; and
step-ramps with the feedback loop closed. The order of
presentation was randomized to prevent prediction.

The step target was presented to the subject to verify
that the technique of opening the loop using electronic
feedback was working. Because the step target introduced a
position error rather than a velocity error, this experiment
involved the saccadic system rather than the pursuit sys-
tem. A position error with the feedback loop opened
should have elicited a staircase of saccades as shown in Fig.
3. If the expected open-loop response to the step target was
seen, then the electronic feedback loop was opening the
loop correctly.

The open and closed-loop sine waves were presented at
0.3, 0.5, 0.6, and 0.8 Hz. Different frequencies were used to
determine if the data depended on target frequency. The
amplitudes of the sine waves were usually ±3°. Pre-
liminary work indicated that with the feedback loop open,
target amplitudes larger than 3° often elicited eye move-
ments that went out of the ±15° linear range of the
equipment. The eye movements of most subjects were
within the ±15° range when smaller target amplitudes
were used.

The triangular target waveform contained a series of
rightward and leftward ramps with an amplitude of 5° and
a frequency of 0.3 or 0.5 Hz. These ramp experiments were
run with the feedback loop opened. Unfortunately, a sac-
cade almost always camouflaged the start of smooth pursuit
movements.

Therefore, we reverted to the step-ramp target waveform
introduced by Rashbass [19]. Fig. 6 shows this step-ramp
waveform. The target steps to one side and then ramps off

POSITION TARGET

TIME
(SEC)

TARGET
EYE ••-

-+-/7-TJME
2.7- CSEO

VELOCITY

Fig. 6. Measurement of the smooth pursuit time delay from the closed-
loop step-ramp waveform. The time delay corresponds to the time
interval between the arrows.

in the opposite direction. Occurrence of saccades was mini-
mized by making the time required for the target to return
to its starting point equal to the latency of the saccadic
system. A latency of 150 ms was assumed. With this
waveform measurements were made in the first second of
tracking, eliminating any responses due to the predictabil-
ity of the target.

We had difficulty getting consistent results for open-loop
sinusoids. As a result, most of our open-loop data came
from either the first few seconds after the loop had been
opened, or from the step-ramp waveform. Our difficulties
with open-loop sinusoids were probably due to the involve-
ment of the saccadic system and high cortical processes,
such as prediction. Although we did not try them, we think
that unpredictable waveforms, such as a sum of sinusoids
or a pseudorandom sequence, should also eliminate these
confounding cortical effects and yield consistent long-term
open-loop tracking.

RECORDED DATA

From the experimental data, we measured the time delay
of the saccadic branch, the time delay of the smooth
pursuit branch, the ratio of the eye's velocity to the target's
velocity, and the 10-90-percent rise time. We analyzed the
data for each subject independently, but (except for the
previously mentioned high open-loop gain of our most-
experienced subject) we found no statistically significant
intersubject differences. Therefore we only present the
mean over all subjects and all experiments.

The time delay for the saccadic branch was measured
from the open-loop step targets. With these targets, the eye
made a series of saccades until saturation occurred. For
these experiments, the intersaccadic delay was measured as
well as the time between initial target movement and initial
eye movement. Fig. 3 illustrates the data and measure-
ments. The mean reaction time was 200 ms,

The data from the closed-loop sine waves and the
closed-loop step-ramps gave values for the smooth-pursuit
time delay. The delay corresponds to the time between the
beginning of target movement and the beginning of pursuit
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Fig. 7. Measurement of the velocity ratio from open-loop sine waves.
The ratio of eye velocity to target velocity was computed at peak
velocity. The arrow identifies the time when the feedback loop was
opened.
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Fig. 8. Measurements from the closed-loop step-ramp data. The time
interval between the arrows in the position trace is the time delay of the
smooth pursuit system. The time between the arrows in the velocity
trace is the 10-90-percent rise time.

movement as judged from the velocity trace. Fig. 6 shows
the measurement of the smooth pursuit time delay from the
step-ramp target waveform. The mean latency for the
step-ramp target waveform was 171 ms. The mean latency
for the sine waves was 176 ms.

The ratio of the eye's velocity to the target's velocity was
measured from the open-loop sine wave data; this ratio is
also called the open-loop gain. Fig. 7 shows a section of
data used in computing this ratio. When the feedback loop
was opened, the eye movements were larger than the target
movements and (at this frequency) there was a phase lag of
approximately 12°. This open-loop gain was found to have
a mean value of 2.5.

The closed-loop step-ramps provided more data than the
other waveforms. From this data we calculated the smooth
pursuit branch's time delay, the 10-90-rise time, and the
velocity ratio. Fig. 8 shows some step-ramp data. To calcu-
late the rise time we first identified the point where the eye
began tracking and the point where the eye reached a
steady state velocity. The points corresponding to ten and
90 percent of the distance were marked and the time
between them measured. The mean value of the 10-90-per-

Fig. 9. Measurements from the open-loop ramp data. The time between
the arrows is the 10-90-percent rise time. The thick parabola-like curves
will be explained in conjunction with Fig. 10.

cent rise time was 96 ms. We also measured the ratio of the
eye velocity to the target velocity after the transient. The
mean velocity ratio was 0.67.

The open-loop ramp data also provided measurements
of the rise time and open-loop gain. The rise time and
velocity ratio measurements were made like those for the
step-ramp experiments. The mean 10-90-percent rise time
for the ramp experiments was 182 ms. For the velocity
ratio a mean value of 1.61 was found. Fig. 9 shows some
open-loop ramp data with the measurements.

The first five columns of Table I summarize the results
of the raw data from each of the experiments. The time
delays are reasonable; the large standard deviations are of
biological, not experimental, origin. The two rise times
differ because one comes from a closed-loop system and
one from an open-loop system. The velocity ratios of open
and closed loop systems also differ as expected. However,
the large difference between the velocity ratio of the open-
loop sine wave and the open-loop ramp was not expected
(although they are within a standard deviation). We think
the open-loop sine-wave data are bad, because their stan-
dard deviation was so large and because open-loop sine-
wave experiments gave the least consistent results, both in
the literature and in our experiments over a period of five
years.

Comparison with the Literature

The time delay of the smooth pursuit branch has been
measured by several groups. Rashbass [19] reported a delay
of 150 ms; Robinson [14], 125 ms; and Young [26], 134 ms.
These values all lie within one standard deviation of the
173-ms mean delay measured in this study. Our measure-
ments for open-loop gain and most of the previously
mentioned values in the literature range between two and
four [5], [8], [9], [26].

The mean 10-90-percent rise time from the closed-loop
step-ramp waveforms was 96 ms. Robinson [14] measured
the total duration of movement for a step-ramp target to
be 133 ms. A comparison can be made by computing the
closed-loop time constant T for each study. The time
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TABLE I
MEAN AND STANDARD DEVIATION OF EXPERIMENTAL AND CALCULATED PARAMETERS1

Experiment

Sine wave
Closed-loop

Sine wave
Open-loop

Step
Open-loop

Step-ramp
Closed-loop

Ramp
Open-loop

Number of
Experiments

12

27

16

24

6

Pursuit
Time Delay

176ms
a = 57 ms

_

-

171ms
o = 57 ms

-

Velocity
Ratio
-

2.54
a = 1.11

-

0.67
o = 0.09

1.61
a = 0.32

Rise
Time
-

-

-

96ms
a = 32 ms

182ms
a = 13 ms

Saceadic
Time Delay

_

-

200ms
a = 30 ms

-

-

Gain
-

3.11
a = 1.24

-

2.35
o = 1.05

1.61
o = 0.35

Time
Constant

_

-

-

142ms
a = 51 ms

83ms
a = 6 ms

'For the smooth-pursuit system and the K/(TS + 1) model.

measured by Robinson should equal three closed-loop time
constants. This relationship gives a closed-loop time con-
stant of 44.3 ms. The 10-90-percent rise time measured in
our study equals 2.2 closed-loop time constants, therefore
one closed-loop time constant equals 43.6 ms. So the
closed-loop time constant measured in this study is the
same as Robinson's.

For the closed-loop step-ramps our mean velocity ratio
was only 0.67. Yet the literature abounds with examples of
unity gain ramp tracking [19]-[23] as shown between the
one and two second marks in Fig. 6. The major reason for
this difference is prediction by the human. We used data
from only the first second after the target started, thereby
ignoring the unity gain tracking common for predictable
targets. Thus our experimental data are in concert with
data in the literature.

IDENTIFICATION OF THE MODEL

After the experimental data had been analyzed we turned
our attention to developing a model that would fit the
data. Various models were proposed for the smooth-pursuit
branch, and the behavior of these models was compared to
the experimental data. The model that most accurately
simulated the experimental results was identified. The
parameters of this model were then calculated, resulting in
complete system identification.

Identification of Model's Form

The outputs of four linear models for the smooth pursuit
system will be presented: a pure integrator (K/s\ first
order lag (a leaky integrator) K/(TS + 1), a critically
damped second-order system, and an overdamped second-
order system. We do not include more complicated sys-
tems, because these were sufficient to match human data
and we wanted to keep the mathematics simple. For each
model we compared its open-loop output to that of a
human for several target waveforms. As previously noted,
analyzing open-loop data is circular. A model is needed
before one can completely analyze the data, but data are
necessary to simulate the model. To derive the output of
the models, we assumed a gain K of 2.5, a time constant T
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Fig. 10. (a) Position responses and (b) velocity responses for K/s,
K/(TS + 1), overdamped (OD), and critically damped (CD) models to
an open-loop ramp target position input, which is a velocity step input.
Human open-loop ramp data adjacent to the thick lines in Fig. 9 seem to
match the K/(rs + 1) model best.

of 140 ms, and for the overdamped case, a second time
constant of 1 ms. Derivation of these values will be shown
later; for the present they provide a means for comparing
the output of the four models to human data.

Fig. 10(a) shows the position output of the four models
for a ramp target. All four models have similar parabola-like
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Fig. 11. (a) Position response and (b) velocity response for K/s and
K/(TS + 1) models to an open-loop sine wave. The human data of Fig. 7
best match the K/(TS + 1) model.

shapes, so this type of an input is not useful for dis-
tinguishing between them. The human response has a
similar shape as shown by the thick short parabolic seg-
ment drawn along side the eye movements in Fig. 9. In
contrast, the bottom of Fig. 10 shows differences in the
velocity outputs of the four models for a step change in the
velocity input. The K/(TS + 1) response starts with a
positive slope and then approaches a steady-state satura-
tion value. It is the only response with this shape. The
human response seems to have a similar shape, as shown
by the thick curves drawn along side the eye velocity curves
in Fig. 9.

Similarly, the K/(TS + 1) model provides the best match
to the human open-loop sine-wave data. The position
output of this model, shown in Fig. ll(a), has the large
amplitude and a small phase lag seen in the human open-
loop sine-wave experiments. In contrast the position output
of the K/s model of Fig. 11 (a) has an offset and a large
phase lag, neither of which appear in the human data. The
velocity curves in Fig. ll(b) also support the K/(rs + 1)
model. The K/(TS + 1) model has a large amplitude and
small phase lag as does the human velocity data of Fig. 7.
Whereas the K/s model has a large 90° phase lag not seen
in the data.

From these comparisons the model that most closely
matches the experimental data is K/(rs + 1). Adding the
time delay gives the open-loop transfer function of

Ke ~sT

Using this model, values for the parameters may now be
computed.

Calculation of Model's Parameters Based on
Experimental Data

The time delays were measured directly from the human
data, but the system gain and time constant were calcu-
lated using human data and the proposed model.

First, the system gain and time constant were computed
using values for the closed-loop gain and rise time from the
step-ramp waveforms. For the human visual system the
feedback element H is, of course, unity, because if the eye
moves, the image on the retina moves by the same amount.
So, ignoring the time delay, the model's closed-loop trans-
fer function is

K

TS+1+ K
(1)

where 6E represents eye velocity; 6T, target velocity; K,
the system gain; T, the time constant; and s, the angular
frequency of the target. A step input for the target velocity
(a ramp input for the target position) gives 6T = l/s.
Substituting 6T = l/s into (1) gives an output in the
frequency domain of

K
6r = (2}

E s(rs+l + K)' ( )

This yields an output in the time domain of

K
6 E ( t } =

I + K (3)

where the term K/(l + K) is the velocity ratio. Using the
0.67 value measured from the human step-ramp data yields
a gain K of 2.3.

The computation for the time constant was done in the
following way. The closed-loop time constant of (3) is
TCL = r/(l + K). The rise time for our first order model
obeys the relationship TR = 2.2 TCL. Therefore, it follows
that

T =
2.2 (4)

The time constant was computed using (4), the just derived
system gain of 2.3, and the measured rise time TR. The
mean time constant was 142 ms.

Next the open-loop ramp data were analyzed. Ignoring
the time delay once again, the open-loop transfer function
for the proposed model is

K

rs + 1 (5)
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A ramp input, corresponding to a step velocity input, gives

K

Taking the inverse Laplace transform, 6 E ( t ) = K(l -
e~ f /T). Therefore, the velocity ratio measured directly from
the open-loop ramp data is the gain of the pursuit branch.
The mean was 1.61. The time constant for this experiment
was computed, once again, using r = TR/2,2. This equa-
tion gave a mean time constant of 83 ms.

Computing the gain from the open-loop sine-wave data
required using the time constant derived from another
experiment. Because this was open-loop data, we used the
83-ms time constant from open-loop step-ramps. The
open-loop transfer function was once again given by (5),
which can be rearranged as

from which the mean gain of 3.1 was computed. However,
as previously stated, we do not have confidence in the
open-loop sine-wave data. Having to use a time constant
derived from a different experiment further lessens our
confidence in this value.

The last two columns of Table I list the mean and
standard deviation of the computed parameters for each
experiment. The only other model to use the K/(TS + 1)
plant was that reported by Young [26]. They used a time
constant of 40 ms and a gain of one. To compare our
results with their results, we recomputed our time constant
assuming a gain of one. The mean 10-90-percent rise time
from the step-ramp experiments was 96 ms. Using (4), r
was found to be 87 ms. The open-loop ramp experiments
gave a time constant independent of the system's gain. The
value for the time constant from these experiments was 83
ms. Thus both of our results are about twice the value used
by Young et al.

Final Smooth-Pursuit Model

To use the average parameter values in the model would
be failing to acknowledge the biological noise in the data
and would imply a false confidence in those values. There-
fore, the average values were rounded off to provide the
following "nice" numbers for the model: K = 2.0, T = 150
ms, and T = 130 ms. Thus the complete smooth-pursuit
model became

2e -.15s

G°l 0.13.S + 1 (8)

The resulting model tracks like a human as shown in Fig.
12. However, this model is only marginally stable. If K was
increased (or if the numerical algorithms for integration,
differentiation, and summation produced phase shifts) then
the model became unstable. This means that experimental
data showing open-loop gains greater than two imply a
change in time delay or control strategy.

(?) POSITION

VELOCITY

Fig. 12. Comparison of (a) human and (b) model (bottom) tracking of a
cubical waveform. Both start out with a couple of position correcting
saccades and at a quarter of a cycle they settle down to zero-phase
tracking. Small position errors that develop are eliminated by small
saccades. The unusual cubical waveform is being accurately tracked (and
not just approximated with a sinusoid) as can be seen from the velocity
traces.

5 DEC

Fig. 13. Position response for human open-loop tracking. After the
feedback loop was opened, at the 1-s mark, the subject made a series of
saccades trying to catch the target. When this strategy did not work, he
seemed to turn off the saccadic system, and produced only smooth
pursuit movements. This subject was experienced in oculomotor experi-
ments, which explains the large open-loop gain.

A sensitivity analysis of the closed loop model showed
that the mean squared error between the model and the
target decreased as the time delay decreased, as the time
constant decreased, and as the gain increased (until the
system became unstable). These three parameters had
equivalent effects on the transient response and no effect
on the steady-state tracking; that is, all three sensitivity
functions went to zero after three seconds.

DISCUSSION

We cautioned earlier that open-loop experiments were
difficult to perform, because when the experimenters threw
the switch that supposedly opens the loop, they also altered
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5 DEC

Fig. 14. Model (solid) tracking a sinusoidal target (dotted) under a variety of conditions. At the first arrow the loop was
opened, at the second arrow the saccadic system was turned off, at the third arrow the adaptive controller was turned off.
Tracking patterns similar to each of these are common in human records.

the behavior of the target. Often the subjects would detect
this change in target behavior and change their tracking
strategies. Fig, 13 shows an example of such a change in
human tracking strategy. For the first half of this record
the subject behaved as one would expect for a subject
tracking an open-loop target; there is a saccade every 200
ms. However, in the middle of the record the saccades
cease; it seems that the subject turned off the saccadic
system. Such saccade free tracking was common in our
experiments and in other open-loop experiments [5]-[9]. It
is odd that previous open-loop experimenters did not com-
ment on this strange lack of saccades in their data. The
records are strikingly devoid of saccades in spite of the
large position errors.

In Fig. 14 we show our model tracking the target. From
2 to 4.25 s there is a normal closed-loop tracking. At 4.25 s
we opened the loop, turned off the adaptive controller, and
reduced the smooth pursuit gain to 0.7, thus producing a
staircase of saccades similar to those shown in Fig. 13. At
7.25 s we turned off the saccadic system, turned the
adaptive controller back on, and returned the gain of the
smooth pursuit system to its normal value; the model
tracked with an offset similar to that of Fig. 13. We often
noticed this type of position offset in our human subjects
during open-loop tracking. Finally, at 10.5 s we turned off
the adaptive controller, and the model tracked without an
offset like the human tracking of Fig. 7.

These simulations help explain some confusing data in
the literature by allowing us to suggest that when the loop
on the human smooth-pursuit system is electronically
opened, some subjects continue to track with all systems
(producing a staircase of saccades), some turn off the
saccadic system (producing smooth tracking with an offset),
some also turn off the adaptive controller (producing
smooth tracking without an offset), and some change the
gain on the smooth-pursuit system. This is an important
aspect of our study; running experiments on the model
that were not used to design the model. The results of these
simulations taught us that the human brain has great
variability.

the prediction elements. We obtained our best results
studying eye movements just after unpredictable target
motions, such as in the first few seconds after opening the
loop.

The open-loop transfer function of the human smooth
system can be modeled as

2e -.15s

01 0.135 + 1 '
The form of this model was chosen after comparing human
data to proposed models for the system and selecting the
model that most closely approximated the human data.
Based on this form the numerical parameters were then
calculated from the experimental data: one of the most
important features of the model is that it is a simple linear
system. This model was then compared to model and
human results by other experimenters and found to be
consistent with their results.

When the above model was incorporated into the more
encompassing TSAC model, the computer simulations
emulated both open- and closed-loop human tracking,
including overcoming a time delay and producing zero-
latency tracking of predictable targets. Although the model
certainly is not unique, it is the only published model that
can emulate the human in all of these experimental condi-
tions.

But the purpose of modeling is not to build a model;
modeling should teach something about the physical sys-
tem. Results of running this model led us to suggest that
when tracking predictable targets in the open-loop condi-
tion, humans sometimes turn off their adaptive controller,
humans sometimes turn off their saccadic system, and
humans sometimes change the gain on their smooth pursuit
system. In other words, they change their control strategy.
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SUMMARY

In order to open the loop on a system using electronic
feedback, all other systems must be eliminated. We
eliminated the vestibulo-ocular and vergence systems by
fixing the subject's head and by keeping the target at a
constant distance. The step-ramp waveform eliminated the
need for the saccadic system. The most difficult systems to
be removed were the high level cortical processes, such as
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