
When Are Observable
States Necessary?
Rick Botta,1 Zach Bahill,2 and Terry Bahill3, *

1BAE Systems, 10920 Technology Place, San Diego, CA 92127

2Boeing Integrated Defense Systems, Kent, WA

3Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020

WHEN ARE OBSERVABLE STATES NECESSARY?

Received 17 August 2005; Revised 7 November 2005; Accepted 3 March 2006, after one or more revisions
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/sys.20053

ABSTRACT

In order to use commercial off-the-shelf (COTS) products, the engineer must be able to prove
that the COTS product is equivalent to the specified design. In most cases, this requires
observable states, which are usually not available, because the supplier may not know or may
not want to disclose the internal states of the system. This paper first presents the following
reasons for proving system equivalence: to reuse existing systems, to upgrade systems, to
use COTS products, to replicate failures, to verify that a physical system conforms to its design,
and to test evolving systems. Next, the paper presents the following techniques that have
been used in lieu of proving system equivalence: Create multiple reset (or test) states and
prove I/O equivalence with respect to all initial state pairs, implement built-in self-tests, use
regression testing, define pre and post conditions, only use COTS products in places where
you do not care about observable states, put a wrapper around COTS products, record the
mode the system was in when the event of interest occurred, abstract the code into a state
machine, build an observer to estimate the system states, and add extra outputs so that the
states can be identified by examining the outputs. Finally, this paper gives examples where
states are necessary and unnecessary in modeling systems. © 2006 Wiley Periodicals, Inc. Syst
Eng 5: 228–240, 2006

Key words: state machines; system equivalence; reuse; testing; verification; COTS

Regular Paper

Contract grant sponsor: AFOSR/MURI F49620-03-1-0377.

*Author to whom correspondence should be addressed (e-mail:
terry@sie.arizona.edu).

Systems Engineering, Vol. 9, No. 3, 2006
© 2006 Wiley Periodicals, Inc.

228

1. THE DECISION OF MAKE VERSUS
REUSE VERSUS BUY

Are you going to make, reuse or buy lunch today? You
could go to a restaurant and buy a hamburger. Or you
could reuse your leftover pizza (if it’s not moldy). Or
you could decide to make lunch. In which case, you
could go to the grocery store and buy hamburger, let-
tuce, tomatoes, cheese, buns, and mayonnaise. How-
ever, rather than buying the mayonnaise, you could
reuse the jar you have in the refrigerator (after checking
the expiration date) or you could decide to make the
mayonnaise after buying salt, vinegar, lemon juice, oil,
and eggs. Rather than buying the eggs, you could buy a
chicken and … The point is, almost all make-reuse-buy
decisions end up with the decision to buy at some level.

MIL-STD 499 said the way to design a system was
to do functional decomposition. Students used to query,
“When do you stop decomposing?” We used to answer,
“When you get a function small enough to be designed
by a team of people.” Now we usually answer, “When
you get a function that can be implemented by a com-
mercial off-the-shelf product.”

So it is now apparent that in designing systems we
are going to buy commercial off-the-shelf (COTS)
products. There are lots of books, papers, and Web sites
that give advice about using COTS products. Hundreds
of papers were used in detail when we developed the
COTS-Based Engineering package, notably those from
the Software Engineering Institute [2005], the Systems
and Software Consortium [2005], the USC Center for
Software Engineering [2005], and the NSF Center for
Empirically Based Software Engineering [2005]. How-
ever, in these papers we found no suggestions for prov-
ing equivalence of COTS products.

This paper is about proving equivalence of systems
using state-based techniques. This has been of interest
to the digital-system design community for the last half
of a century. Because they had control of their designs,
they could and did create observable states. But COTS
products seldom provide observable states and there-
fore the desire to use COTS products creates a problem
that raises this issue to new prominence.

The paper starts with the premise that many systems
are state-based and that proving equivalence of state-
based systems cannot be done using only input/output
testing. Then it shows six reasons why engineers would
want to prove system equivalence. This is the first part
of the answer to the question “When are observable
states necessary?” The paper follows with ten tech-
niques that engineers use in lieu of complete state-based
testing. Next, it defines the difference between memo-
ryless and dynamic systems and provides many exam-
ples of each. It shows that equivalence of dynamic

systems can only be proven using state-based tests,
whereas equivalence of memoryless systems can be
proven using only input/output testing. This is the sec-
ond part of the answer to the question, “When are
observable states necessary?”

2. PROVING SYSTEM EQUIVALENCE

The desire to use commercial off-the-shelf products
forces the question, “How can we prove that two sys-
tems are equivalent?” We will now show six general
examples where it is necessary to prove system equiva-
lence. First, suppose a system called Z1 was designed
to perform task-1. Next, suppose task-2 needs to be
performed. A new system called Z2 could be designed,
or perhaps Z1 could be reused. In many cases, it would
be a lot cheaper to reuse Z1. For simplicity assume
task-2 is a subset of task-1; for example, task-1 could
be spelling and grammar checking and task-2 might be
only spelling checking. A necessary, but not sufficient,
condition for using Z1 for task-2 is that the I/O behavior
of Z1 and Z2 be identical for task-2. For example, the
I/O behavior of Z1 and Z2 would have to be identical
when checking spelling. However, identical I/O behav-
ior when checking spelling is not a sufficient condition
for proving equivalence, because the grammar-check-
ing module of Z1 (if it were ever invoked) could have
mistakes, trap doors, or Easter eggs that could destroy
the spelling checker.

Second, suppose that we have a large complex sys-
tem that has been working well for several years. But
the hardware is getting old and expensive to maintain.
Will our application still work if we upgrade from
hardware-1 to hardware-2? Or perhaps our software
vendor has come out with a new version. Other sites
have upgraded, but we have not, so we are losing
compatibility. Will our application still work if we
upgrade from software-1 to software-2? A necessary
but not sufficient condition for success of the upgrade
is that the input/output behavior of the application be
the same on the old system as it is on the new system.
However, identical I/O behavior of the application is not
a sufficient condition for proving equivalence, because,
for example, a portion of hardware-2 might have a
switch that disables the functions of hardware-1 if the
system gets into a certain undefined state.

Third, suppose we make custom systems for our
customer. They work very well, but they are expensive.
Now our customer wants us to design a new system, but
to keep the cost down, he wants us to use as many
commercial off-the-shelf products as possible. We have
a design, Z1, that satisfies the customer’s needed func-

 WHEN ARE OBSERVABLE STATES NECESSARY? 229

Systems Engineering DOI 10.1002/sys

tionality. But we want to know if a COTS system, Z2,
will also satisfy this functionality.

A very common technique for describing the desired
behavior of a system is to describe acceptable input/out-
put trajectories (or strings) for the system. Such descrip-
tions of input and output behaviors as functions of time
are variously called trajectories, strings, behavioral sce-
narios, use cases, flows, threads, operational scenarios,
logistics, functionality, test vectors, sequence diagrams,
or interaction diagrams. When using such techniques
the following question often arises: “How do you know
when you have enough trajectories?” The answer seems
to be never. Because merely looking at input/output
behavior can never guarantee correct system behavior:
we must be able to observe the system’s state [Wymore
and Bahill, 2000].1 The state of the system contains all
of the information needed to calculate responses to
present and future inputs without reference to the past
history of inputs and outputs.

Fourth, often field failures reported in deficiency
reports cannot be replicated by maintenance or support
staff. Sometimes these failures are written off as “pilot
error.” But, more likely, these problems are a result of
not being able to replicate the exact state of the system
when the anomaly occurred. A common fix-it technique
is to reboot the system. This, of course, removes infor-
mation about the state the system was in at the time of
failure. Having observable states would ameliorate this
problem of replicating failures.

Fifth, system verification often requires observable
states. Suppose Engineering designs a system, then
Manufacturing builds a physical system. Could an en-
gineer prove that the physical system implements the
design? If the states were observable, then the engineer
could construct an input trajectory (scenario) that exer-
cised all state transitions (changes from one state to
another), apply this input trajectory to both systems and
compare the resulting state trajectories. If they were
identical, then the systems would be equivalent. How-
ever, if the system states were not observable, then the
only thing the engineer could work with is the in-
put/output behavior of the systems. Wymore and Bahill
[2000] proved that identical input/output behavior is not
sufficient for proving equivalence of two state-based
systems.

Suppose an engineer tried to implement the design
Z3 in, say, TTL circuitry. How could he or she test this
hardware to prove that it did indeed implement the
design? If the states were observable, then the engineer

could construct an input trajectory (string) (or a set of
input trajectories) that exercised all state transitions,
apply this input trajectory to Z3 and to the TTL circuit,
and compare the resulting state trajectories. If they were
identical, then the systems would be equivalent. How-
ever, what if all of the states were not observable? Well,
then the engineer could define some equivalent states
of the design and of the physical system and then prove
I/O equivalence with respect to each initial state pair
[Wymore and Bahill, 2000]. Finally, what if you cannot
put the system into all possible initial states? Then you
cannot prove system equivalence!

Sixth, assume we are using an evolutionary acquisi-
tion life cycle model [DoD, 2003]. We build a system
and deliver it to our customer. Then, in the next spiral,
we add requirements, functionality, and money and
deliver an improved system. How do we test the second
system? We could treat it as a new system and design
tests from the bottom up, but it would be more efficient
to reuse previous tests. Therefore, we use the test vec-
tors and test procedures of the first system and add new
tests for the new functionality. If the original tests were
state-based, this technique will work. If they were
merely input/output tests, then it will not.

We have just mentioned six reasons why engineers
might want to prove that two systems are equivalent:
(1) to reuse existing systems, (2) to upgrade systems,
(3) to use commercial off-the-shelf (COTS) products,
(4) to replicate failures, (5) to verify that a physical
system conforms to its design, and (6) to test evolving
systems. Of course, there are many more reasons. One
of the best ways to prove system equivalence is to
design an input trajectory (or perhaps a set of input
trajectories) that exercises every possible state transi-
tion, apply it to both systems, and ensure that the two
state trajectories are identical. However, this might be
impossible, because the states are not observable: or it
might be too expensive, due to the large number of
states.

Some definitions of system equivalence. If equiva-
lent systems are started in equivalent states, then they
produce the same state trajectories for all input trajec-
tories. Equivalent systems have the same input/output
behavior for all input trajectories and all pairs of possi-
ble starting states. Equivalence is not based on satisfy-
ing the same requirements, because requirements are
seldom precise enough to define all system states.
Equivalence is not based on having the same design,
because most designs can have multiple implementa-
tions. Mathematically, the equivalence relationship is
reflective, symmetric, and transitive. If Z1, Z2, and Z3
are systems, then Z1 is equivalent to Z1 (reflexivity). If
Z1 is equivalent to Z2, then Z2 is equivalent to Z1
(symmetry). If Z1 is equivalent to Z2 and Z2 is equiva-

1 For specific systems where the outputs were created to provide
exact state information (called state readout [Wymore, 1993]) and the
outputs also provide initial state information, then obviously the state
trajectory could be computed from the output trajectory and in-
put/output behavior could be used to prove equivalence.

230 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

lent to Z3, then Z1 is equivalent to Z3 (transitivity). The
most popular techniques for minimizing systems use
equivalence classes [Katz, 1994: 452–460; Hill and
Peterson, 1981: 282–300].

Here are some techniques that have been used in lieu
of comprehensive state-based testing. (1) Create multi-
ple reset (or test) states and prove I/O equivalence with
respect to all initial reset-state pairs. These reset states
must be precise. Each system must go into a well-de-
fined reset state when ever the reset signal is received
no matter what it was doing or what state it was in.
Ctrl-C guaranteed termination of DOS programs. Ctrl-
Alt-Delete put the system into a unique reset state for
early Windows systems. Now, turning the power off for
at least one minute usually produces a reset state for
modern Windows systems. Unix and Linux systems are
more deterministic. (2) Implement built-in self-tests.
The built-in self-tests should verify that the systems
satisfy certain requirements. If the same requirements
are being verified for both systems, then partial equiva-
lence is being demonstrated. (3) Use regression testing.
Create a test suite, a tool that gives an environment to
automatically run test cases at specified intervals and
report regressions. (4) Use the pre- and post-condition
slots of the use case template [Bahill, 2006]. These can
be used to create state machine diagrams and sub-
sequent equivalence tests. (5) Only use COTS products
in places where you do not care about observable states.
For example, in an interface that passes data from a high
security system to a low security system, as long as it
passes the needed information, we do not care what
happens internally. (6) Build a wrapper around the
COTS product. Build a state-based interface to go be-
tween a COTS product and your system. Then apply
input trajectories to the first COTS product, allow its
outputs to affect the states of the interface, and record
the state trajectories of the interface. Then do the same
for the second COTS product. Hopefully the state tra-
jectories will be similar. (7) Record the mode the system
was in when the event of interest (perhaps a failure)
occurred. The state of an airplane would include speed,
position, altitude, weight, barometric pressure, humid-
ity, etc. But the mode would be much simpler: loading,
taxing, taking off, climbing, cruising and landing. The
UML captures this concept of modes by using a hierar-
chy of superstates and substates. (8) Provide an interac-
tive facility for abstracting software programs to
produce finite-state models that are amenable to model-
checking verification tools [Dwyer et al., 2001]. (9)
Switching from requirements-based design to model-
based design helps produce state descriptions [Busser
et al., 2002]. (10) Build an observer to estimate the
system states. This technique is common in the field of
Linear Systems Theory [Szidarovszky and Bahill,

1998]. It is analogous to the following technique. (11)
Add extra outputs (test points) so that the states can be
identified by examining the outputs.

Example of Adding Outputs. In the old days, ac-
celerometers from automobile air bag systems indi-
cated their state as Ready or Fired. At the same time,
missile manufactures spent thousands of dollars on
g-switches that indicated when a missile had acceler-
ated away from its platform. Then someone added an
extra output to the accelerometers, an output that indi-
cated the state of the accelerometer—its present accel-
eration. Missile manufactures then started using these
inexpensive accelerometers in missile safing systems
instead of expensive custom made g-switches. Figure 1
shows how the state of an object is represented in a
UML state machine diagram and with the values of its
attributes in a class diagram.

3. SOMETIMES IT WORKS

Input/output (I/O) equivalence cannot be used to prove
the equivalence of two dynamic systems. But many
engineers say that this is how they do it. Whenever a lot
of people say that they do something that cannot be
done, it is useful to examine exactly what they are
doing. First, they are using input/output behavior to
prove system equivalence and sometimes it works. So,
next we want to show under what circumstances it
works.

In the field of Digital Design (e.g., computer design),
the two basic types of systems are called combinational
and sequential [Hill and Peterson, 1981; Katz, 1994].
In the field of cybernetics, von Foerster [1982] called
them trivial and nontrivial systems. In this paper, we

Figure 1. State machine diagram (left) and a class diagram
(right) showing how states are represented. The class diagram
has three compartments containing the class name (top),
attributes in this case indicating the state (middle) and func-
tions (bottom). Copyright © 2004, Bahil l , from
http://www/sie.arizona.edu/sysengr/slides/, used with per-
mission.

 WHEN ARE OBSERVABLE STATES NECESSARY? 231

Systems Engineering DOI 10.1002/sys

will call them, respectively, memoryless and dynamic.
In memoryless systems, the output depends only on the
present inputs, whereas, in dynamic systems, the output
depends on the sequence of previous inputs. Memo-
ryless problems can be modeled and implemented as
dynamic systems. But not vice versa.

Consider the household three-way light system of
Figure 2 with one light and two switches, one at each
end of a hallway. Define the inputs to be the position of
the switches {up, down}. We can create the dynamic
model of Figure 3 for this three-way light system. For
simplicity, input combinations that do not produce a
change of state are not shown; also, simultaneous
changes of both switches are not shown. Given the
present state and an input trajectory (sequence of in-
puts), we can compute the state trajectory. Therefore,
the three-way light system can be modeled as a dynamic
system as in Figure 3 and it can be implemented with
flip-flops.

However, in actuality, the three-way light system is
a memoryless problem: It does not need a dynamic
solution. The present state depends only on the present
positions of the switches. The system can be modeled
with the truth table of Table I. From Table I, we can
derive the following Boolean equation:

Light = S1
__

 ⋅ S2
__

 + S1 ⋅ S2.

This equation (or model) can be implemented using
only AND and OR gates. This memoryless system
implementation is simpler than the dynamic system
implementation presented in Figure 3. Furthermore, the
equivalence of this memoryless model with the physical
system can be proven using only input/output behavior.

Contrast this three-way light system with a three-
way lamp that can be off, on at 50 W, on at 100 W or on
at 150 W. Turn the switch 90°, and the lamp is on dimly.
Turn it again, and the lamp is on with medium bright-
ness. Turn it a third time and the lamp is on brightly. A
final turn, turns the lamp off. The behavior of this
system (with its only input of turn the knob 90°) clearly
depends on its previous state: It is a dynamic problem
and it requires a dynamic solution. The equivalence of
the dynamic solution (model) with the physical system
cannot be proven using only input/output behavior.

Therefore, in the real world, there are memoryless
problems that should have memoryless solutions: How-
ever, they could also have dynamic solutions. An engi-
neer can prove the equivalence of these memoryless
problems using only input/output behavior. However,
real-world dynamic problems must have dynamic solu-
tions. And the equivalence of these solutions cannot be
proven using only input/output behavior.

In this paper, we have shown that an engineer cannot
prove equivalence of two dynamic systems using only
input/output behavior. But there are many engineers
who say that they have proven the equivalence two
systems using only input/output behavior. We suggest
that their systems were merely memoryless problems.
And for memoryless problems, equivalence can be
proven using only input/output behavior.

4. WHAT TYPE OF SYSTEMS HAVE
STATES AND WHAT TYPE OF MODELS
NEED STATES?

In order to use COTS products, we must have a valid
model of the system, and that model must have observ-
able states in order to prove that the model conforms to
the system design.

Figure 2. Wiring diagram for a three-way light system. Copy-
right © 2004, Bahill, from http://www/sie.arizona.
edu/sysengr/slides/, used with permission.

Figure 3. State machine model for a three-way light system.
Copyright © 2004, Bahill, from http://www/sie.arizona.
edu/sysengr/slides/, used with permission.

 Table I. A Truth Table

232 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

Before analyzing models of systems, we need a few
definitions. A system is a combination of interacting
elements that performs a function not possible with any
of the individual elements. The elements can include
hardware, software, bioware, facilities, policies, and
processes. A system accepts inputs, over which it has
no direct control, and transforms them into outputs. A
system should have a well-defined boundary. Fitting
this single definition are many types of systems, some
have states and some do not.

Systems can be categorized as memoryless or dy-
namic. In a memoryless system, the outputs depend only
on the present values of its inputs, whereas, in a dynamic
system, the outputs depend on the present and past
values of its inputs. For dynamic systems, we must
define the concept of a state.

The state of a system makes the system’s history
irrelevant. The state of the system contains all of the
information needed to calculate responses to present
and future inputs without reference to the past history
of inputs and outputs. The state of the system, the
present inputs, and the sequence of future inputs allow
computation of all future states (and outputs). For ex-
ample, the present balance of your checking account
can be the state of that system. This state could have
gotten to its present value in many ways, but when you
write a check, that history is irrelevant. But, of course,
your model depends on how you define your system.
Credit agencies would want to know how many times
you had a negative balance and the bank would want to
know your daily balance in order to calculate your
interest.

Some dynamic systems are modeled best with state
equations while others are modeled best with state
machines. State-equation systems are modeled with
equations. For example, a baseball’s movement can be
modeled with state equations for position, linear veloc-
ity, and angular velocity all as functions of time. State-
machine systems focus less on physical variables and
more on logical attributes. Therefore, these systems
have memory and are modeled with finite state ma-
chines. Most computer systems are modeled with finite
state machines.

At each instant of time, a dynamic system is in a
specific state. State-equation systems can have one or
many state variables: At any time, the system’s state is
defined as the unique values for each of the state vari-
ables. State-machine systems can be modeled with one
or many concurrent state machines: at any time, each of
the concurrent state machines must be in one and only
one state. A state is a unique snapshot that (1) is speci-
fied by values for a set of variables, (2) characterizes
the system for a period of time, and (3) is different from
other states. Each state is different from other states in

either the inputs it responds to, the outputs it produces
or the transitions it takes. A transition is a response to
an input that may cause a change of state.

Some systems require both state machine diagrams
and state equations. The UML models state-machine
systems with state machine diagrams. It does not have
a specific diagram for modeling state-equation systems.
Instead, the state equations are put into the use case
package [Gomaa, 2000: 598]. In SysML [2006] state
equations are modeled in parametric diagrams. State
machines can be organized in hierarchies made up of
states, superstates, substates, concurrent states, and his-
tory states [Harel and Naamad, 1996]. A system could
be composed of several superstates each of which is
made up of several states. In this context, a mode would
be a superstate, although a reviewer has said that MIL
STD 490 treated modes in the opposite fashion saying
that states were composed of modes.

In modeling a system, one of the most important
tasks is deciding whether the system is memoryless or
dynamic. First, let us consider some state-equation
systems. An ideal spring is a memoryless system, be-
cause the output position depends only on the input
force applied, whereas an ideal mass is a dynamic
system, because the output position depends on the
applied input force as well as the initial position and
velocity. An ideal resistor is a memoryless system,
because the output voltage depends only on the input
current, whereas a resistor-capacitor system is dynamic,
because the output voltage depends on the input current
as well as the initial capacitor voltage.

Let us now consider some well-defined game sys-
tems and decide whether they are memoryless or dy-
namic. Roulette is a memoryless system. You spin the
wheel, look at the input, and pay the output. State
lotteries are also memoryless systems. The State does
not care who won last week: It just draws the numbers
and pays the winners. Flipping a coin is memoryless.
The card game Show Low is a memoryless game. Each
player cuts the deck and shows his card. The player
showing the lowest card wins. The city of Show Low in
Arizona was named after a famous Show Low game. A
padlock is a memoryless system, whereas a combina-
tion lock is a dynamic system. The game of Craps
requires knowledge of “the point.” So it is a dynamic
system, but because it requires memory of only one
number, it is one of the simplest dynamic games.

Often a question will help you discover the state
information that a dynamic system must store in its
memory. For instance, if you are playing a game of
chess by mail, “What state information does your op-
ponent need in order to respond to your move?” He or
she would need to know the position of every piece on
the board, whose turn it is, whether or not each person

 WHEN ARE OBSERVABLE STATES NECESSARY? 233

Systems Engineering DOI 10.1002/sys

has castled, and about passed pawns. We will now
estimate the information complexity of this game by
suggesting how much memory this would require. The
location of each piece could be prescribed by noting its
row and column. For example white’s bishop in column
d, row 5 would be WBd5. There are 32 pieces each
requiring 4 bytes. So the game would require about 140
bytes. Near the end of a game, individual moves would
also have to be recorded to possibly indicate a stale-
mate.

For checkers you would need to record the color and
type of each piece on the 32 numbered dark squares.
Information complexity is 96 bytes.

If a baseball game were called due to rain, “What
state information would you have to store in order to
restart it at a later date?” You would need to store total
runs scored by the visiting team, total runs scored by
the home team, the inning, whether it is the top or the
bottom of the inning, last batter for the visiting team,
last batter for the home team, outs in this half of the
present inning, balls on present batter, strikes on present
batter, name of runner on first base, name of runner on
second base, name of runner on third base, and a list of
players who have been removed from the game (this is
important, because in baseball a removed player cannot
return). You would need all this state information in
order to restart a rain-delayed game. For information
complexity, this is about 120 bytes. If you wish to go
into excruciating detail, you could also consider the
batting order and the number of times each manager and
coach has gone out to talk to the pitcher in the inning.
For Little League games you could list how many
innings each pitcher pitched (pitchers are limited to six
innings per week) and the children who were in atten-
dance (children who were not there for the original
game cannot play in the resumed game).

Poker is a very complex dynamic system. Before you
make a bet, you should know all of the cards that have
been played, all of the bets that have been made, and

the state of each opponent’s mind. To assess their states
of mind, you must read their body language and vocal
patterns and use this in combination with their previous
betting behavior. Poker requires astute observation and
a large memory to store a large number of states.

In contrast, Blackjack is a much simpler dynamic
system, because you are only playing against the dealer
and the dealer must abide by strict rules. So the only
state information you need is the cards that have been
played. For information complexity, on average 26
cards would have been played and you can record each
card with 2 bytes of information. So information com-
plexity is about 50 bytes. Table II summarizes the state
behavior of these games.

Of course, all of the above statements depend on how
you define your system’s boundaries. If you want to
model the amount of money in the state lottery pot, then
you must know if someone won last week. In the game
of roulette, if you can measure the state (speed and
position) of the wheel and the state (speed and position)
of the ball while they are spinning, then you can use
physics to predict where the ball will land. In the late
1970s students at the University of California at Santa
Cruz successfully built and used such a computer sys-
tem and won at Las Vegas.

A computer is obviously a dynamic system. If you
buy a new computer or install a new operating system,
you should record the parameters of your dialup mo-
dem, favorite URLs of your browser, custom dictionary
of your spelling checker, version, and preferences for
all software. These partially capture the state of your
previous system. The state of a computer is sometimes
called the system configuration.

Occasionally, your personal computer may put up a
window saying, “The application has committed an
error. Please tell Microsoft about this problem.” What
are they sending to Microsoft? State information, be-
cause Microsoft knows that they can only fix their
programs if they have state information.

 Table II. For Which Systems Are States Needed?

234 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

In software systems, services should not have state
behavior [Evans, 2004: 104–108]. Some objects will
have states and when they are created: they must be
deliberately put into their desired initial states [Evans,
2004: 139].

Almost any system containing a microprocessor will
be a dynamic system: microwave ovens, cars, watches,
calculators, printers, telephones. Simple models for
most inanimate objects will be memoryless systems:
chairs, desks, mugs, staplers, bats, and balls. But, of
course, your purpose in modeling the system may force
you to sometimes use a dynamic model. For example,
it might be important to know if the stapler had staples
in it. The coefficient of restitution of a bat-ball collision
depends upon the internal temperature of the ball, and
this would depend on its history, for example, if it had
recently been stored in a freezer.

We now want to consider some commercial database
systems. Are DOORS and Excel essentially equivalent
systems? Yes, for most practical purposes. They have
different features, but for creating a simple require-
ments system, they are equivalent, because the pro-
grams themselves do not have significant state
behavior. How would you prove the equivalence of a
DOORS requirements system and an Excel require-
ments system? First, you would compare the contents
of each memory cell. If they were all equal, then the
databases would be equivalent. Then you could merge
two Excel databases and two DOORS databases and
recheck for equivalence. Then you could delete of all
requirements containing a certain keyword from an
Excel database and a DOORS database and then com-
pare the resulting databases of each system requirement
by requirement. Similar statements should hold for
SQL, Sybase, and Oracle requirements systems.

The above paragraph about DOORS and Excel is
different from the rest of this paper. The rest of this
paper was precise. This paragraph is mushy. It was put
in to show the type of decisions engineers frequently
make. Most engineers would be willing to upgrade an
Excel spreadsheet to a DOORS database, and they
would seldom get into trouble doing so, although they
would not have proven that such an upgrade would be
valid.

DOORS, as its name (Dynamic Object-Oriented
Requirements System) implies, is a dynamic system. It
has state information. So going from an Excel require-
ments system to a DOORS system would be all right.
But in going backwards from a DOORS system to an
Excel requirements system, you would probably lose
the state information.

The state of a system is a modeling concept. We can
never accurately know the complete, exact state of a
physical system. The Heisenberg Uncertainly Principle

says, we cannot simultaneously measure the exact po-
sition and velocity of an object. Einstein said, “So far
as the theorems of mathematics are about reality, they
are not certain: so far are they are certain, they are not
about reality.” A model is a simplified representation of
some aspect of a real system. Most systems are impos-
sible to study in their entirety, but they are made up of
hierarchies of smaller subsystems that can be studied.
Herb Simon [1962] discussed the necessity for such
hierarchies in complex systems. He showed that most
complex systems are decomposable, enabling subsys-
tems to be studied outside the entire hierarchy. For
example, when modeling the movement of a pitched
baseball, it is sufficient to apply Newtonian mechanics
considering only gravity, air resistance, velocity of the
ball, and spin of the ball. One need not be concerned
about electron orbits or the motions of the sun and the
moon. Forces that are important when studying objects
of one order of magnitude seldom have an effect on
objects of another order of magnitude. As a conse-
quence, we never know the complete exact state of any
physical system. Therefore, our comments about the
state of a system are actually comments about some
model of that system. Our comment about the need for
observable states means, “Do the outputs of the physical
system and the model provide an unambiguous descrip-
tion of the state of the model?”

5. FAMOUS FAILURES

The systems presented in Table II are well known and
have well-defined rules. Next, we investigated some
less well-defined systems [Moody, Chapman, Van
Voorhees and Bahill, 1997]. In particular, we looked at
the 23 famous failures studied by Bahill and Henderson
[2005] and asked, “Could the failure have been caused
by mistakes in modeling the states or modes of the
system?” The following is a description of some of
these systems and Table III provides a summary of the
answers to this question.

RMS Titanic had poor quality control in the manu-
facture of the wrought iron rivets. In the cold water of
April 14, 1912, when the Titanic hit the iceberg, many
rivets failed and whole sheets of the hull became unat-
tached. They did not build the ship right; therefore,
verification was bad. An insufficient number of life-
boats was a requirements development failure. How-
ever, the Titanic satisfied the needs of the ship owners
and passengers (until it sank), so validation was all right
[Titanic, 1997]. There is no evidence that the concept
of states existed a century ago.

The Tacoma Narrows Bridge was a modification
of an older design. But the strait where they built it had

 WHEN ARE OBSERVABLE STATES NECESSARY? 235

Systems Engineering DOI 10.1002/sys

strong winds: the bridge became unstable in these
crosswinds and it collapsed. The film of its collapse is
available on the Web: It is well worth watching [Ta-
coma-1, 2006; Tacoma-2, 2006]. The design engineers
reused the requirements for an existing bridge: so these
requirements were up to the standards of the day. The
bridge was built well, so verification was all right. But
it was the wrong bridge for that environment, a valida-
tion error [Billah and Scanlan, 1991]. A well-con-
structed bridge appears to be a static structure. But it
actually has a lot of dynamic behavior. That is why army
units walk, not march, across bridges. Galloping Gertie,
as it was called, exhibited tremendous dynamic behav-
ior, twisting, turning and undulating in the hour before
it collapsed. With 21st century computers, it would be
easy to model the dynamic state behavior of such a
bridge and therefore predict its collapse.

John F. Kennedy, in a commencement address at
Duke University in 1961, stated the top-level goals for
the Apollo Program: (1) Put a man on the moon (2) and
return him safely (3) by the end of the decade. On
Apollo 13, for the thermostatic switches for the heaters
of the oxygen tanks, they changed the operating voltage
from 28 to 65 V, but they did not change the voltage
specification or test the switches. This was a configura-
tion management failure that should have been detected
by verification [Apollo 13, 1995]. The Apollo 13 did
have states and modes, but there is no evidence that they
had anything to do with the failure.

General Electric Co. (GE) engineers said they
could reduce the part count for their new refrigerator
by one-third by replacing the reciprocating compressor
with a rotary compressor. Furthermore, they said they
could make it easier to machine, and thereby cut manu-
facturing costs, if they used powdered-metal instead of
steel and cast iron for two parts. However, powdered-

metal parts had failed in their air conditioners a decade
earlier. [Chapman, Bahill, and Wymore, 1992: 19]

Six hundred compressors were “life tested” by run-
ning them continuously for 2 months under tempera-
tures and pressures that were supposed to simulate 5
years’ actual use. Not a single compressor failed, which
was the good news that was passed up the management
ladder. However, the technicians testing the compres-
sors noticed that many of the motor windings were
discolored from heat, bearing surfaces appeared worn,
and the sealed lubricating oil seemed to be breaking
down. This bad news was not passed up the manage-
ment ladder!

By the end of 1986, GE had produced over 1 million
of the new compressors. In July of 1987 the first refrig-
erator failed; quickly thereafter came an avalanche of
failures. The engineers could not fix the problem. In the
summer of 1988 the engineers reported that the two
powdered-metal parts were wearing excessively, in-
creasing friction, burning up the oil and causing the
compressors to fail. GE management decided to redes-
ign the compressor without the powdered-metal parts.
In 1989, they voluntarily replaced over one million
defective compressors.

The biggest mistakes causing this failure were speci-
fying the powdered-metal parts and bad modeling of the
accelerated life-cycle testing. In other words, the model
of the state behavior of the motors poorly matched the
actual state of the physical system.

The Chernobyl Nuclear Power Plant was built
according to its design, but it was a bad design: Valida-
tion was wrong. They had poor configuration manage-
ment evidenced by undocumented cross-outs in the
operating manual. Human error contributed to the ex-
plosion. Cover up and denial for the first 36 hours
contributed to the disaster. This is our greatest failure:
It killed hundreds of thousands, perhaps millions, of
people. Here are references for the U.S. Nuclear Regu-
latory Commission summary [Chernobyl-1, 2006], a
general Web site with lots of other links [Chernobyl-2,
2006], a BBC report [Chernobyl-3, 2006], and for some
photos of what Chernobyl looks like today [Chernobyl-
4, 2006]. Just before the explosion, the human operators
thought that the reactor was in one state when it was
actually in another. The mental models of the nuclear
reactor operators were wrong.

The Hubble Space Telescope was built at a cost of
around 1 billion dollars. The requirements were right.
Looking at the marvelous images we have been getting,
in retrospect we can say that this was the right system.
But during its development the guidance, navigation,
and control (GNC) system, which was on the cutting
edge of technology, was running out of money. So they
transferred money from Systems Engineering to GNC.

Table III. Some Famous Failures

236 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

As a result, they never did a total system test. When the
Space Shuttle Challenger blew up, the launch of the
Hubble was delayed for a few years, at a cost of around
1 billion dollars. In that time, no one ever looked
through that telescope. It was never tested. They said
that the individual components all worked, so surely the
total system would work. After they launched it, they
found that the telescope was myopic. Astronauts from
a space shuttle had to install spectacles on it, at a cost
of around 1 billion dollars. [Chapman, Bahill, and
Wymore, 1992: 16]. Modeling of the states seems to
have had no part in the failure.

The French Ariane 4 missile was successful in
launching satellites. However, the French thought that
they could make more money if they made this missile
larger. So they built the Ariane 5. It blew up on its first
launch, destroying a billion dollars worth of satellites.
The mistakes on the Ariane 5 missile were (1) reuse of
software on a scaled-up design, (2) failure to test this
software in a new mode that would become manifest
due to the larger engines, (3) allowing the accelerometer
to run for 40 s after launch, (4) not flagging as an error
the overflow of the 32-bit horizontal-velocity storage
register, and (5) allowing a CPU to shutdown if the other
CPU was already shutdown. The requirements for the
Ariane 5 were similar to those of the Ariane 4: So it was
easy to get the requirements right. They needed a mis-
sile with a larger payload, and that is what they got: So
that part of validation was all right. However, one
danger of scaling up an old design for a bigger system
is that it might produce a bad design, which is a valida-
tion mistake. Their failure to test the scaled-up software
in its new states and modes was a verification mistake
[Kunzig, 1997].

The Lewis Spacecraft was an Earth-orbiting satel-
lite that was supposed to measure changes in the Earth’s
land surfaces. But due to a faulty design, it only lasted
3 days in orbit. “The loss of the Lewis Spacecraft was
the direct result of an implementation of a technically
flawed Safe Mode in the Attitude Control System. This
error was made fatal to the spacecraft by the reliance on
that unproven Safe Mode by the on orbit operations
team and by the failure to adequately monitor spacecraft
health and safety during the critical initial mission
phase” [Lewis Spacecraft, 1998]. The failure investiga-
tion board wrote that the failure was caused by a faulty
mode.

On the Mars Climate Orbiter, the prime contractor,
Lockheed Martin, used English units for the satellite
thrusters while the operator, JPL, used SI units for the
model of the thrusters. Therefore, there was a small
mismatch between the space-based satellite and the
ground-based model due to different round-off effects.
Because the solar arrays were asymmetric, the thrusters

had to fire often, thereby accumulating error between
the state of the satellite and the state of the model. This
caused the calculated orbit altitude at Mars to be wrong.
Therefore, instead of orbiting, it entered the atmosphere
and burned up [Mars Program, 2000; NASA, 2000].
There was a mismatch between the space-based satellite
and the ground-based model: This is a validation error.
This failure is obviously due to mistakes in modeling
the system state.

On the Mars Polar Lander, “spurious signals were
generated when the lander legs were deployed during
descent. The spurious signals gave a false indication
that the lander had landed, resulting in a premature
shutdown of the lander engines and the destruction of
the lander when it crashed into the Mars surface … It is
not uncommon for sensors … to produce spurious
signals… During the test of the lander system, the
sensors were incorrectly wired due to a design error. As
a result, the spurious signals were not identified by the
system test, and the system test was not repeated with
properly wired touchdown sensors. While the most
probable direct cause of the failure is premature engine
shutdown, it is important to note that the underlying
cause is inadequate software design and systems test”
[Mars Program, 2000] [Blackburn, Busser and Nau-
man, 2002]. Modeling of the system states and modes
seems to have had no part in the failure.

The emphasis in most of this paper was that observ-
able states are necessary in order to prove system
equivalence. Another reason for providing observable
states is to help a team to better understand the behavior
of a complex system. Safe operation of a complex
system is based on the ability to explain system behav-
ior. Explanations of system behavior are based on func-
tions and states [Rouse, Cannon-Bowers, and Salas,
1992].

6. DISCUSSION

In the first half of the 20th century, the reigning model
for human decision-making was the theory of subjec-
tive expected utility. Utility is a measure of the happi-
ness or satisfaction a person receives from a good or
service. Utilities are numbers that express relative pref-
erences using a particular set of assumptions and meth-
ods. Subjective expected utility combines two
subjective concepts: utility and probability. The subjec-
tive expected utility is the product of the utility and the
probability of that event occurring. Subjective expected
utility theory models human decision-making as maxi-
mizing subjective expected utility (1) maximizing, be-
cause people choose the set of alternatives with the
highest total utility, (2) subjective, because the choice
depends on the decision maker’s values and prefer-

 WHEN ARE OBSERVABLE STATES NECESSARY? 237

Systems Engineering DOI 10.1002/sys

ences, not on reality (e.g. advertising improves subjec-
tive perceptions of a product without improving the
product), and (3) expected, because the expected value
is used. A person who maximizes subjective expected
utility is said to be rational. This is a first-order model
for human decision-making.

The term satisficing was coined by Noble Laureate
Herb Simon [1955]. When making decisions there is
always uncertainty and insufficient time and resources
to explore the whole problem space. Therefore, people
cannot make rational decisions. Simon proposed that
people do not attempt to maximize the expected utility
of the alternatives. Instead, they search for alternatives
that are good enough, alternatives that satisfice.

Our situation with observable states seems to be
analogous to the situation Simon was in during the
1950s. We know that proving equivalence of systems
can only be done with observable states. But for com-
plex COTS systems we know that the states are too
numerous to elaborate and vendors are not going to give
us access to the states. Therefore, we need a satisficing
alternative. For systems that are not safety critical,
perhaps we could identify a crucial subset of the system
states and then prove equivalence only of that partition.
This subset of states might be identifiable using infor-
mation theory, interactive abstraction [Dwyer et al.,
2001; Liu, 2000] or criteria hierarchies [Daniels,
Werner and Bahill, 2001].

In the 1940s and 1950s control systems engineers
developed transfer function analysis to design and
model systems. It was often said that the impulse re-
sponse (or the step-response, etc.) would completely
characterize the system. However, this proved to be
untrue, and modern control theory with its concept of
system state became the preferred tool for analyzing
and modeling systems [Szidarovszky and Bahill, 1997].
The following two transfer functions have identical
input/output behavior, but their dynamics are quite dif-
ferent:

TF1 =
Output(s)
Input(s)

 =
1

s + p1

,

TF2 =
Output(s)
Input(s)

 =
s + z1

(s + p1)(s + p2)
, where p2 = z1 > 0.

For physical systems modeled with such transfer func-
tions, system-2 has a pole in the right-half of the s-
plane! The system is unstable. Transfer functions and
impulse responses are often inadequate models for sys-
tems: States must be used.

7. SUMMARY

If we are to use a COTS product in a new system design,
then we will have to find a way to prove that the COTS
product is equivalent to its design. First, we need to
decide if the COTS product is memoryless or dynamic.
If it is memoryless, we can apply a string of inputs to
both the COTS product and its design model and ob-
serve the string of outputs. If they are the same, then the
COTS product is equivalent to the design model. How-
ever, if the COTS product is a dynamic system, then we
must ask if the states are observable. If they are, we can
design system experiments where we start the COTS
product and the design model in equivalent states, apply
a string of inputs, and observe the resulting string of
states. If we do this rigorously, we can prove that they
are equivalent. However, if the states are not observable,
then we need some other technique to assure that the
behavior of the COTS product is acceptable.

In industry, many dynamic systems are tested using
only test inputs and measuring outputs without regard
to system states. Evidentially this is relatively success-
ful, if the input space is suitably sampled and many
checks and balances are used. But nagging doubts have
caused many engineers to look for other confirmatory
techniques for system testing.

Here are some techniques that have been used in lieu
of proving system equivalence. (1) Create multiple reset
(or test) states and prove I/O equivalence with respect
to an initial state pair for all of them. (2) Implement
built-in self-tests. (3) Use regression testing. (4) Define
pre and post conditions. (5) Only use COTS products
in places where you do not care about observable states.
(6) Put a wrapper around COTS products. (7) Record
the mode the system was in when the event of interest
occurred. (8) Provide abstracting software to produce
finite-state models that can be analyzed by model-
checking verification tools. (9) Build an observer to
estimate the system states. (10) Add extra outputs so
that the states can be identified by examining the out-
puts.

The equivalence of two systems can be proven using
input/output behavior for memoryless systems, but not
for dynamic systems. The equivalence of dynamic sys-
tems can only be proven by observing the string of
states, which means that the systems must have observ-
able states. So before trying to prove system equiva-
lence, we must decide whether the systems are
memoryless or dynamic; and if they are dynamic, we
must ensure that the states are observable.

All systems should have the capability of displaying
critical system states. This capability can be decom-
posed into system, hardware, and software require-
ments. System, hardware, and software engineers

238 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

should be required to design observable states. The
required set of observable states would be stated in the
derived requirements.

REFERENCES

Apollo 13, produced by Imagine Entertainment and Universal
Pictures, Hollywood, CA, 1995.

A.T. Bahill, Use case template, http://www.sie.ari-
zona.edu/sysengr/slides/template.doc, 2006.

A.T. Bahill and S.J. Henderson, Requirements development,
verification and validation exhibited in famous failures,
Syst Eng 8(1) (2005), 1–14.

Y. Billah and B. Scanlan, Resonance, Tacoma Narrows bridge
failure, and undergraduate physics textbooks, Am J Phys
59(2) (February 1991), 118–124, see also http://www.
ketchum.org/wind.html.

M.R. Blackburn, R. Busser, and A. Nauman, Mars Polar
Lander fault identification using model-based testing,
Proc Eighth Int Conf Eng Complex Comput Syst, 2002.

R.D. Busser, M.R. Blackburn, A.M. Nauman, and T.R. Mor-
gan, Reducing cost of high integrity systems through
model-based testing, Digital Avionic Syst Conf, October
24–28, 2004, pp. 6.B.1-1–6.B.1-13.

W.L. Chapman, A.T. Bahill, and W.A. Wymore, Engineering
modeling and design, CRC Press, Boca Raton, FL, 1992.

Chernobyl-1, http://www.nrc.gov/reading-rm/doc-collec-
tions/fact-sheets/fschernobyl.html, U.S. Nuclear Regula-
tory Commission, Washington, DC, 2006.

Chernobyl-2, http://www.infoukes.com/history/chor-
nobyl/zuzak/page-07.html, U.S. Nuclear Regulatory
Commission, Washington, DC, 2006.

Chernobyl-3, http://www.chernobyl.co.uk/, U.S. Nuclear
Regulatory Commission, Washington, DC, 2006.

Chernobyl-4, http://www.angelfire.com/extreme4/kiddof-
speed/chapter27.html, U.S. Nuclear Regulatory Commis-
sion, Washington, DC, 2006.

J. Daniels, P.W. Werner, and A.T. Bahill, Quantitative meth-
ods for tradeoff analyses, Syst Eng 4(3) (2001), 199–212.

Department of Defense (DOD), Directive Number 5000.1,
The Defense Acquisition System, Washington, DC, May
12, 2003.

M.B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C.S.
Pasareanu, H. Zheng, and W. Visser, Tool-supported pro-
gram abstraction for finite-state verification, Int Conf
Software Eng, 2001, pp. 177–187.

E. Evans, Domain-driven design: Tackling complexity in the
heart of software, Addison-Wesley; Boston, 2004.

H. Gomaa, Designing concurrent, distributed, and real-time
applications with UML, Addison-Wesley, Reading, MA,
2000.

D. Harel and A. Naamad, The STATEMATE semantics of
statecharts, ACM Trans Software Eng Methodol 5(4)
(1996), 293–333.

F.J. Hill and G.R. Peterson, Introduction to switching theory
and logical design, Wiley, New York, 1981.

R.H. Katz, Contemporary logic design, Benjamin/Cum-
mings, Redwood City, CA, 1994.

R. Kunzig, Europe’s dream, Discover 18 (May 1997), 96–
103.

Lewis Spacecraft Mission Failure Investigation Board, Final
Report, NASA, Washington D.C., 12, February 1998.

W. Liu, Interaction abstraction for compositional finite state
systems, SPIN model checking and software verification,
Proc 7th Int SPIN Workshop, Stanford, CA, August 30–
September 1, 2000, pp. 148–162, http://netlib.bell-
labs.com/netlib/spin/ws00/18850150.pdf.

Mars Program Independent Assessment Team Summary Re-
port, NASA, Washington D.C., March 14, 2000.

J.A. Moody, W.L. Chapman, F.D. Van Voorhees, and A.T.
Bahill, Metrics and case studies for evaluating engineering
designs, Prentice Hall PTR, Upper Saddle River, NJ, 1997.

NASA Faster Better Cheaper Task Final Report, NASA,
Washington D.C., 2, March 2000.

NSF Center for Empirically Based Software Engineering,
National Science Foundation, Washington, DC, 2005,
http://www.cebase.org/www/frames.html.

W.B. Rouse, J.A. Cannon-Bowers, and E. Salas, The role of
mental models in team performance in complex systems,
IEEE Trans Syst Man Cybernet 22(6) (1992), 1296–1308.

H.A. Simon, A behavioral model of rational choice, Quart J
Econom 59 (1955), 99–118.

H.A. Simon, The architecture of complexity, Proc Amer Phil
Soc 106 (1962), 467–482.

Software Engineering Institute, http://www.sei.cmu.edu/cbs/
index.html, Pittsburgh PA, 2005.

SysML, www.SysML.org, 2006.
Systems and Software Consortium, http://www.systemsand-

software.org/ssci/default.asp, Herndon VA, 2005.
F. Szidarovszky and A.T. Bahill., “Stability analysis,” The

electrical engineering handbook, R.C. Dorf (Editor), CRC
Press, Boca Raton, FL, 1993, pp. 207–223, 1993, 2nd
edition, 1997, pp. 223–238.

F. Szidarovszky and A.T. Bahill, Linear systems theory, CRC
Press, Boca Raton, FL, 1998.

Tacoma1, http://www.enm.bris.ac.uk/amm/tacoma/tacoma.
html, 2006, University of Bristol, UK, .

Tacoma2, http://ketchum.org/bridgecollapse.html, 2006.
Titanic, a Lightstorm Entertainment Production (20th Cen-

tury Fox and Paramount), Hollywood, CA, 1997.
USC Center for Software Engineering, http://sun-

set.usc.edu/research/COCOTS/, Los Angeles, CA, 2005.
F. von Foerster, Observing systems, Intersystems, Seaside,

CA, 1982.
A.W. Wymore, Model-based systems engineering, CRC

Press, Boca Raton, FL, 1993.
A.W. Wymore and A.T. Bahill, When can we safely reuse

systems, upgrade systems or use COTS components? Syst
Eng 3(2) (2000), 82–95.

 WHEN ARE OBSERVABLE STATES NECESSARY? 239

Systems Engineering DOI 10.1002/sys

Rick Botta is the Director of Systems Engineering for BAE Systems in San Diego. He holds a B.S. degree
in Computer Science from California Polytechnic State University, San Luis Obispo. Rick has a quarter
century experience in a wide variety of engineering, engineering management and program management
roles involving development and integration of complex, software intensive systems. He is a member of
INCOSE.

Zach Bahill is a systems engineer with Boeing Integrated Defense Systems in Kent, WA. He earned a B.S.
in Electrical Engineering in 2001 from the Department of Electrical and Computer Engineering at the
University of Arizona in Tucson.

A. Terry Bahill is a Professor of Systems Engineering at the University of Arizona in Tucson. While on
sabbatical from the University of Arizona, he did research with BAE Systems in San Diego. He received
his Ph.D. in electrical engineering and computer science from the University of California, Berkeley, in
1975. He holds U.S. Patent No. 5,118,102 for the Bat Chooser , a system that computes the Ideal Bat
Weight for individual baseball and softball batters. He received the Sandia National Laboratories Gold
President’s Quality Award. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE),
of Raytheon and of the International Council on Systems Engineering (INCOSE). He is the Founding
Chair Emeritus of the INCOSE Fellows Selection Committee. His picture is in the Baseball Hall of Fame’s
exhibition “Baseball as America.” You can view this picture at http://www.sie.arizona.edu/sysengr/

240 BOTTA, BAHILL, AND BAHILL

Systems Engineering DOI 10.1002/sys

