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ABSTRACT

The system design process translates the customers’ needs into a buildable system design.
It requires selecting subsystems from an allowable set and matching the interfaces between
them. Designs that meet the top-level input and output requirements are tested to see how
well they meet the system’s performance and cost goals. This paper proves that the System
Design Problem is NP-complete by reduction from the Knapsack Problem, which is known to
be NP-complete. The implication of this proof is that designing optimal systems with deter-
ministic, polynomial time procedures is not possible. This is the primary reason why engineers
do not try to produce optimal systems: They merely produce designs that are good enough.
© 2001 John Wiley & Sons, Inc. Syst Eng 4: 222–229, 2001

1. INTRODUCTION

The System Design Process shown in Figure 1 trans-
lates the system requirements into a buildable system
design. This process can be described mathematically
[Wymore, 1993] and therefore we can estimate its com-
plexity, which will help us identify the best solution
approach.

This is a theoretical systems engineering paper.
Therefore, it is appropriate to link it to other theoretical
papers. In the early part of the 20th century, mathema-

ticians expected to construct a network of postulates,
axioms, and interlinked theorems that would capture all
true statements of mathematics. In 1931, Gödel [1990]
proved that this was not possible, by proposing his
Incompleteness Theorem, which is similar to “This
sentence is false.” Gödel was concerned with the whole
field of axiomatic mathematical reasoning. In a nar-
rower realm, later logicians tried to prove whether
solutions existed for certain classes of problems. Turing
[1936] showed that all solvable sequential logic prob-
lems could be solved with a Turing Machine (a state
machine with a memory). Later he showed that the
Halting Problem (determining whether a Turing ma-
chine will halt for a given input and set of rules) is
undecidable, i.e., unprovable. Turing was concerned
with the solvability of logic problems. Our present
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paper is concerned with a subset of solvable problems,
namely, system design problems. In particular, it con-
cerns the length of time required to solve these prob-
lems. The problems that take the most time are called
NP-complete.

2. NP-COMPLETE PROBLEMS

NP-complete is the name of a class of problems for
which there is no known efficient deterministic algo-
rithmic solution [Garey and Johnson, 1979]. All known
algorithms for solving these problems have the property
that as the problem size increases, the number of steps
necessary to solve the problem increases exponentially.

First, let us look at an easy problem that has efficient
algorithms whose number of steps increases at the rate
of a polynomial. For example, a simple sort of a list of

numbers can be done in n2 number of operations. Thus,
if there were 10 numbers to sort, it would take, at most,
102 or 100 operations to perform the sort. If there were
100 numbers to sort, then it would take 1002 or 10,000
operations. This is an easy problem.

Now let us look at a hard problem that takes an
exponential number of steps to solve, because the size
of the problem is in the exponent, such as en. For an
exponential problem with n=10 there would be 22,026
operations. If n=100, there would be 2.7 × 1043 opera-
tions. As shown in Figure 2, the number of operations
quickly exceeds the capability of any machine to com-
pute a solution. For example, if there were a machine
that could do 1012 operations per second (none yet exist)
and there was a problem that required 1020 operations,
it would take 1020 - 12 or 108 s or more than 3 years to
solve. If the problem required 1023 operations, then it

Figure 1. The system design process customized for the preliminary design phase. Only three alternative concepts are shown
in this figure: The best number of alternatives to be considered would, of course, depend upon the particular problem.

Figure 2. As the problem size n increases the number of operations needed to compute 
an optimal solution increases. The ordinate is logarithmic.
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would take 3171 years to solve. Assume the age of the
universe is 9 billion years which is 3 × 1017 s, then any
problem that requires more than 1012 + 17 or 1029 opera-
tions could not be done in the entire age of the universe!

Another example of this explosive growth of expo-
nential functions is the fable of the king, the peasant,
and the checkerboard. The peasant did a favor for the
king, and, in return, the king asked the peasant to name
his reward. The humble peasant said he merely wanted
a single grain of rice on the first square of a checker-
board and twice as many on each succeeding square, 2n.
The king agrees. The first few squares take very little
rice. The 20th square takes a few gallons. The 25th
square takes the volume of a desk. The 30th square
needs the volume of a lecture room. The 64th square
requires 263 grains of rice, which would fill a million
large cargo ships.

The set of problems solvable in Nondeterministic
Polynomial time is called NP. Logicians created a con-
ceptual device called a nondeterministic machine to
solve these problems. A nondeterministic machine has
an infinite number of processors and two stages: a
guessing stage and a checking stage. Each processor
guesses an answer and the checker verifies that it is a
good answer. Both stages run in polynomial time (poly-
nomial in the size of the input, e.g., n6). Because an
infinite number of processors exist and all guessing and
checking is done in parallel, the computation time is
polynomial. Of course, this is a fantasy machine, but it
helps to illustrate the fact that a certain set of problems
can be solved in polynomial time if one of these non-
deterministic machines is used. Clearly, any determinis-
tic polynomial algorithm could still use the
nondeterministic machine, because the algorithm could
be restricted to one processor.

NP-complete is a class of problems that can be
solved in polynomial time on a nondeterministic ma-
chine, but for which no deterministic polynomial time
algorithm is known. It has never been proven that a
polynomial algorithm does not exist—but no one has
ever found one, and mathematicians think no one ever
will. One critical feature of all NP-complete problems
is that an instance of one can be mapped into an instance
of another by using a polynomial time transformation.
If even one of the problems in the class NP-complete
can be shown to have a solution in polynomial time,
then all of them have such a solution. Yet, none has been
found in 30 years of searching by very talented people.
Thus, it is generally agreed that if a problem is shown
to be NP-complete, then no efficient algorithm for
solving the problem will ever be found. To prove that a
problem is NP-complete, we must show that it is in the
intersection of NP problems and NP-hard problems.

But this statement does not clarify; it just adds more
complexity, so let us look at an example.

To illustrate NP-completeness, we will now discuss
the Knapsack Problem, which Karp [1972] proved is
NP-complete. In the Knapsack Problem, a hiker is to
pack a backpack. He has a large collection of items to
choose from (U). Each item (u) to be put in the backpack
will have a certain value [v(u)] on the trip and each item
has a certain size [s(u)]. The hiker’s task is to choose
items so that at least the total value of (K) is obtained,
without exceeding the size of the backpack (B). It is
formally stated as

Instance: A finite set U, a “size” s(u) ∈ Z+ (where Z+

is the set of positive integers) and a “value” v(u)
∈ Z+ for each u ∈ U, a size constraint B ∈ Z+, and
a value goal K ∈ Z+.

Question: Is there a subset U’ ⊆ U such that

∑ 
u ∈ U ′

s(u) ≤ B    and    ∑ 
u ∈ U ′

v(u) ≥ K ?

 3. THE SYSTEM DESIGN PROBLEM

In terms of systems theory, the system design problem
can be described as stating the input–output relation-
ships, the design constraints, and the performance and
cost figures of merit [Asimow, 1962; Chapman, Bahill,
and Wymore, 1992; Wymore, 1993]. For a given set of
subsystems (or components) available to build the sys-
tem, a possible system is configured that satisfies the
system’s input-output requirements. This system is then
tested using some predefined test requirement to pro-
vide an overall system performance index (PI). This
must exceed a customer provided acceptability limit.
The cost of the system in terms of time, money, or other
resources is then computed into an overall cost index
(CI). This CI must be less than some customer specified
target value.

The systems approach to design can be characterized
as follows: Define a set of subsystems (Z) that constitute
the available technology to build the desired system.
Each element Zi in this set has an input port Ii, and an
output port Oi. The ports provide the means of connect-
ing the different subsystems together to form a system.
The output ports are connected to input ports according
to a system coupling recipe, SCR, to form a candidate
system, Z@. Define the overall input to the desired
system as I0 and the overall output of the desired system
as O0. In this paper, we only consider the aspect of
system design related to connecting subsystems to-
gether and evaluating performance. If this task is shown
to be NP-complete, then certainly the larger task that
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includes discovering requirements, defining system
functions, and redesigning will also be NP-complete. A
system, Z@, that could be built from seven subsystems
is shown in Figure 3.

These connections can be expressed as a directed
graph where the individual subsystems are nodes and
the possible connections between ports are the arcs. The
initial source for the directed graph is the system input
port, I0, and the initial target (or sink) for the directed
graph is the output port, O0. Let the length of each arc
represent the cost of connecting the two subsystems
(see Fig. 4). To find a potential system design, we must
find a path through a directed graph.

Finding a path through a directed graph can be
accomplished in polynomial time. Finding the shortest
path through the graph can also be accomplished in
polynomial time. The problem is that system design is
not simply solving for one constraint such as the least
cost. In addition, a system must be found that at least
matches a threshold of performance. Having two con-
straints to satisfy at the same time requires tradeoffs as
a search for the best value is done. This requires much
more searching especially as the number of options
increases.

A system is often composed of subsystems that are
connected together. A System Coupling Recipe (SCR)
specifies the subsystems to be connected (VSCR) and
their connectivities (CSRC) [Wymore, 1993]. For the

route in Figure 5, the system Z@ is the result of the
following system-coupling recipe:

SCR={VSCR = (Z3, Z4, Z5)

and

CSCR = ((I0, IZ3), (OZ3, IZ4), (OZ4, IZ5), (OZ5, O0))}

The VSCR tells us that the system is comprised of
three subsystems: Z3, Z4, and Z5. The CSCR tells us
that the system input, I0, is connected to the input of Z3.
The output of Z3 is connected to the input of Z4. The
output of Z4 is connected to the input of Z5. Finally, the
output of Z5 is connected to the system output, O0.
After the system is coupled, it is tested per the require-
ments to see if it satisfies the PI. For a simple path, the
CI of the system can be the sum of the length of the arcs.

This process is how designs are created. An engineer
finds subsystems that satisfy the necessary input/output
requirements, and creates an interconnection of these
subsystems to satisfy the performance and cost require-
ments. Several different systems (concepts, alterna-
tives, models, or prototypes) are often considered
before a selection of the best possible system is deter-
mined based on tradeoff studies.

4. THE SYSTEM DESIGN PROBLEM IS
NP-COMPLETE

Let us now compare this System Design Problem to the
Knapsack Problem. The individual subsystems are con-
nected together as specified by the system-coupling
recipe to form the overall system called Z@, which has
associated performance (PI) and cost (CI) measures.
Let PI ⇔ K and CI ⇔ B. Let Z ⇔ U, be the set of all
allowable subsystems. Let Z@ ⇔ U′ be the subset of
subsystems selected from Z by means of the SCR to
form Z@. Each subsystem Zi ⇔ u has an associated cost
that contributes to the CI. Let cost (Zi) ⇔ s(u). Each

Figure 3. Potential connectivities for seven subsystems.

Figure 4. A directed graph of the connectivities shown in
Figure 3.

Figure 5. One possible route through the directed graph of
Figure 4.
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subsystem Zi ⇔u has an associated value that can be
measured by the test requirement that contributes to the
overall performance index, PI. Let perf(Z) ⇔v(u). We
summed the performance of each item to get the overall
performance index. More complicated tradeoff func-
tions are sometimes used in the real world. This is not
bothersome, because if our simple problem is NP-com-
plete, then any design using a more complex tradeoff
function would have to be at least as difficult. If we
restrict the System Design Problem to performance and
cost measures that combine linearly, then

∑ 
Zi∈Z@

pref(Zi) = PI    and    ∑ 
Zi∈Z@

cost(Zi) = CI.

Therefore, the Knapsack Problem maps to an instance
of the System Design Problem, as is shown in Table I.

Therefore, if we can find a system Z@ such that its
PI and CI satisfy the customers’ requirements, then we
have solved the System Design Problem. Hence, if we
can solve the System Design Problem, then we can
solve the Knapsack Problem, but we know that the
Knapsack Problem is NP-complete; therefore, the Sys-
tem Design Problem is also NP-complete.

Showing that the Knapsack Problem can be re-
stricted to an instance of the System Design Problem is
sufficient for proving NP-completeness, because if a
solution for the System Design Problem were available
we could use it to solve the Knapsack Problem, and
hence all other NP-complete problems.

5. IMPLICATIONS

The first implication of the System Design Problem
being NP-complete is that humans cannot design opti-
mal systems for complex problems. And computers will
not be able to bail us out, because computers cannot
design optimal solutions for complex problems either.

Therefore, the purpose of creating computerized design
tools should not be to allow us to design optimal sys-
tems. Furthermore, it is unlikely that a computer can
design a complex system better than a human can.
Subsets of the entire design process, such as routing and
checking interfaces, are done better by computers now;
however, no computer algorithm exists to create even a
simple automobile factory or personal computer. The
creation of a system is as much art as it is science,
because the combinatorics involved requires original
solutions, rather than fixed algorithms for solving the
problem. When the more complex issues of individual
creativity and adjusting for perceived customer wants,
rather than those that are accurately expressed, are
considered, it becomes even more obvious that a totally
automated design tool is impossible. Research must
focus on the human in the loop as the only feasible
approach to the System Design Problem.

If it is so difficult to obtain optimality then one might
ask, “Why are there so many good systems?” The
answer lies within the solution techniques of NP-com-
plete problems. Even the most difficult problems in this
class have algorithms to obtain good solutions (that is,
a solution within a few percent of a theoretical optimal
when it is possible to compute) with relatively simple
polynomial algorithms.

The techniques used to find good solutions to NP-
complete problems [Garey and Johnson, 1979] (such as
the Traveling Salesman Problem [Coy et al., 1998], the
Knapsack Problem [Karp, 1972], the maximum path
through a network [Bernard and Graham, 1989], the
minimum test collection, graph 3-colorability, etc.) can
also be applied (and have been applied, knowingly or
not) to the System Design Problem. We have shown that
many methods of solving NP-complete problems have
been used to design systems [Moody et al., 1997]. One
of these techniques is decomposition. The overall sys-
tem is decomposed into subsystems as shown in Figure

         Table I. Mapping the Knapsack Problem to the System Design Problem
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3. Then each of these subsystems is decomposed into
subsubsystems. This process is continued until each
subsubsystem is small enough that a team of engineers
can design it.

One problem with the decomposition technique is
that common folk wisdom says that connecting optimal
subsystems will not produce an optimal supersystem
(e.g., in football a Pro Bowl team would not be expected
to beat the Superbowl champions). However, Wymore
(http://www.sie.arizona.edu/sysengr/wymore/optimal
.html) shows that for a very restricted set of tradeoff
functions, connecting optimized subsystems does in-
deed yield an optimal supersystem.

Most engineers realize that most of they time they
do not try to produce optimal designs. In this paper we
have shown why this is a good strategy. Engineers do
not try to produce optimal designs, because for complex
systems it would be impossible to do so. Simon [1957,
pp. 204–05] says that the key to successful design is
“the replacement of the goal of maximization with the
goal of satisficing, of finding a course of action that is
‘good enough.’ ... Since the [designer] ... has neither the
senses nor the wits to discover an ‘optimal’ path—even
assuming the concept of optimal to be clearly defined—
we are concerned only with finding a choice mechanism
that will lead it to pursue a ‘satisficing’ path, a path that
will permit satisfaction at some specified level of all its
needs.”

Ostrofsky [1977, p. 79] defined the optimum system
to be “theoretically the most favorable for the criteria
defined” and the optimal system to be “the most favor-
able for the criteria and the set of candidates defined.”
His point was that you never get the optimum solution,
and you must settle for less.

As two reviewers of this paper stated, “Most systems
engineers probably understand the fact that an optimal
solution to a complex system design problem does not
exist!” All we have done in this paper is prove mathe-
matically that their intuitions, generated by years of
experience, are indeed correct.

The real-world System Design Problem is harder
than the System Design Problem described in this pa-
per. First, in this paper, the requirements never changed;
in the real world, this is seldom true. Second, in this
paper, we have shown that designing one system is
NP-complete. But do design engineers only design one
system? No. They design many systems and then try to
choose the best alternative for implementation. There-
fore, the real-world System Design Problem is harder
than what we have described in this paper. However,
Klein [1998] says that designers really do not evaluate
many alternative designs in parallel, but rather they
develop one alternative at a time until they get one that
satisfies. Therefore, the complexity of the real-world

System Design Problem lies somewhere in between
designing one system and designing many and selecting
the best alternative. Therefore, if designing one system
is NP-complete, then the real-world System Design
Problem is even harder.

In this paper, we have shown that the theoretical
System Design Problem is NP-complete in all aspects
discussed, and we have shown that the real-world Sys-
tem Design Problem is harder. However, there is one
exception. The performance of a system could be
greater than the sum of its subsystems (cooperation).
Two lions chasing a Thompkins Gazelle are more than
twice as likely to catch it, than a single lion. A pair of
chopsticks performs more than twice as well as an
individual chopstick. However, we used linear addition
for our performance figures of merit. So, if the whole
is greater than the sum of its parts, we could get better
performance.

6. SUMMARY

There is a need for theory in the field of Systems
Design. This paper is but one baby step in that direction.
Because system design is such an old field, it would be
expected to have a theoretical basis. However, there are
very few theoretical systems engineering papers. The
notable exceptions are Wymore [1993], Wymore and
Bahill [2000], and the World Wide Web papers by
Wymore (http://www.sie.arizona.edu/sysengr/wy-
more). Although it is only a small step, this paper adds
to the theoretical papers in the field.

This paper has proven that the System Design Prob-
lem is NP-complete by mapping it to the Knapsack
Problem. The implications are that achieving an optimal
design for a complex system is not likely. It is possible
to design forever without achieving an optimal solution.
Therefore, limits must be set on the design early in the
process. We do not have the time to design optimal
systems, but we can design systems that are good
enough.

In addition, creating a computer design tool will be
very difficult. The interesting aspect of NP-complete
algorithms is that it is often quite easy to find near-op-
timal solutions. Within the context of product design,
optimality is seldom an objective, but rather satisfaction
of a problem statement. Therefore, a solution good
enough to satisfy the customer may be within reach of
a knowledge-based design tool.

In summary, philosophers have pondered the type of
problems that are solvable: The System Design Prob-
lem seems to be solvable. Theoreticians have worried
about how long it might take to find solutions for certain
classes of problems: Because the System Design Prob-
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lem is NP-complete, finding an optimal solution could
take an infinite amount of time. Therefore, systems
engineers should ensure that their customers do not
require optimum solutions, because optimum solutions
are not feasible. Behaviorists have shown that humans
do not seek optimal solutions, instead they seek satis-
ficing solutions: therefore, systems engineers must ex-
plain to their customers that we only produce good
enough solutions for the System Design Problem, that
is, we produce satisficing solutions, not optimal solu-
tions. Finally, academicians have proven that the job of
a systems engineer is hard, in fact, NP-hard.
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