
36

BY A. TERRY BAHILL, PAT N. HARRIS,
AND ERICH SENN

Sometimes what you learn
building an expert system is

more important than whether
or not it succeeds

LESSONS
LEARNED
T^% * 7 7 * T—iBuilding Expert

Systems
W e have made many expert sys-

tems. Two of our best are Co-
gito, which gives installation
advice for bringing up the

UNIX (Bell Laboratories) 4.2BSD operat-
ing system on a VAX (Digitial Equipment
Corp.), and Data Communication Diagnosis
(DCD), which helps a person connect a ter-
minal to a computer. This article wil l com-
pare and contrast the development, tool se-
lection, and testing of these two systems.

BACKGROUND
Before Cogito was completed, two detailed
reference manuals were used for UNIX
4.2BSD instal lat ion instructions.12 These vo-
luminous manuals were difficult to use. In
contrast, Cogito is easy to use because it fil-
ters the information and presents only rel-
evant advice about the user's computer sys-
tem. Cogito remembers data the user has
previously entered and uses it to customize
its response. Cogito is written in M.I (Tek-
nowledge Inc.), runs on a personal com-
puter, and uses if-then production rules to
encode the task knowledge.

DCD is a knowledge-based system de-
signed to help engineers connect a periph-
eral device (terminal or printer) to a com-
puter, modem, or local area network. Most
of DCD was wri t ten in OPS5, although

parts were written in C and M.I .
Instructions for connecting peripheral de-

vices to computers are contained in the ref-
erence and user manuals of the devices. Un-
fortunately, their usage is fraught with
difficulty. It is not easy to collect all the rel-
evant information for the two devices in
question since this information is spread
over several chapters (for example, pin con-
nections are discussed in the hardware sec-
tion and transfer parameters in the set-up
section) in several manuals written by differ-
ent companies. DCD had three specific
requirements:
• Provide enough advice to people who
have some previous computing experience
but little experience in data communica-

AI EXPERT • SEPTEMBER 1988

tions so they can design a cable with a 25-
pin connector on each end that can be used
to connect a peripheral device to a host
device
• Read in a description (name) of the de-
vices and ask the user for values of param-
eters not stored in the expert system's data
base, provide a help feature to support the
process of answering questions, and produce
a sequence of instructions to help the user
successfully interconnect the devices
• Derive an approximate solution even if
some information is missing or the answers
to questions are unknown.

Unfortunately, modern computer users
are often overwhelmed with information.
Expert systems can help reverse this trend.

Voluminous data with many interrelation-
ships presented over a short time span can
overload the user. Data become useful in-
formation when the relationships between
items are cohesive. Both Cogito and DCD
eliminate extraneous information and relate
relevant information, reducing the chances
of user overload.

CREATING THE KNOWLEDGE BASE
Our first expert system,3 made in 1984, had
a flat tree: every premise was tied directly to
the conclusion. However, to emulate human
input-output behavior, we believed that an
expert system should have a bushy tree. We
discovered that we had to invent interme-
diary conclusions if we were to mimic a con-
sultation with a human. Furthermore, hu-
mans have a limited short-term memory,
thus a solution going from premises to con-
clusions should follow a path of simple
knowledge intermediates.

Listing 1 shows the hierarchy we used to
make a bushy tree for DCD. Of course,
even with this hierarchy, the rules do not
wrrite themselves; the expert still had to add
knowledge to get the rules. For example,
the expert knew that pins 2 and 3 are used
to transmit and receive data. So if pin 2
transmits data, pin 3 receives data.

The if-then production rules shown in Fig-
ure 1 were derived from the hierarchy of
Listing 1. The hierarchy shown in Listing 1
helped make sure rules were not over-
looked. For example, it was easy to check
that each pin was contained in at least one
rule.

This hierarchy was not very structured,
but it still helped in writing the rules. Rules
are easier to write in problem domains that
can be structured more systematically with a
technique that divides the problem space
into a set of objects where every object has
attributes and every attribute has values.
This object-attribute-value ordered set is
called an O-A-V triplet.

Typical usage of O-A-V triplets is: the ob-
ject has an attribute and a value is an attri-
bute. Figure 2 shows a knowledge base re-
presented in the O-A-V schema. The lower
left triplet in this knowledge base can be
written as "coat has markings" and "striped
is a marking."

Another way of writing the O-A-V triplet
is as a sentence ("attribute of object is val-
ue"); for example, "marking of coat is
striped." This usage makes the construction
of facts easy: 37

AI EXPERT • SEPTEMBER 1988

description-parameters
name [A..Z], [a..z], [-]
sytek-unit-number XXXX.X --> [0..9]

general-parameters
baud rate 110 to 19200, unknown
standard RS-232C, RS-422, CENTRONICS, unknown
synchronization asynchronous, synchronous, unknown
duplexity full-duplex, half-duplex, simplex, unknown
hardware-protocol not-required, required, unknown
software-protocol none, Xon/Xoff, ACK/NAK, unknown
echo on, off, unknown

function
mapping 2-2. 2-3. unknown
pinl frame-ground, not-available, unknown
pin2 transmit-data, receive-data. unknown
pin3 receive-data. transmit-data, unknown
pin4 request-to-send, not-available, unknown
pin.5 clear-to-send, not-available, unknown
pin6 data-set-ready, not-available, unknown
pin7 signal-ground, not-available, unknown
pin8 data-carrier-detect, not-available, unknown
pin20 data-terminal-ready, not-available, unknown

character-format
data-bits 7, 8. unknown
stop-bits 1, 2. unknown
parity none, even. odd. unknown

LISTING 1.
Parameter hierarchy.

FIGURE 1.
If-then production
rules derived from

the hierarchy in
Listing 1.

38

type of animal is mammal
category of mammal is ungulate
extremities of ungulate is hooves.

With such facts, it is easy to write if-then pro-
duction rules, for example:

if composition of coat is hair

goal = advice.
question(computer-pin2) = 'What is the function of pin 2

on the computer side?'.
Iegalvals(computer-pin2) =
[transmit-data. receive-data. unknown].

if computer-pin2 = transmit-data
then computer-pin3 = receive-data.

if computer-pin3 = receive-data
and terminal-pin3 = receive-data
then sketch = diagraml.

if sketch = diagraml
and display(['Interconnect the data signals like this

± 7'.nl .nl])
then advice

then type of animal is mammal.

if type of animal is mammal
and extremities of animal is hooves
then category of animal is ungulate.

if category of animal is ungulate
and marking of coat is stripes
then identity of animal is zebra.

A tree is seldom built all at one time; in-
stead, branches are added incrementally.
When a branch is added, sometimes some-
thing that is a value at one level becomes an
object at a lower level ("mammal" is a value
in "type of animal is mammal," but becomes
an object in "category of mammal is ungu-
late.") This O-A-V = O-A-V linkage is shown
in the right column of Figure 2.

In contrast, sometimes O-A-V triplets are
linked together without an intervening
attribute:

type of animal is mammal

marking of coat is stripes.

This O-A-V-O-A-V linkage is shown in the
left column of Figure 2.

Teknowledge distributes a tutorial expert
system, SACON, with their PC-based shell,
M.I . The company has been refining SA-
CON for 10 years. It is composed exclusive-
ly of O-A-V = O-A-V linkages like those in
the right column of Figure 2. This implies
that perhaps these are the best linkages for
an expert system.

We have subsequently tried several other
methods for constructing if-then production
rules without forcing human experts to dis-
tort their reasoning processes to produce if-
then-type rules. We have found the analytic
hierarchy process4-' helpful in constructing
O-A-V triplets.

SELECTING THE PROPER TOOL
Consider the following analogy. A sculptor
wishes to create an image of a dove, and has
both marble and ice in which to carve. Al-
though the mediums of ice and marble re-
quire different tools and speed of construc-
tion, the marble and ice doves are the same
as the image within the sculptor's mind.
The difference in mediums does not affect
the result. Now suppose the sculptor wants
to sculpt with iron rebar and a torch. This
dove will not appear the same. In this case,
the medium does affect the result.

Current expert system shells force a struc-
ture on the knowledge base that may be dif-
ferent from the expert's structure; for ex-
ample, requiring the knowledge to appear
as production rules, semantic networks, or
frames. When an expert has trouble devel-
oping a rule that covers a certain situation,

AI EXPERT • SEPTEMBER 1988

it is often said that the expert's knowledge is
nonverbal and internalized. Alternatively,
perhaps the expert cannot develop a rule
that fits the situation because he or she does
not think in terms of if-then production
rules.

Cogito provided many examples of how
humans are forced to fit their knowledge
into the constraints of a tool. Cogito has
many rules that might otherwise be simple
lists. Furthermore, Cogito's problem do-
main is probably most suitable for a for-
ward-chaining strategy. If the inference en-
gine had been capable of extensive forward-
chaining, the knowledge base could have
been shortened. Thus, the tool used defi-
nitely affected the coding of the knowledge.

However, an engineer's job is to find and
apply the best available tool to solve a prob-
lem. The tools available for Cogito were
M.I and OPS5. The decision to use M.I was
primarily based on the differences in rule
implementations and ease of input and out-
put. Cogito's rules are English-like phrases.
OPS5 rules are reminiscent of LISP code;
experts who are not familiar with OPS5 or
LISP have trouble reading and understand-
ing OPS5 rules. Rule readability is impor-
tant so the knowledge engineer can verify
with the expert that the intent of the rule is
the same as the coded rule. With M . I , the
knowledge engineer can concentrate on
problem semantics and not on the syntax of

OPS5 or LISP.
We selected OPS5 for DCD primarily be-

cause it used forward chaining, and this
seemed the best type of inferencing when
all the data are available at the beginning of
the inferencing process. However, a subset
of the problem (creating a cable plan) was
also written in M. I , which gave us the op-
portunity to compare these two tools.

The quality of a system's user interface is
crucial for a system's survival. M.I has an
advantage in this matter since it provides le-
gal value checking, which is difficult and
cumbersome to implement in OPS5. The
human-computer interface of M.I is better
than that of OPS5, but this did not matter
in our case since all the data were collected
from the human expert before the infer-
ence process started using a module written
in C.

The knowledge base contains the rules to
solve the problem at hand. Rules written in
M.I are easier to read than those in OPS5.
However, the easier rule syntax of M.I is
only an advantage for novice knowledge en-
gineers. Based on our experiences, we think
experienced programmers can write either
M.I or OPS5 rules with equal ease. On the
other hand, M.I is at a disadvantage be-
cause its conclusions cannot have values for
several different expressions. This handicap
is not shared by OPS5, where several differ-
ent expressions can be in the conclusion of a

animal

type

composition carnivoremarking

striped spotted

ungulate

extremities

hooves

V-0

V-O

FIGURE 2.
Object-attribute-
value hierarchy.

39

AI EXPERT • SEPTEMBER 1988

TABLE 1.
Criteria and

attributes used by
the Multi-Attribute

Utility Technique to
help select an expert

system shell; w—
weight, r—rating,

ra—ranking.

rule, reducing the number of rules.
M.I automatically handles the answer

"unknown." In OPS5, we had to specify in
each rule how "unknown" should be han-
dled. The inference engine of M.I uses cer-
tainty factors. OPS5, on the other hand,
does not provide a mechanism that deals
with uncertainty. Probability calculations
can be done in OPS5, but this is cumber-
some. However, DCD, like most expert sys-
tems, did not need certainty factors. In fact,
in one of our expert system classes at the
University of Arizona, Tucson, we found
that only six of the 25 student-generated
systems used certainty factors.

QUANTITATIVE SELECTION
We have helped build over 80 expert sys-
tems for class projects, master's theses, and
commercial ventures. We are often asked
why we chose a particular expert system
shell. Often our qualitative answers do not
satisfy the questioner. Therefore, for the
DCD project, we provided a quantitative an-
swer to this question.

No one-to-one match exists between
problems and software tools. However, con-
ceptions of particular types of problems are
the same for several different domains.
These conceptions are commonly referred
to as consultation paradigms. Examples of
consultation paradigms are diagnosis/ad-
vice, planning, and design. Diagnosis/ad-
vice is the consultation paradigm used by
DCD.

According to P. Harmon and D. King,6

the shells the best suited for diagnosis/ad-
vice are M. I , S . I , and OPS5. Hundreds of
commercially available expert system shells

CRITERIA
and attributes w r ra

REPRESENTATION
Facts 0.064 78 3
if-then rules 0.065 80 3
Inference strategy 0.062 76 3
Uncertainty 0.059 72 3

IMPLEMENTATION
Software available 0.080 98 1
Hardware available 0.820 100 1
Data base access 0.078 96 1

INTERFACING
User display 0.074 90 2
Explanation facilities 0.069 84 2
Help functions 0.070 86 2
Editor 0.072 88 2
Debugging aid 0.067 82 2

SUPPORT
Documentation 0.057 70 4
Courses 0.050 62 4
Applications 0.049 60 4

SUMMATION — 1222 —

M.1 S.1 OPS5

0.9 0.9 0.9
0.9 0.9 0.9
0.1 0.1 1.0
0.9 0.9 0.7

1.0
1.0
0.5

0.8
0.8
0.5
0.5
0.8

0.7
1.0
0.8

0.0
0.5
0.9

0.8
0.8
0.5
1.0
0.8

0.6
1.0
0.8

1.0
1.0
0.9

0.8
0.5
0.5
1.0
0.7

0.8
1.0
0.8

0.689 0.685 0.834

40

exist; we did not consider every one for
DCD, but restricted ourselves to these
three. The following discussion illustrates a
technique and is not meant to advocate a
particular shell.

To select the shell for our data-communi-
cation problem, we concentrated on the fol-
lowing criteria (Table 1):
• Representation: The knowledge that en-
ables us to solve data-communication prob-
lems must be formulated with if-then pro-
duction rules. The inference strategy used
should be forward-chaining since all neces-
sary data are given at the beginning of the
inference process. The tool to be selected
must provide an approximate solution when
some information is missing or the answers
to questions are unknown.
• Implementation: When this project be-
gan, available hardware included several
personal computers, many PDF l l s , and a
VAX. Available software included OPS5,
M . I , and ROSIE.
• Interfacing: Questions asked by the sys-
tem should be displayed on a screen and an-
swers entered on a keyboard. Solutions to a
problem must be written to a data file. The
knowledge base must be built and modified
with a tool-independent text editor.
• Support: Documentation should be rea-
dable with easy-to-understand examples. Re-
ferences to past tool applications and their
level of success should be available.

Many software packages that are com-
mercially available (such as Expert Choice4)
aid multiobjective decision analysis in the
face of nebulous and uncertain data. We
used the Multi-Attribute Utility Technique
(MAUT),7 sometimes called SMART, to
choose among M . I , S.I , and OPS5. The re-
sults are shown in Table 1.

In 'Table 1, the importance of a particular
description criterion is expressed with a
rank (ra) from 1 to 4, which is then scaled
into the rating (r) with a range of 0 to 100.
For example, rank 1 was assigned to the cri-
terion implementation since the required
software and hardware had to be available
to finish the project on time.

The weight (w) of an attribute is its indi-
vidual rating divided by the sum of all the
ratings. When the weights have been de-
rived for the attributes, it is time to assign
values (between 0 and 1) for the attributes
to the three software systems being com-
pared. For example, the attribute software
available has an assigned value of 1.0 for
OPS5 since all the necessary software was
up and running. S.I has a value of 0.0 be-
cause we did not have it and could not af-
ford to buy it.

Next the weights are multiplied by the as-
signed values and the sums placed at the
bottom of the columns for M . I , S.I , and
OPS5. The best tool for the job was the one

AI EXPERT • SEPTEMBER 1988

4.4.1. Initializing /etc/fstab

Change into the directory /etc and copy the appropriate file from:
fstab.rm03
fstab.rmOS
fstab.rmSO
fstab.raGO
fstab.raSO
fstab.ra81
fstab.rpOS
fstab.rp07
fstab.rkO?
fstab.up160m (160MB up drives)
fstab.up300m (300MB up drives)
fstab.hp400m (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)

to the file /etc/fstab, i.e.:
#cd /etc
#cp fstab.xxx fstab

This will set up the initial information about the usage of disk
partitions.

LISTING 2.
Instructions for

installing fstab.2

LISTING 3.
Cogito's instructions

for installing fstab.

42

with the largest sum, in this case OPS5.
(Please note that the ratings, weights, and
assigned values are subjective; they were
chosen by Senn. The other authors would
have assigned different values and therefore
might have drawn different conclusions.)

USER SATISFACTION
We found it easier to install a UNIX operat-
ing system using Cogito than the UNIX ref-
erence manuals because with Cogito the in-
formation presented to the user was
tailored to the specific application. For ex-
ample, in the disk-definition state, the file
'/etc/fstab' must be created. Assume that
the boot disk is a 'AMPEX 3COM' connect-
ed to ubaO at drive 1. This implies that the
disk address is 1. Also assume the user's
name is 'Pat' and that Pat is ready to install
'fstab'. Since the instructions given in the
manual are generic, the installer must relate
the general instructions to the specific appli-
cation. Listing 2 is a copy of a relevant sec-
tion of the manual. Listing 3 is a copy of Co-
gito's instructions.

Cogito has remembered information the
user gave it a half-hour ago: that the user's
name is Pat and the disk is an AMPEX

cd /etc
* cp fstab.up300m junk
* vi junk
(Edit the file. Pat.
a. Add the line Vdev/upOb::sw::'.
b. Give the global substitute command

':g/upO/s//up1/'.
c. Save the new contents and quit the editor.)

cat junk » fstab

300M. Cogito has used this information to
make its instructions specific. Cogito's
instructions are personalized, relevant to
the user's task, clear and complete.

This example illustrates that the manual's
instructions are incomplete and rely on pre-
vious and implicit knowledge. The instruc-
tions are incomplete because the swap parti-
tion '/dev/upOb', must be added to the file.
They rely on previous knowledge because
the user must recall that the UNIX stand-
alone disk name for a 'AMPEX 300M' is
'up'. They rely on implicit knowledge be-
cause the user must somehow know that the
disk address of the partitions must be
changed from '0' to T.

TESTING
Testing Cogito was difficult. It was impossi-
ble to present the system with every possible
combination of inputs and evaluate its out-
puts. The best test we devised was to let in-
tended users try Cogito in many hypotheti-
cal situations. If the knowledge base was
incomplete, then in some situations the ad-
vice given to the users should be incorrect.

Cogito was tested by the computer sys-
tems administrator and a professor of the
Dept. of Systems and Industrial Engineering
and the computer systems administrator for
the Dept. of Computer Science at the Uni-
versity. All found Cogito's advice to be com-
plete and correct.

In an effort to bolster our testing, we
asked several nonexpert computer users to
try the system. Their evaluations empha-
sized the difficulties they had using Cogito
and making sense of its queries or output,
and the extent to which they were able to
fool the system with plausible (but nonsensi-
cal) inputs.

Recently, we gave Cogito a real test. Be-
cause of inadequate glue on the heads of
our RA81 disk, we had to rebuild our oper-
ating system from the distribution tapes.
Cogito helped us. We found a few omissions
in Cogito's advice, but no mistakes, and
completed the task in about 12 hours. It
took us three months the first time we built
the system, but we were way down on the
learning curve then.

This experience has reinforced our belief
that all expert systems are inadequately test-
ed. No quantitative procedures exist for
testing expert systems. Most tests merely in-
volve running a few case studies; they do
not exhaust all possibilities. For example, we
are confident that Cogito works well for
small VAX 750 systems, but we cannot be
sure it will work as well for 730s or 780s.

We carefully planned our tests and evalua-
tions for DCD. Because the DCD system was
designed for users with little previous expe-
rience in data communication, we allowed
juniors from our microcomputer class to

AI EXPERT • SEPTEMBER 1988

test and evaluate it. Thirty-three student
teams (two members per team) participated
in testing and evaluation.

It is impossible to test all the combina-
tions of problems likely to occur in data
communication. Therefore, only two typical
test cases were given. System users were
asked to use DCD to:
• Design a cable that would connect a
WYSE terminal to a VAX computer and to
give advice about setting up the WYSE ter-
minal to make the interconnection work
• Design a cable that would connect a
WYSE terminal to the Sytek local area net-
work and to give advice about setting up the
WYSE terminal and the Sytek port.

We specified two major subtasks in the
evaluation process. First, we focused on the
accuracy of the system. Was the advice given
by the system sufficient to make the inter-
connection work? This assessment was triv-
ial since the advice given by the system re-
sulted in go/no-go situations. Second, the
students evaluated the quality of the human-
computer interaction. Was the system easy
to use? These evaluation criteria should be
directly proportional to future frequency of
use of the system.

All the undergraduate students accom-
plished the tasks with an average time of 20
minutes, suggesting that the accuracy of the
system was 100%. The students rated the

quality of human-computer interaction as
"user friendly." As a further test of the
DCD system, a selected graduate student
tried to connect a WYSE terminal to the
VAX computer and a WYSE terminal to the
Sytek net using only the manufactures' user
and reference manuals. He succeeded after
1.5 hours—about three times longer than
the undergraduate students who established
the same connections by consulting the
DCD system.

After this initial test, the DCD system was
used by juniors at the University for five
consecutive semesters. This continued us-
age proves its usefulness. However, DCD's
usefulness is diminishing as our equipment
changes, and none of our knowledge engi-
neers have experience with OPS5 to update
the knowledge base.

GENERAL-PURPOSE TESTING
The most difficult aspect of expert system
design is testing. The traditional testing
method is to have a human expert run many
sample cases on the expert system. This
consumes a lot of the expert's time and does
not guarantee finding all mistakes. Con-
versely, brute-force enumeration of all in-
puts is impossible for most systems. There-
fore we have developed a general-purpose
tool to help debug knowledge bases without
the intervention of human experts. We have

tie-Based Technology for
nalltalk-8O.
.ly there's an expert system shell for the Smalltalk-80™
m. For those wanting a powerful way to combine rule-
1 technology with true object-oriented programming,
1BLE™ provides the right tools for the task.
iUMBLE is an integrated expert system tool that runs
tly in the Smalltalk-80 environment. It features both
#ard and forward chaining, a modular certainty
m, an advanced user interface including a graphical
ser, and a complete programmer interface.

> Bang for the Buck! HUMBLE costs far less than
>arable expert systems. Before buying, ask yourself:
/ expand this tool to fit my particular needs? Are the

'es available if I need to change them? Will this tool
rate with my own programs? Can I port the results of my
to end user machines easily? at all?" If you answered
to any of these questions, then take a good look at
IBLE.
IUMBLE is available for the Apple Macintosh, Sun-2
iun-3 Series, Tektronix 4400 and 4310 Series, Apollo
[AIN Series, and Xerox 1100 and 6085 Series work-
ins.
[UMBLE runs in any License Version of the Smalltalk-
>tem. Knowledge bases can be transferred between any
ltalk-80 version without modification.

[HUMBLEf

•
.u* i«xl«r.'

For more information, contact the
Smalltalk-80 Marketing Manager
Xerox Special Information Systems
P.O. Box 5608
Pasadena, CA 91107
(818) 351-2351 CIRCLE 17 ON READER SERVICE CARD

XEROX®, Smalltalk-80, and HUMBLE are trademarks of Xerox Corporation.

* ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications, September 25-30,1988. San Diego, California

44

A. Terry Bahill is a
professor of

systems
engineering at the

University of
Arizona in Tucson.

He is also a vice
president of the

IEEE Systems,
Man, and

Cybernetics
Society and an

associate editor of
IEEE Expert.

Pat Harris is a
systems engineer.

Erich Senn is head
of technical staff

with Telekuhrs,
Schweiz, Zurich,

Switzerland.

tried to make this tool generic so it can
work on any knowledge base, no matter
which expert system shell is used.

The first component of the tool is a sim-
ple spelling checker with a preprocessor
that replaces hyphens, underbars, and par-
entheses with spaces and removes terms spe-
cific to the shell being used, such as legalvals
and automaticmenu. The second component
of this tool is designed for backward-chain-
ing shells. It collects all terms that appear in
the premises (the //parts) of the rules, and
flags as potential mistakes those that do not
also appear in the conclusions (the then
parts) of the rules or in questions or goal
statements. It also traces every term appear-
ing in a premise to the conclusion of that
rule, then to the premise of another rule,
and so on un t i l a goal statement is reached.
If it does not reach a goal statement, then a
rule is missing.

The third component of this tool, which
is not yet completed, acts like Tieresias8 in
pointing out rules that do not fit the pattern
established by the rest of the rules in the
knowledge base. For example, when we ran
this component on our animal-discrimina-
tion knowledge base, it said, "Rule 15 is sus-
picious, because most rules that mention the
animal's fur also ask if it has spots. Rule 15
does not."

The fourth component comes into play at
run time. The firing of each rule is record-
ed. Rules that never fire and rules that fire
for all test cases are probably mistakes and
are brought to the attention of the human
expert.

SIZE
Cogito contains 800 rules, 200KB, and took
800 hours to build. DCD contains 60 rules,
40KB (plus an interface program and a
large help file), and took 120 hours to build.
To better understand these numbers, we
performed statistical analysis of 25 simple
expert systems written by students in partial
fu l f i l lment of the requirements of a course
in expert systems in 1987. (We call these sys-
tems simple because they did not use exter-
nal functions or special hardware.)

The average student spent 100 hours on
the project: 15% of this time was spent
learning the subject, 10% interviewing the
expert, 60% developing and debugging the
knowledge base, and 15% testing the sys-
tem. The average knowledge base con-
tained 150 rules and required 32KB. From
these systems and from a less formal evalua-
tion of 60 other student-generated expert
systems constructed over a three-year time
span, we concluded that the number of rules
(or knowledge base entries) is not a good in-
dication of the complexity of a system.

However, we also concluded that in rou-
tine expert systems, novice knowledge engi-

neers consume three to four hours per kilo-
byte of knowledge base. Sophisticated
knowledge engineers may expend as much
as five to 10 hours per kilobyte, because
they know how to collapse similar rules into
more general expressions and might be us-
ing external functions.

APPROPRIATENESS
We used M.I and OPS5. One is primarily a
backward chainer; the other primarily a for-
ward chainer. We do not think much differ-
ence exists between the two. For our prob-
lems, we could have made either type of
chaining work. After learning each of these
expert system shells, Senn remarked, "It's
just another language."

This remark has another implication
about the knowledge-transfer process. Ex-
pert systems have made one step forward
accompanied, unfortunately, by one step
backward. While expert systems permit a
higher level of abstraction, they also de-
mand that the knowledge base remains
tightly coupled to the inference engine.
Even though the knowledge has already
been captured in Cogito or DCD, convert-
ing this knowledge to another inference en-
gine would be difficult. A fundamental
breakthrough occurred when traditional
programming languages became indepen-
dent of the processor; a similar break-
through must be effected within the expert
system realm.

How7 can one identify a task appropriate
for a PC-based expert system? First, there
must be a human who performs that task
better than most other people. Second, the
task's solution must be explainable by the
human expert in words without relying on
pictures. Third, the problem must be solv-
able a 20-minute or even one-hour tele-
phone conversation with the expert. If it
would take a human two days to solve the
problem, it is far too complicated for an ex-
pert system; if the human gives the answer
in two seconds, it is too simple. Fourth,
problems that involve determining one of
many possible solutions are ideal candidates
for expert systems, such as answering the
question, "What disease does the person
have?" Fifth, the problem must encompass
uncertainty or inexactness in the data, or a
diagram on paper would be superior.

The first four criteria help predict wheth-
er the expert system will be successful,
whereas the fifth helps decide whether a
complex expert system shell is needed or if
some simpler tool would suffice. The animal
classification system (Figure 2) is an example
of a problem domain that has no uncertain-
ty or inexactness. This task could be per-
formed better using a diagram such as Fig-
ure 2 than an expert system on a PC.

Given these criteria, giving advice for

AI EXPERT • SEPTEMBER 1988

bringing up UNIX on a VAX computer was
an inappropriate task for a PC-based expert
system. It cannot be done in a one-hour
conversation with an expert. We estimate
that it would take an expert one or two days
to do this task (it took us three months to do
it the first time!). Cogito's 800 rules filled
two floppy disks.

We succeeded in making an expert system
that worked, but it was hard work. A more
powerful tool (such as KEE [IntelliCorp],
S.I [Teknowlege], ART [Inference Corp.],
or Knowledge Craft [Carnegie Group Inc.])
would have been more appropriate.

However, helping a person connect a ter-
minal to a computer is an appropriate task
for an expert system. In the future, we think
most computer equipment manufacturers
will have expert systems (interactive text-
books) to help their sales personnel install
their equipment. This will insulate their re-
search engineers from mundane questions
and build confidence in the sales force,
which will then be able to answer difficult
questions about their product.

The two real-world expert systems dis-
cussed here were designed to perform cer-
tain tasks, and they did them; so they were
successful. However, the more important as-
pect of these endeavors was that we learned
a great deal about making expert systems.
We learned that an expert system shell is

not Merlin's long-lost magic wand. You can-
not do things with expert system shells that
you could not do in any other language; but
you can develop a prototype a lot faster. We
learned that expert systems can be made
friendlier than conventional computer pro-
grams. But we also learned that testing and
validating expert systems is diff icult . Q]

This research was partially supported by grant
no. AFOSR-88-0076from 'the Air Force Office of
Scientific Research.

REFERENCES
1. i'XIX Programmer's Manual Reference Guide. Berke-

ley, Calif.: USENIX Assoc., 1985.
2. U\IX Systems Manager's Manual. Berkeley, Calif.:

USENIX Assoc., 1985.
3. Moller, R., A.T. Bahill, and L. Swisher. "The De-

velopment of ESI AC, an Expert System for Iden t i fy ing
Autist ic Children," in Proceedings of the International
Conference on Systems, Man, and Cybernetics. New York,
N.Y.: IEEE, 1985, pp. 875-878.

4. Forman, E.H., and T.L. Saaty. Expert Choice.
McLean, Va.: Decision Support Software, 1986.

5. Saaty, T.L., and K.P. Kerns. Analytic Planning: Or-
ganization of Systems. New York, N.Y.: Pergamon Press,
1985.

6. Harmon, P., and D. King. Expert Systems: Artificial
Intelligence in Business. New York, N.Y.: Wiley, 1985.

7. Edwards, W. "How to Use Multiattribute Utility
Measurement for Social Decision Making." IEEE Tran-
scripts on Systems, Man, and Cybernetics SMC-7: 326-340,
1977.

8. Buchanan, B.C., and E.H. Shortliffe. Rule-Based
Expert Systems. Reading, Mass.: Addison-Wesley, 1984.

Now available in Turbo C,- Microsoft C,®
JPI Modula 2,* and Logitech Modula 2/

Turbo Expert. Now it doesn't take a genius to plug into Expert Systems.
7or only $99.95, you can incorporate the power of a full-fledged Expert System into your TURBO PASCAL programs. Seamlessly. Affordably.
Anally. Actual Expert Systems, developed for simple use by any Turbo Pascal 4.0 programmer.

Take a look at all the features you suddenly have available with this single Turbo Pascal 4.0 Unit: The ability to create large Expert
Systems, or even link multiple Expert Systems together. A powerful backward-chaining inference engine. Easy flow of both data and program
:ontrol between Turbo Expert and the other parts of your program, to provide Expert System analysis of any database, spreadsheet, file
>r data structure. The ability to add new rules in the middle of a consultation, so your Expert Systems can learn—really learn—and
)ecome even more intelligent.

You also have the ability to create large rule bases and still have plenty of room left for your program, thanks to conservative memory
ise. You can link multiple rule bases, you'll be compatible with our Turbo Companion units, and you have available advanced features like
late and time arithmetic, confidence factors, windowing, demons, agendas, blackboards, and more.

Imagine a single "EXE" file containing your user interface and data handling, and a ful l Expert System.
For a limited time, get a FREE copy of our Turbo SnapShot graphics package worth $79.95. We'll give one away with every copy of

urbo Expert sold between now and September 30. This package will let you capture graphics images from other programs
nd use them in any Turbo Pascal program.

You can even convert images from any CGA or EGA format to any other. *
On top of all that, Turbo Snapshot has routines for graphic gauges and dials as well as mouse support. You'll have all

ou need for a sophisticated graphics front-end for your Expert Systems —free. B.-.^^.I,.B
Call for more information or to order, (317) 876-3042. Software Artistry Inc., 3500 Depauw Blvd., Suite 2021, Indianapolis, VT.VJJ 45

V 46268. Include $5.00 for shipping and handling.

CIRCLE 18 ON READER SERVICE CARD

