
SPECIAL FEATURE

Interactive Verification oi
Knowledge-Based Systems
Musa Jafar, Washington State University
A. Terry Bahill, University of Arizona

• HE TYPICAL DEVELOPMENT
cycle for a knowledge-based system con-
sists of

• Verification, or building the system right:
This ensures that the system correctly
implements the specifications and de-
termines how well each prototype con-
forms to the design requirements. Veri-
fication guarantees product consistency
at the end of each phase (with itself and
with the previous prototypes), and en-
sures a smooth transition from one pro-
totype to another.

• Validation, or building the right system:
This ensures the consistency and com-
pleteness of the whole system.1

• Developmental testing: R u n n i n g test
cases to explore the system and expose
errors.

• Final testing or evaluat ion: Running as
many test cases as possible and watch-
ing the system's input-output behavior
to evaluate its performance and deter-
mine its usefulness.

Verification, validation, and develop-
mental testing are carried out during and at
the end of each prototype phase. For expert
systems, verification traditionally involves
three steps:

THE VALIDATOR PROGRAM INTERACTIVELY CHECKS THE
CONSISTENCY AND COMPLETENESS OF A KNOWLEDGE BASE.

IT SYSTEMATICALLY POINTS OUT POTENTIAL ERRORS
TO THE KNOWLEDGE ENGINEER TO HELP WRIFYAND

VALIDATE A RULE-BASED EXPERT SYSTEM.

(1) The knowledge engineer looks for syn-
tactic or semantic errors in the knowl-
edge base

(2) The knowledge engineer runs test
cases to find mismatches between the
system's solut ions and the expert's

(3) The expert runs test cases on the system.

This process takes a lot of time and s t i l l
doesn't guarantee an error-free knowledge
base, since for most systems i t ' s impossi-
ble to enumerate all inputs . Even when an
expert system has been fu l l y verified and
validated, its acceptance by the customer is
not guaranteed. Final testing and evalua-
t ion s t i l l must be done after development
and before deployment. This is a compli-
cated process that can include statistical
hypotheses testing and building of confi-
dence intervals.

Researchers have raised several ideas
and heuristics for traditional verification
(such as walkthroughs and syntax check-
ing),2-3 as well as work on the consistency
and completeness of logic-based systems.4-5

Most tools for verifying, validating, and
acquiring knowledge for knowledge-based
systems came from big projects designed
mainly for automatic knowledge acquisi-
tion: Teircsias, Emycin, Mole, Seek and
Seek2,6 Autolntelligence,7 Expertise Trans-
fer System, Acquinas, and so on. The main
objective of these systems is to communi-
cate directly with the expert, using formal
interviews coupled with protocol analysis
(example problems), classification inter-
views (repertory grids), and concepts from
personal-construct theory to help the knowl-
edge engineer build a domain knowledge
base. The power and capabilities of these

FEBRUARY 1993 0885/9000/93/0200-0025 $3.00 © 1993 IEEE 25

Delete(Course, Number) = Deleted
Delete(Course, Number) = Ignored

Demester(Sem) = Yes

Semester(Sem) = Checked
Semester(Sem) = Ignored
Semester(Sem) = Yes

(a)

Help-With = Commands
Help-With = Basic
Help-With = Editor
Help-With = Yes

Restart(System) = 1
Restart(System) = 2
Restart(System) = 3
Restart(System) = 4
Restart(System) = Yes

(b)

Figure 1. Two syntax errors discovered in
existing knowledge bases: A misspelled word
(a), and an incorrect value (b).

tools is limited: They are good only for
classification-type problems.

Another group of tools keep the knowl-
edge engineer in charge of the knowledge
transfer process: They include Oncocin,
Cover,8 the ART Rule Checker (ARC),9

the Expert-System Validation Associate
(EVA)10 and the Expert-System Checker
(ESC).'' Such tools let the knowledge en-
gineer build complete, high-quality knowl-
edge-based systems, debug the knowledge-
base syntax, and check its semantics.

A third group of tools includes Xcon,
Mycin, Internist, and Prospector.12 Simu-
lation validation techniques have also been
suggested, but they are domain-dependent
and their effectiveness in building statisti-
cal models for hypothesis testing is limited
unless the knowledge engineer can come
up with quantitative factors to compare the
system's performance with an expert's.13

Our Validator program fits into the sec-
ond group, although it is broader and offers
an interactive design. Validator verifies
and validates rule-based expert systems,
and guarantees that every element in the
knowledge base is accessible and essential
to the system. The program checks for
syntactic errors, unused rules, facts, and

questions, incorrectly used legal values,
redundant constructs, rules that use illegal
values, wrong instantiations, and multiple
methods for obtaining values for expres-
sions. Most of its features are generic and
founded in software verification and logic
systems.

Verification with Validator

Validator scans a knowledge base and
checks its syntax and semantics for possi-
ble errors, which it brings to the knowledge
engineer's attention. The program leaves
the task of fixing such errors to the engi-
neer. The verification part of Validator has
four modules: a preprocessor, a syntax
analyzer, a syntactic error checker, and a
debugger.

After the knowledge engineer runs the
knowledge base through a spelling checker,
Validator's preprocessor performs a low-
level syntax check on it. Syntactic errors
can cause the production language (which
here refers to AI languages as well as
expert-system shells) to misinterpret a
knowledge base and consequently alter its
syntactic structure, leading to semantic
errors. Detecting such errors saves the
knowledge engineer and the expert much
time, frustration, and grief. This type of
checking is dependant on the production
language, and ameliorates the shortcom-
ings of the language's compiler.

Validator then builds internal represen-
tation structures of the knowledge base,12

which the other three modules analyze for
syntactic compliance. These techniques do
not decrease the importance of develop-
mental testing; rather, they speed system
development and give the knowledge engi-
neer and experts more time to concentrate
on areas that need human attention.

The syntax analyzer. Many syntactic
errors are caused by misspellings, typo-
graphical errors, or ill-formed knowledge-
base structures.8'9 In fact, many expert sys-
tems we tested contained misspelled words
and illegal values, ranging from simple
mistakes with no effect on the knowledge
base to major problems that altered the
whole system structure. For example, the
list of all possible conclusions in one sys-
tem in Figure la contains a misspelled
word ("demester"), while the list of pre-
mises in another system in Figure 1 b shows

an incorrect value ("yes") given to the
expressions Help-With and Restart.

By manually performing an "objective,
step-by-step review" of the knowledge
base,1 an experienced knowledge engineer
can easily detect such problems if the ex-
pressions are displayed close to each other
and are directly connected. The syntax
analyzer therefore takes the internal repre-
sentation structures and creates a knowl-
edge base dictionary: an alphabetical listing
of the expressions in the knowledge base
and their categories: goals, rule premises,
rule conclusions, questions (with legal val-
ues), and facts (with values). Especially
helpful is the fact that a knowledge
base dictionary can be read in sections
more easily than can an entire knowledge
base. For example, a developer forced to
read an entire knowledge base would be
hard pressed to remember if a hyphen or
an underscore was used to tie two words
together.

Figure 2 shows the knowledge base dic-
tionary derived from applying Validator to
a section of the Poison Control Expert Sys-
tem. The "f" indicates a value where an
error was later flagged. Validator didn't
flag "comma" — a value for Symptom (As-
pirin) — as an error because the person who
built the knowledge base misspelled the
word the same way every time (it should
be "coma"). In contrast, Validator caught
the inconsistent spelling of "aspirin"
("aspirine").

The syntactic error checker. People
can easily detect inconsistent expressions
if presented in pairs rather than in large
collections, but machines are better at de-
tecting global and indirect inconsistencies,
such as those that can occur when a knowl-
edge engineer lacks knowledge about the
production language or the application
domain. The syntactic error checker there-
fore looks for syntax that, although legal,
produces unspecified behavior by the pro-
duction language. Such "out-of-range val-
ues" (such as incorrect usage of reserved
words) usually escape detection by the
production language and the knowledge
engineer. Validator detects these errors in
the context in which they occur.

Out-of-range values. Expressions get
their values from facts, from user respons-
es to questions, or from the conclusions of
rules. There are several kinds of values:

26
IEEE EXPERT

KNOWLEDGE BASE DICTIONARY:

*List of goals:

Begin
Finished

Treatment

'Expressions and their utilized values:

Dose(Bill, Drug) = A

Number(Bills) = Bills

Quantity = [High, Low, Mid]

Symptom(Acetaminophen) = [Anorexia, Anrexiaf, Vomiting,
Pallor, Vest]

Symptom(Acetylsalicylic-Acid) = [Vomiting, Vest]

Symptom(Aspirin) = [Blood, Comma, Confusion, Delirium,
Dizziness-And-Ear-Tingling, Dizziness-And-Ear-Tinglingf,
Elevation-Of-Temp, Increase-Sweating, Psychosis, Stupor,
Tinnitus, Vomiting, Vest]

Symptom(Aspirin-And-Caffeine) = [Nausea, Vest]

Symptom(Paracetamol) = [Nausea, Vomiting, Yest]

Type(Drug) = [Aspirin, Aspirinet, Acetaminophen, Acetylsalicylic-
Acid, Aspirin-And-Caffeine, Paracetamol]

Victim = [Adult, Infant, Kid]

* Expressions and their concluded values:

Begin = [Yes, No]

Finished = [No]

Quantity = [Low, Mid, High]

Type(Drug) = [Acetaminophen, Acetylsalicylic-Acid, Aspirin,
Aspirin-And-Caffeine, Paracetamol]

Treatment = [Yes]

Victim = [Adult, Infant, Kid]

'Question expressions and their legal values:

Age(Victim) = Number(0, 120)

Continue-Search = [Yes, No]

Dose(Bill, Drug) = Number(0,1)

Quantity(Bill) = Number(0, 20)

Start = [Yes, No]

Symptom(Acetaminophen) = [Pallor, Nausea, Vomiting, Anorexia]

Symptom(Acetylsalicylic-Acid) = [Elevation-Of-Temp, Excitability,
Headache, Insomnia, Irritability, Increase-Heart-Rate, Muscle-
Tremor, Nausea, Vomiting Increase-Sweating]

Symptom(Aspirin) = [Blood, Comma, Confusion, Delirium,
Dizziness-And-Ear-Tingling, Elevation-Of-Temp, Increase-
Sweating, Nausea, Psychosis, Stupor, Tinnitus, Vomiting]

Symptom(Aspirin-And-Caffeine) = [Excitability, Headache,
Increase-Heart-Rate, Insomnia, Irritability, Muscle-Tremor,
Nausea]

Symptom(Paracetamol) = [Pallor, Nausea, Vomiting, Anorexia]

Type(Drug) = [Acetaminophen, Acetylsalicylic-Acid, Aspirin,
Aspirin-And-Caffeine, Paracetamol]

POSSIBLE MISTAKES:

*0ut-ot-range values and their expressions:

Symptom(Acetaminophen) = Yes
Symptom(Acetaminophen) = Anrexia

Symptom(Acetylsalicylic-Acid) = Yes

Symptom(Aspirin) = Yes
Symptom(Aspirin) = Dizziness-And-Ear-Tingling

Symptom(Aspirin-And-Caffeine) = Yes

Symptom(Paracetamol) = Yes

Type(Drug) = Asprine

*Never used values and their expressions:

Continue-Search = [No]

Symptom(Acetaminophen-Or-Paracetamol) = [Anorexia, Nausea,
Pallor]

Symptom(Acetylsalicylic-Acid) = [Nausea, Increase-Sweating,
Elevation-Of-Temp, Insomnia, Headache, Irritability, Excitability,
Muscle-Tremor, Increase-Heart-Rate, Headache, Insomnia,
Irritability, Excitability]

Symptom(Aspirin) = [Nausea]

Symptom(Aspirin-And-Caffeine) = [Muscle-Tremor, Nausea,
Headache, Insomnia, Irritability, Excitability, Muscle-Tremor,
Increase-Heart-Rate]

*Never asked questions:

Age(Victim)

DONE WITH Validator.

Figure 2. Validator's output for the Poison Control Expert System.

Legal values arc acceptable answers to
questions.
Utilized values allow the rule premise in
which they appear to be evaluated to true.
Concluded values appear in rule conclu-
sions and are set for an expression when
a rule using that expression succeeds.
Assigned values are assigned to expres-
sions with facts or certain commands
specific to the production language.

In a simple knowledge base, the sets of
legal, utilized, concluded, and assigned val-
ues may be the same, but this is not always
the case. In Figure 3, the set of legal values
for the expression Location is [Around-
Mouth, Between-Fingers,..., Upper-Extrem-
ities]. The set of ut i l ized values is [Feet,
Posterior-Pharynx]. The set of concluded
values for the expression Rash-Identity is
[Athletes-Foot, Viral-Stomatitis].

Out-of-range values: utilized versus le-
gal values. Providing legal values guards
against typographical errors and helps in
abbreviating long answers. If no legal val-
ues were provided, the system would take
any user's response as an answer, so typo-
graphical errors and wrong responses might
escape detection. Even if detected, recov-
ery is hard for a user. Effective error-
recovery procedures arc time-consuming

FEBRUARY 1993 27

Question(Location) = "Where on the body
is the rash located?".

LegalValues(Location) = [Around-Mouth,
Between-Finge'rs, Follows-Nerve-Root,
Genitals, Gingiva, Lower-Extremities,
Palms, Pharynx, Scalp, Soles, Site-Of-
Previous-lnjury, Trunk, Upper-Extremities].

If Type = Scaly
And Location = Feet
And..
Then Rash-Identity = Athletes-Foot cf 90.

If Type-Vesicular
And Location = Posterior-Pharynx
Then Rash-Identity = Viral-Stomatitis cf 95.

Figure 3. Utilized, concluded and legal values.

If My-Hand = Pair-Queens
And Open-Advice = Pass
Then Stay-Advice = Get-Out.

If My-Hand = Three-Of-A-Kind
And...
Then Open-Advice = Sandbag.

If My-Hand = Straight-Flush
And....
Then Open-Advice = Open.

If My-Hand = Garbage
And ...
Then Open-Advice = Cannot-Open.

Figure 4. Mismatch between utilized and
concluded values.

Rule-12: If Has-Sauce = Yes
And Sauce = Sweet
Then Best-Sweetness = Sweet Cf 90
And Best-Sweetness = Medium Cf 40.

Rule-26: If Best-Sweetness = Dry
Then Recommended-Sweetness = Dry.

Rule-27: If Best-Sweetness = Medium
Then Recommended-Sweetness = Medium.

Rule-28: If Best-Sweetness = Sweet
Then Recommended-Sweetness = Sweet.

Figure 5. Mismatch between utilized and concluded values.

Goal = Accumulate(Sem).

Rule-1: If Semester(Sem) = Yes
Then Semdel(Sem) = Done.

Rule-2: If Semdel(Sem) = Yes
Then Accumulate(Sem) = Yes.

Figure 6. Mismatch between utilized and
concluded values.

and sharply increase the size of the knowl-
edge base. The developer must build pro-
cedures that will backtrack to virtually
every branch of the knowledge base tree
affected by the wrong response, allow the
user to recover from the error, and then
return to the same place in the knowledge
base before the error was discovered.

However, providing legal values wil l
not prevent the knowledge engineer from
using an out-of-range value in a rule.9

Mycin-derived production languages do
not check the knowledge base to ensure
that only legal values have been used; these
languages only check user responses to
questions to see if they match legal values
specified by the knowledge engineer.
Legal values are related to questions, not to
rules or facts. Illegal values are common in
knowledge bases and usually force a rule
using such a value to fa i l .

In Figure 3, the two rules for concluded I
values for Rash-Identity will fail because |
of i l legal uti l i /ed values. The second
premise of the first rule (Location = Feet)
and the second premise of the second rule
(Location = Posterior-Pharynx) have uti-
lized values that are not in the legal value
set. Therefore, these rules can never suc-
ceed. When seeking values for Location,
the user will be asked the location of the
rash. If he or she tries to answer Feet or
Posterior-Pharynx, the production language
will refuse the answer. Furthermore, all the
rules that use the conclusion of the first

rule Rash-Identity = Athletes-Foot as a
premise will also fail. Such errors wil l also
stop the system from seeking the rest of the
premises that come after the false premise
of the rule.

Out-of-range values: utilized versus con-
cluded values. The first rule in Figure 4 wi l l
fail due to the mismatch between the uti-
lized and concluded values of the expres-
sion Open-Advice. The set of concluded
values is [Sandbag, Open, and Cannot-Open];
the set of utilized values is Pass. For the
second premise of the first rule to evaluate
true, and consequently for the rule to suc-
ceed, the expression Open-Advice has to be
assigned the utilized value Pass, which is
not in the set of concluded values for the
expression; hence the rule will always fail.

Figure 5 shows another rule that can
never succeed, this time from an old, well-
polished, professional expert system (the
Wine Advisor). From rule 12, the expres-
sion Best-Sweetness will be instantiated
either to the value Sweet with certainty
factor 90 or to the value Medium with cer-
tainty factor 40 (sweet and medium arc the
concluded values for the expression). For
rule 26 to succeed, the Best-Sweetness has
to be instantiated to the utilized value Dry.
But the conclusion of rule 12 is the only
place in the knowledge base where Best-
Sweetness can get its values, so rule 26
always fails. (Remember, Validator does
not detect mistakes, it only points out poten-
tial errors. In this case, the knowledge engi-
neers would surely explain this mismatch
by saying, "Rule 26 is there for complete-
ness and possible future expansion.")

Figure 6 shows a serious error: Rule 2
a lways f a i l s because the express ion
Semdel(Sem) has a mismatch between its
utilized value in the second rule (Yes) and
its concluded value in the first rule (Done).

Unused legal values. The syntactic error
checker searches the premises of rules look-
ing for declared but unused legal values,
and flags them as potential errors. It also
lists all unasked questions. Unused legal
values are common in knowledge bases.
They usually suggest errors or remnants of
old constructs that were mistakenly put
into the knowledge base by the knowledge
engineer, or incompletely removed. Delet-
ing such constructs cuts the size of the
knowledge base and speeds inference dur-
ing a consultation.

28 IEEE EXPERT

in Figure 7, Die knowledge engineer used
Integers instead of Integer to inform the
system about the set of legal values for the
question about Restart. This typographical
error caused the syntactic error checker to

flag every utilized value of the expression
Restart and to state that the string Integers
(0,9) was an unused legal value for Restart.

When Validator points out such poten-
tial errors, it often prompts the knowledge
engineer to change the structure. For ex-
ample, after seeing that the legal values
Normal and Subnormal are flagged as un-
used legal values for the expression Tem-
perature (see Figure 8), the knowledge
engineer might ask the same question more
directly, providing fewer options for the
user to choose from.

The debugger

Debugging is the tedious, difficult, time-
consuming, and costly process of finding
and correcting errors in the knowledge base.
These errors are usually discovered during
developmental testing, and finding them
depends on the knowledge engineer's intu-
ition, experience, and common sense. How-
ever, computer-aided debugging tools are
more reliable because they reduce the pos-
sibility of human errors. The Validator de-
bugger checks for rules that use variables,
negations, and unknowns. It regards the
knowledge base as a closed world, that is, it
assumes that all the information about the
domain is captured in the knowledge base.
This means that all the rules and axioms that
can possibly hold are either implied or im-
plicitly modeled in the knowledge base.
(The use of variables, negations, unknowns,
and the closed-world assumption are all
aspects of Prolog-type systems.)

Variable-unsafe rules. Variables can be
used in both the premises and the conclu-
sions of rules. They act as symbolic place
holders. Fach construct that uses variables
is logically equivalent to the large set of
constructs that could be obtained by re-
placing these variables with the suitable
terms. This violates the spirit of the closed-
world assumption. A backward-chaining
rule that has variables is considered to be
variable-safe (closed) if

(1) Its conclusion is homomorphic to a fact
or a consequence in the knowledge base.

Question(Restart) = [NL, "Which of the following ... see again ?
1. Print your consultation,

8. Restart consultation completely,
9. QUIT this consultation.

* * * * Choose one or more of the above ...", NL].

LegalValues(Restart) - lntegers(0, 9).

Figure 7. A typographical error.

Original structure
Question(Temperature) = "What is the temperature of your patient?
1. Elevated (greater than 100 degrees Fahrenheit)
2. Normal (between 98.2 and 99.9 degrees Fahrenheit)
3. Subnormal (less than 98.2 degrees Fahrenheit)".

LegalValues(Temperature) = [Elevated, Normal, Subnormal].

Suggested structure
Question(Temperature) = "Is the temperature of your patient more than 100 degrees

Fahrenheit?".

LegalValues(Temperature) = [Yes, No].

Figure 8. Unused legal values.

(2) Variables that appear as attributes of
an expression in a conclusion also ap-
pear as attributes of an expression in
the rule's premise.

(3) Variables that appear as attributes of
an expression in a premise also appear
as utilized values in previous premises
of the same rule or as attributes of an
expression in the conclusion.

(4) Variables that appear as concluded
values of a rule also appear as utilized
values in the rule's premise.

A knowledge base is variable-safe if
its set of rules evaluate to true, no matter
what values are substituted for the vari-
ables. Variable-unsafe rules usually lead
to inf in i te loops that violate the closed-
world assumption. In Figure 9, the variable
X wil l be instantiated whenever the rule's
conclusion falls in the search path of a goal
or a subgoal. However, the safety of the
rule is violated by the presence of Y in the
third premise. In Figure 10, the debugger
has flagged two variables PI and P2 as
attributes that will lead to a variable-
unsafe rule. (Further investigation of the
rule shows that it is not a dead rule. In fact,
it is in the search path of more than one goal
tree. The second line shows that the knowl-
edge engineer has commented out a premise

If Air-Conditioner = Air-Conditioner-X
And Type(Air-Conditioner-X) = Central
And Not(Maintained(Air-Conditioner-Y))
Then Maintain(Air-Conditioner-X).

Figure 9. A variable unsafe rule.

necessary for the successful instantiation
of the variables PI and P2, and for the
normal progress of a consultation.)

Illegal use of negations and unknowns.
Negations can only be used in the premises
of rules. A rule that has a negation in its
conclusion violates the closed-world as-
sumption, since a false fact is not explicitly
declared in the knowledge base, but rather
inferred from not being able to conclude
the given value for an expression. Figure
1 1 shows illegal use of negation.

The most common origin of Unknown is
a user's response to a question. Unknown
can be concluded as a result of the unsuc-
cessful firing of all the rules that concern
an expression. However, like negations,
Unknown can only be used in the premises
of rules. A rule that concludes Unknown

FEBRUARY 1993 29

If Course_To__Delete = DepNum
/* And Attribute(DepNum) = [T, P1, P2, U, SG, G, Area) */
And Semester(Sem, Course) = [Depnum, U]
And Resetting(Sem, Course) = Done

And Pe rmDelA(DepNum, P1)
And P e r m D e l B (D e p N u m , P2)
And Display(DepNum, "Was Deleted From Semester Number" , Sem)
Then Delete_Course = Deleted.

Figure 10. Another variable unsafe rule.

I fTypefHeater , X) = Gas
Or Type(Heater, X) = Solar
Then Not(Turn-Off(Heater , X)) .

Figure 1 1. An illegal usage of negation.

If Name(Subdivision) = "Casas Adobes"
And Age(Home) = Newer
Then Value(Home) Is Unknown.

Figure 12. An illegal usage of Unknown.

Table 1.1

SYSTEM SIZE SYNTACTIC
(KBYTES) ERRORS

Advice 82
Chromie 100
Cogito 126
Fundeye 60
H e l p e r 50
SRPRES 120
Stutter 81

! for an expression violates the closed-world
assumption because an unknown fact is not
explicitly declared in the knowledge base
rather, it is inferred from not being able tc
conclude a value for an expression. Figure
12 shows an illegal use of Unknown.

W AL1DATOR EVOLVED DURING
the development of the Salt River Project
Residential Expert System14 and was test-
ed on 70 expert-system knowledge bases,

Errors detected in masters projects and precommei

U N U S E D A N O M A L I E S U N U S E D U N U S E D
RULES QUESTIONS VALUES

3 9
1
5 25

1
2 2

12 5

— — - - - -- . . . — n

including senior-, graduate-level, and mas-
ters projects at the University of Arizona,
systems produced as part of research grants,
and demonstration systems provided by
commercial software houses. Tables 1-5
show the different types of errors detected
by Validator. The syntax analyzer errors
are under the category "syntactic errors,"
the syntactic error checker errors are under
"referential integrity," and the debugger
errors are under "anomalies" and "unused
values." (The other errors in these tables
were detected by Validator modules dis-
cussed elsewhere. b)

Validator has found many errors, but it
i can't find them all; for example, it cannot
: detect circular and recursive rules, com-

pound structures such as frames or object
data types and their anomalies, conflicting

! rules, or redundancies inside rules.
Some of the methods presented here

originated in integrity and completeness
checking for database systems. The knowl-
edge base dictionary, for example, is rele-

cial systems.

MULTIPLE M U L T I P L E R E F E R E N T I A L
QUESTIONS METHODS INTEGRITY

35 1

6 7

14
1

1 8

Table 2. Errors detected in student-generated systems (Fall 1988).

SYSTEM SIZE SYNTACTIC
(KBYTES) E R R O R S

Car 6
Citsys 54
Dell 55
Diet 15
Drug 41
Fever 54
Haa 27 2
Ky1 9
Macxprt 10
Napsx 28
O r i n g 37
Pimonc 28 2
Soundf 32
Volcan 18
Wire 19 1

U N U S E D ANOMALIES U N U S E D U N U S E D M U L T I P L E MULTIPLE R E F E R E N T I A L
RULES QUESTIONS VALUES QUESTIONS METHODS INTEGRITY

9 6
2 3
2

17
1 3
2 1

1
1

1
4

3
1 1

5

1

1
1 2

1
1 2

30

IEEE EXPERT

Table 3. Errors detected in student-generated systems (Fall 1987).

SYSTEM SIZE SYNTACTIC UNUSED ANOMALIES UNUSED UNUSED
(KBYTES) ERRORS RULES QUESTIONS VALUES

Baja 17
Cook 53
Hypotens 21
Job 23
Labd 6
PDP11 42
Pdoc 20
Patho 19 2
Phone 10
Patutor 40
Statcon 13
Slick 20 1
Ungrad 28
VW 27 1

Table 4.

7 6 3 4
2

4 3 2

1
2 1 1 2
1

1 2

MULTIPLE MULTIPLE REFERENTIAL
QUESTIONS METHODS INTEGRITY

2

8

9

3

1

3 1
12 3

2

Errors detected in student-generated systems (Fall 1986).

SYSTEM SIZE SYNTACTIC UNUSED ANOMALIES UNUSED UNUSED
(KBYTES) ERRORS RULES QUESTIONS VALUES

AME 30 1
AMI 52 1
Automech 102
Barman 14 1
ECU 19
Editor 6
Expert 54
Friz 26
Health! 35 1
Health2 62
Modex 3
Motor 19
Plant 46
Poison 59
Poker 23 4
Qaci 38
Rashdec 23 1
Readines 16

1

6

1
4 10

5

2 5

2
3 1 5

4

Table 5. Errors detected in selected student-generated systems

MULTIPLE MULTIPLE REFERENTIAL
QUESTIONS METHODS INTEGRITY

1

3

1

5

2
1

1 6

(Fall 1985).

SYSTEM SIZE SYNTACTIC UNUSED ANOMALIES UNUSED UNUSED MULTIPLE MULTIPLE REFERENTIAL
(KBYTES) ERRORS RULES QUESTIONS VALUES QUESTIONS METHODS INTEGRITY

Animal 4
Autism 15
Autism2 16 1
ChromieO 13
Labdes 15
Solar 7
StutterO 8 1

vant to the database dictionary, and the

mismatch between utilized and concluded

values is an extension of the referential

integrity problem in relational database

systems. A rule in a knowledge-based

system can be considered as an extension

of a "view" in the relational data model,

so checking the safety and completeness

FEBRUARY 1993

1
9

1 9
2
2

of a rule has its origin in checking for

view integrity and consistency in database

systems.

Validator brings potential errors to the

attention of the knowledge engineer as

output messages with the subsequent ex-

planation listing the expression, its value,

and the reason for suspecting an error.

19 7
1 3

1

Some of these errors have serious effects

on the knowledge base, such as halting a

consultation or preventing a subset of the

knowledge base from being active. Other

potential errors, such as screening the

usage of some clauses, have no effect as

long as the knowledge engineer knows

exactly what is being done.

31

References

1. T. O'Leary et al., "Validating Expert Sys-
tems," IEEE Expert, Vol. 5, No. 3, June
1990, pp. 51-58.

2. S.J. Andriole, Software Validation: Verifi-
cation, Testing, and Documentation, Pet-
rocelli Books, Princeton, N.J., 1986.

3. R.A. DcMillo et al., Software Testing and
Evaluation, Benjamin Cummings, Menlo
Park, Calif., 1987.

4. J.H. Gallier, Logic for Computer Science,
Harper & Row, New York, 1986.

5. H.J. Levesquc, 'The Logic of Incomplete
Knowledge Bases,"in On Conceptual Mod-
eling, M.L. Brodie, J. Mylopoulos, and
J.W. Schmidt, eds., Springer-Verlag, New
York, 1984.

6. P.O. Politakis, Empirical Analysis for Ex-
pert Systems, Pitman Advanced Publ ish-
ing, Boston, 1985.

7. K. Parsaye, "Acquiring and Ver i fy ing
Knowledge Automatically," Al Expert, Vol.
3, No. 5, May 1988, pp. 48-63.

8. A.D. Preece and R. Singhal , "Verifying
and Testing Expert-System Conceptual
Models," Proc. 1992 IEEE Conf. on Sys-
tems, Man, and Cybernetics, IEEE Press,
Piscataway, N.J. , 1992, pp. 922-927.

9. T.A. Nguyen et al., "Knowledge Base Ver-
ification," Al Magazine, Vol. 8, No. 2,
Summer 1987, pp. 69-75.

10. R.A. Stachowitz, J.B. Combs, and C.L.
Chang, "Validation of Knowledge-Based
Systems," Proc. Second AlAA/NASA/USAP
Symp. Automation, Robotics, and Advanced
Computing for the National Space Pro-
gram, Am Inst. of Aeronautics and Astro-
nautics, New York, 1987, pp. 1-9.

1 1 . B.J.Cragun "A Decision-Table-Based Pro-
cessor for Checking Completeness and
Consistency in Rule-Based Expert Sys-
tems," hit'I J Man-Machine Studies, Vol.
26, No. 5, May 1987, pp. 633-648.

12. M.J. Jafar, A Tool for Interactive Verifica-
tion and Validation of Rule-Based Expert
Systems, doctoral dissertation, Univ . of
Arizona, Tucson, Ariz., 1989.

13. R.M. O'Keefe, O. Balci, and E.P. Smith,
"Validating Expert-System Performance,"
IEEE Expert, Vol. 2, No. 4, Winter 1987,
pp. 81-90.

14. M.J. Jafar, A.T. Bah i l i , and D. Osborn, "A
Knowledge-Based System for HVAC,"
ASHRAE, J. Am. Soc. Heating, Refrigera-
tion, and Air Conditioning, Vol. 33, No. 1,
Jan. 1991, pp. 20-26.

15. M.J. Jafar and A.T. Bahi l i , "Verification
and Val ida t ion with Validator," in Verify-
ing and Validating Personal-Computer-
Based Expert Systems, A.T. Bahi l i , ed..
Prentice Hall, New York, 1991, pp. 71-83.

NEW BOOKS!

ARCHITECTURAL ALTERNATIVES FOR
EXPLOITING PARALLELISM

edited by David J. Lilja

This tutorial surveys the fine-grained parallel architectures that exploit the parallelism
available at the instruction set level, the coarse grained parallel architecture that
exploits the parallelism available at the loop and subroutine levels, and the single
instruction, multiple-data (SIMD) massively parallel architectures that exploit paral-
lelism across large data structures. The book includes over 37 articles that discuss the
potential of parallel processing for reducing the execution time of a single program,
available parallelism in application programs, processor architectures that exploit
parallelism at the instruction level, pipelined processors, multiple-instruction issue
architectures, decoupled access/execute architectures, dataflow processors, shared
memory multiprocessors, distributed memory multicomputers, reconfigurable and
massively parallel architectures, and comparing parallelism extraction techniques.

Sections: Introduction, Fine-Grained Parallel Architectures, Coarse-Grained and
Massively Parallel Architectures, Architectural Comparisons.

464 pages. March 1992. Hardbound. ISBN 0-8186-2642-9.
Catalog No. 2642 — $80.00 Members $50.00

To Order Call:

1-8OO-CS-BOOKS or FAX (714) 821-4Q10

Musa J. Jafar is an
assistant professor of
management informa-
t ion systems in the De-
par tment of Manage-
ment and Systems at
Washington State Uni-
versity. He received a

BS and MS in mathe~
matics, an MS in sys-
tems engineering, and a

PhD in systems and industrial engineering from
the Universi ty of Arizona. He can be reached at
the Dept. of Management & Systems, Washing-
ton State University, Pu l lman, W A 99164-4726;
Internet, musa@wsuaix.csc.wsu.edu

H IEEE COMPUTER SOCIETY

Terry Bahili is a pro-
fessor in the Systems and
Industrial Engineering
Department of the Uni-
versity of Ari/ona. He
is a fel low of the IEEE.
Bahili received a BS in
elect r ica l engineer ing
from the Univers i ty of
Arizona in 1967, an MS
in electrical engineering

from San Jose State Un ive r s i ty in 1970, and a
PhD in electrical engineering and computer sci-
ence from the Univers i ty of Cal i fornia at Berke-
ley in 1975. He can be reached at the Systems
and Industr ia l Engineering Department, Uni-
versity of Arizona, Tucson, AZ 85721; In te rne t ,
terry@tucson.sie.arizona.edu

IEEE EXPERT

