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Abstract. The equations of physics for bat-ball colli-
sions were coupled to the physiology of the muscle
force-velocity relationship to compute the ideal bat
weight for individual baseball players. The results of
this coupling suggest that some batters use bats that
are too heavy for them, and some batters use bats that
are too light, but most experienced batters use bats that
are just right. However, ideal bat weight is not
correlated with height, weight, or age. Decades of
prior physiological research on force-velocity relation-
ships of isolated muscle have shown that hyperbolic
curves usually fit the data best. However, for the
present data, the hyperbolic curves fit only one class of
subjects best: for the others a straight line provides the
best fit. We hypothesize that these two classes of
players use different control strategies.

Introduction

Over the last five decades units as small as isolated
actin-myosin fibers (Cerven 1987) and as large as whole
muscle (Wilke 1950) have been shown to obey Hill’s
force-velocity relationship (Fenn and Marsh 1935; Hill
1938). In this study we show that some human multi-
joint movements are modeled best with Hill type
hyperbolas, and some are modeled best with straight
lines. The human multi-joint ballistic movement that
we have chosen to study is that of a human swinging a
baseball bat. We choose this particular movement
because it is a commonly performed, stereotyped,
multi-limb, ballistic movement that is performed often
by many dedicated humans. Effects of sex, training and
the time-varying characteristics of the force-velocity
relationships can be easily controlled. It is safe and
measurement is noninvasive. In a skilled practitioner it
is repetitive and machine-like; there is little variability
between successive swings. Furthermore it is possible
to produce a set of bats that are matched in all respects

except weight. This allows consistent data collection
throughout the physiological range.

To find the best bat weight we must first examine
the conservation of momentum equations for bat-ball
collisions. As a simplifying assumption treat the bat-
ball collision as linear: i.e. assume the ball and bat are
both traveling in straight lines, as shown in Fig. 1. The
principle of conservation of momentum says that

M0y + MV =My V1, +MaVs,.

The subscript 1 is for the ball, 2 is for the bat. The
subscript b is for before the bat-ball collision, and a is
for after the collision. Because the ball is moving to the
left, v,, is a negative number. For the science of
baseball the distinction between mass and weight is not
necessary, so we will substitute weight for mass in the
above equation to produce

W1D1p T Wols = WUy, +Wals,. M

Note, we are assuming that the mass of the batters arms
has no effect on the collision (this may be an important
assumption). We want to solve for the ball’s speed after

Vla
after

Fig. 1. In a collision between a ball (on the right and moving
toward the left) and a bat (on the left and moving toward the
right) momentum must be conserved. The subscript 1 is for the
ball, 2 is for the bat. The subscript b is for before the bat-ball
collision (the top diagram), and a is for after the collision (the
bottom diagram)
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its collision with the bat, called the batted-ball speed,
but first we should eliminate the bat’s speed after the
collision, because it is not easily measured.

The coefficient of restitution, the bounciness of the
ball, is defined as the relative speed after the collision
divided by the relative speed before the collision. That
is
e=— . (2)

We can solve (2) for v,,, plug this into the conservation

of momentum equation (1), and solve for the ball’s

speed after its collision with the bat

pia= (W, _ewz)vlb+(wz+ew2)02b~ 3)
wy+w,

Kirkpatrick (1963) assumed that the optimal bat
weight would be the one that “requires the least energy
input to impart a given velocity to the ball.” This
definition in conjunction with (3) yields

[&] = Y1a” V1 @)
Wy optimal vla+ev1b

If we now make some reasonable assumptions like
w, =5.125 oz, the weight of the ball.!

e=0.55, the coefficient of restitution of a baseball.
v,,= — 80 mph, a typical pitch speed.

12=110 mph, the ball speed needed for a home run.

Then we can solve (4) to find that the optimal bat
weight is 15 ounces!

Brancazio (1987) has written an excellent theoret-
ical analysis of bat-ball collisions. He considered not
only the bat’s translation, but also its angular rotation
about two axes. He found that the ball’s speed after the
collision with the bat depends on:

(1) the energy imparted by the body and arms;

(2) the energy imparted by the wrists;

(3) the speed of the pitch;

(4) the point of collision of the ball respect to

(a) the center of percussion,

(b) the center of mass,

(c) the end of the bat,

(d) the maximum energy transfer point; and also

(5) the weight of the bat.

However, generalizing over all these dependencies
he also concluded that the optimal bat weight is about
15 ounces.

These conclusions cannot help professional
baseball players, who must use solid wood bats,
because a 15 ounce solid wood bat would only be 15
inches long! But this conclusion does help explain why

1 Baseball is not a metric sport. So we have not translated our
units into SI Units; we have left them in the common units that
baseball players and spectators find familiar. One ounce (0z) is
0.0283 kg and one mile per hour (mph) is 0.447m/s

people choke up on the bat; choking up makes the bat
effectively shorter, moves the center of mass closer to
the hands thereby reducing the moment of inertia, and
in essence makes the bat act like a lighter bat. This
conclusion could also help explain the great popularity
of aluminum bats. The manufacturers can make them
lighter while maintaining the same length and width. It
might also explain why so many professional players
are “corking” their bats (Gutman 1988; Kaat 1988).
However, both of these studies were limited by
their explicit assumptions. Kirkpatrick assumed that
the optimal bat was the one that required the least

‘kinetic energy. And Brancazio’s calculations for the

:0ptimal bat weight explicitly assumed that the “batter
generates a fixed quantity of energy in a swing”
independent of the bat weight. In this paper we will
extend these calculations by allowing the amount of
energy imparted to the bat by the batter to depend on
bat weight.

Physiologists have long known that muscle speed
decreases with increasing load (Fenn and Marsh 1935;
Hill 1938; Jewell and Wilke 1960; Wilke 1950). This is
why bicycles have gears: so the rider can keep muscle
speed in its optimal range while bicycle speed varies
greatly. We measured many batters swinging bats of
various weights. We plotted the data of bat speed and
bat weight, and used this to help calculate the best bat
weight for each batter.

The Bat Chooser™ Instrument

Our instrument for measuring bat speed, the Bat
Chooser,? had two vertical light beams each with an
associated light detector (similar to an elevator door
electric eye). The subjects swung a bat so that the center
of mass of the bat passed through the light beams. The
computer recorded the time between interruptions of
the light beams. Knowing the distance between the
light beams and the time required for the bat to travel
that distance, the computer calculated the speed of the
bat’s center of mass for each swing.

We told the batters to swing each bat as fast as they
could while still maintaining control. We told the
professionals “Pretend you are trying to hit a Nolan
Ryan fastball.”

In our experiments each adult subject swung six
bats through the light beams. The bats ran the gamut
from super light to super heavy; yet they had similar
lengths and weight distributions. In our developmental
experiments we tried about three dozen bats. We used
aluminum bats, wood bats, plastic bats, infield fungo
bats, outfield fungo bats, bats with holes in them, bats

2 Bat Chooser is a trademark of Bahill Intelligent Computer
Systems, a patent is pending



Table 1. Characteristics of the six bats

91

Name Weight Length Distance from Composition
(oz) (inches) the end of the
handle to
center of mass
(inches)
D 49.0 35.0 22.5 Aluminum bat filled with water
C 42.8 345 24.7 Wood bat, drilled and filled with
lead
A 330 35.5 23.6 Regular wood bat
B 30.6 345 23.3 Regular wood bat
E 251 36.0 23.6 Wood fungo bat
F 17.9 35.7 21.7 A wooden bat handle mounted on

a threaded steel lamp pipe with a
6 oz weight attached to the end

Table 2. Characteristics of the four boy’s bats

Name Weight Length Distance to Composition
(oz) (inches) center of mass
(inches)
A 40.2 29.9 17.8 Wood bat with iron collar
C 251 28.0 17.3 Wood bat
D 2141 28.8 17.0 Aluminum bat
B 5.2 31.3 17.6 Plastic bat

with lead in them, major league bats, college bats,
softball bats, Little League bats, brand new bats and
bats over 40 years old. In many experiments we used
the six bats described in Table 1. These bats were about
35 inches long, with the center of mass about 23 inches
from the end of the handle.

For Little League players we changed to a different
set of bats; they had to be lighter and fewer in number.
For our final experiments we used the set described in
Table 2. Even with this set we still saw signs of fatigue
in half our subjects.

In a 20 min interval of time, each subject swung
each bat through the instrument five times. The order
of presentation was randomized. The selected bat was
announced by a DECtalk® speech synthesizer as
follows: “Please swing bat Hank Aaron, thatis, bat A.”
We recorded the bat weight and the linear velocity of
the center of mass for each swing.

The Force-Velocity Relationship of Physiology

When bat speeds measured with this instrument were
plotted as a function of bat weight we got the typical
muscle force-velocity relationship shown in Fig. 2.
The ball speed curve and the term ideal bat weight
shown in this figure will be discussed in a later section.
This force-velocity relationship shows that the kinetic
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Fig. 2. Bat speed and calculated ball speed after the collision both
as functions of bat weight for a 40 mph pitch to Alex, a ten year
old Little League player. The dots represent the average of the
five swings of each bat; the vertical bars on each dot represent the
standard deviations. These data were collected with a different set
of bats than that described in Table 2
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energy (1/2 mv?) put into a swing was zero when the
bat weight was zero, and also when the bat was so
heavy that the speed was reduced to zero. The bat
weight that allows the batter to put the most energy
into the swing, the maximum-kinetic-energy bat weight,
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Fig. 3. Bat speed, kinetic energy given to the bat, and calculated
ball speed after the collision, all as functions of bat weight for an
90 mph pitch for a member of the San Francisco Giants baseball
team. Data for other professional baseball players were similar.
These data were collected with a different set of bats than that
described in Table 1

occurred somewhere in between, This led to the
suggestion that the batter might choose a bat that
would allow maximum kinetic energy to be put into
the swing. Figure 3 shows the kinetic energy (dashed
line) as a function of bat weight for a member of the San
Francisco Giants: this batter could impart the max-
imum energy to a bat weighing 46.5 oz.

However, this maximum-kinetic-energy bat weight
does not tell us the bat weight that will make the ball go
the fastest. To calculate this weight we must couple the
muscle force-velocity relationship to the equations for
conservation of momentum. Then we can solve the
resulting equations to find the bat weight that would
allow a batter to produce the greatest batted-ball
speed. This would, of course, make a potential home
run go the farthest, and give a ground ball the
maximum likelihood of getting through the infield. We
call this weight the maximum-batted-ball-speed bat
weight.

Coupling Physiology to Physics

Next we coupled the physiology to the equations of
physics. First, we fit three different, physiologically
realistic (Agarwal and Gottlieb 1984), equations to the
data for the 30 swings. We fit a straight line y=Ax+ B,
a hyperbola (x+A4)(y+B)=C, and an exponential
y=Ae ®*+ C. Then we chose the equation that gave
the best fit; for the data of Fig. 3, the best {it was: bat
speed (in mph)= —0.34 bat weight (in 0z)+48, or

vy =—0.34w, +48. (5)
Next we substituted this relationship into (3) yielding

S (WI ot EWZ)vlb + (W2 + ewZ) (AW2 ‘+B)
a™ Wy +W2 )

(6)

Then we took the derivative with respect to the bat
weight, set this equal to zero, and solved for the
maximum-batted-ball-speed bat weight.

—wy A=)/ WwiA*— Aw,(B—v
Wombhs = 1 1/ 1 A 1( lb). (7)

For the data of Fig. 3 this was 40.5 oz.
The physics of bat-collision predicts an optimal bat
weight of 15 oz. The physiology of the muscle force-

velocity relationship reveals a maximum-kinetic-

energy bat weight of 46.50z for the professional
baseball player of Fig. 3. When we coupled (5), fit to the
force-velocity data of Fig. 3, to the equation derived
from the coefficient of restitution and the principle of
conservation of momentum for bat-ball collisions (3),
we were able to plot the ball speed after the collision
(called the batted-ball speed) as a function of bat
weight, also shown in Fig. 3. This curve shows that the
maximum-batted-ball-speed bat weight for this subject
was 40.5 oz, which is heavier than that used by most
batters. However, this batted-ball speed curve is
almost flat between 34 and 49 oz. There is only 2 1.3%
difference in the batted-ball speed between a 40.5 oz
bat, and the 32 oz bat normally used by this player.
Evidently the greater control permitted by the 32 oz
bat outweighs the 1.3% increase in speed that could be
achieved with the 40.5 oz bat.

Ideal Bat Weight™

The maximum-batted-ball-speed bat weight is not the
best bat weight for any player. A lighter bat will give a
player better control and more accuracy. So obviously
a trade-off must be made between maximum batted-
ball speed and controllability. Because the batted-ball
speed curve of Fig. 3 is so flat around the point of the
maximum-batted-ball-speed bat weight, we believe
there is little advantage to using a bat as heavy as the
maximum-batted-ball-speed bat weight. Therefore, we
defined the ideal bat weight? to be the weight where the
ball speed curve drops 1% below the maximum speed.*
Using this criterion, the ideal bat weight for this subject
is 33 oz. We believe this gives a reasonable trade-off
between distance and accuracy. Of course this is
subjective and each player might want to weigh the two
factors differently. But at least this gives a quantitative
basis for comparison. The player of Fig, 3 was typical
of the San Francisco Giants that we measured, as

3 Ideal bat weight is a trademark of Bahill Intelligent Computer
Systems

4 A sensitivity analysis has shown that this 1% figure is the most
important parameter in the model. In future experiments we will
derive a curve for accuracy versus bat weight and use this data
instead



Table 3. Summary data for the 28 San Francisco Giants

Average Range
Maximum kinetic 270 133408
energy (joules)
Maximum batted- 99 80-122
ball speed (mph)* ‘
Ideal bat weight (o0z) 31.7 26.25-37.00
Actual bat weight (oz) 323 31-34

* A batted-ball speed of 110 mph is needed for a home run

shown in Table 3, except that his swings were
slower but more consistent than most. He is a control
hitter.

The ideal bat weight varies from person to person.
Table 4 shows the mean and standard deviation of the
ideal bat weight for batters in various organized
leagues. These calculations were made with the pitch
speed each player was most likely to encounter, i.e.,
40 mph for Little League and 20 mph for university
professors playing slow pitch softball.’> Ideal bat
weight is specific for each individual, but it is not
correlated with height, weight, age or any combination
of these factors, nor is it correlated with any other
obvious physical factors. '

To further emphasize the specificity of the ideal bat
weight calculations, we must display individual sta-
tistics, not averages and standard deviations. So in
Fig. 4 we show the ideal bat weight as a function of the
weight of the actual bat used by the players before our
experiments.

This figure shows that most of the players on the
San Francisco Giants baseball team are using bats in
the correct range; the dashed lines in this figure
(derived from data and calculations not shown in this
paper) represent our recommendations to manage-
ment. We recommended that batters above the upper
dashed line switch to heavier bats, and that batters
below the lower dashed line switch to lighter bats.

5 The coefficient of restitution of a softball is small than that of a
baseball, but this did not effect our calculations, because the ideal
bat weight is independent of the value of the coefficient of
restitution

Table 4. Measured ideal bat weight
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Fig. 4. Ideal bat weight versus actual bat weight for the San
Francisco Giants. Most of them are now using bats in their
recommended range

Not only is the ideal bat weight specific for each
player, but it also depends on whether the player is
swinging right or left handed. We measured two switch
hitters: one’s ideal bats weights were one ounce
different and the other’s were 5 ounces different. Switch
hitters were so different right and left handed that we
treated them as different players.

Extrapolating from (7) shows that the ideal bat
weight also depends on pitch speed. Figure 5 shows
this dependence of ideal bat weight on pitch speed for
the ball player of Fig. 3. This figure also shows the
resulting batted-ball speed after a collision with a bat
of the ideal weight. Such curves were typical of all our
subjects.

This figure shows that the ideal bat weight in-
creases with increasing pitch speed. Which means that
even if they could swing 33 oz bats, Little Leaguers
should use lighter bats, because the pitch speeds are
lower. However, when this knowledge is used to
identify the ideal bat weight for a particular individual,
the results may seem counter-intuitive. When the
opposing pitcher is a real fireballer, the coach often
says “Choke up (i.e. get a lighter bat), so you can get
around on it.” In such situations we think the coach is
changing the subjective weighting of bat control versus
distance. He is saying drop your criterion to 2 or 3%
below maximum-batted-ball-speed bat weight so you

Team Mean ideal bat  Standard Pitch Number of
weight (0z) deviation speed subjects
San Francisco Giants ~ 31.7 3.8 90 28
University baseball 28.3 2.8 80 11
University softball 27.8 3.7 60 12
Little League 20.1 34 40 11
194 1.0 20 4

Slow pitch softball
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35 100 However, for most professional baseball players, once
the bat is in the correct range, the batted-ball speed

34l varies little with bat weight as shown in Fig. 3. That
- . player could use any bat in the range 33 to 40 ounces

51 Ideal Bat Weight (oz) 790  and there would be less than a one percent change in
batted-ball-speed. This fact is not in the literature and

it could not be determined by experimentation. For

321 o example, imagine an experiment where a pitcher
- +80  alternately throws 20 white balls and 20 yellow balls to

31 - a batter who alternately hits with a 32 or a 34 ounce
/6””/9’ bat. Imagine then going into the outfield and looking

d Batted—Ball Speed (mph) — at the distribution of the balls. You would not see the
30 70  yellow balls or the white balls consistently farther out.

70 80 90 100
Pitch Speed (mph)

Fig, 5. 1deal bat weight and batted-ball speed both as a function
of pitch speed for the professional baseball player of Fig. 3

can get better bat control. After all, the batted-ball
speed depends on both the pitch speed and the bat
weight. So the batter can afford to choke-up with a fast
pitcher, knowing that the ball will go just as fast as not
choking-up with a slower pitcher. ,
One more observation that came from our studies
is that proficient batters have very consistent swings;
they are machine like. They train this machine-like
precision. Compare the height of the data crosses (the
standard deviation) of the swings of the typical Little
League player of Fig. 2, who had been playing ball for
five years, with the height of the crosses for the swings
of the professional player who had been playing ball
for 24 years (Fig. 3). Consistency is important and the
professional player shows this consistency.

Generalizations and Limitations

It is not surprising that in a game that is more than 100
years old, with players being paid hundreds of
thousands of dollars per year, that professional ath-
letes, without the benefit of scientists and engineers,
have found that their best bat weights are between 30
and 34 oz. However, it is interesting to note that, given
the relative newness of the aluminum bat, and the fact
that they are used by amateurs, that Little Leagune and
slow pitch softball players cannot yet get bats that are
light enough for them. The lightest Little League ap-
proved bat that we have seen is 21 oz. The lightest
legal softball bat that we have seen is 27 oz. (However,
these numbers are decreasing at the amazingly high
rate of about 2 ounces per year.)

For the Little Leaguer of Fig. 2 the batted-ball
speed varies greatly with bat weight. This means it is
very important for him to have the right weight bat.

Variability in the pitch and the location of the contact
point between the bat and the ball would obscure any
differences, However, in our instrument we can accu-
rately measure bat speed and calculate the resulting
batted-ball speed. Our calculations show that this
curve is flat. This knowledge should help batters
eliminate futile experimentation altering bat weights,
trying to get higher batted-ball speeds. As long as the
player uses a bat in the flat part of his curve there will
be less than a one percent variation in batted-ball
speed caused by varying bat weights. What does a one
percent decrease in batted-ball speed mean? A ball that
would normally travel 333 feet would only travel 330
feet. This does not seem important.

In our studies we measured bat speed as a function
of bat weight. Next, we coupled these measurements to
the equations of physics and physiology to determine
the ideal bat weight for each individual batter. We can
say nothing about the “feel” of a bat; this is a
psychological variable that we cannot measure, We
have no means of assessing the accuracy of the swing.
Throughout our analysis we assume that it is easier to
control a lighter bat than a heavier one. We are not
concerned with the availability of bats. Our recom-
mendations are independent of what equipment is
actually available. We try hard to make sure that our
solutions to tomorrow’s problems are not stated in
terms of yesterday’s hardware.

In this study we measured the linear velocity of the
center of mass of the bats. It is obvious that in addition
to this translation the bat also rotates about two
different axes. However, our results derived from only
linear velocity agree for most details with those
Brancazio derived using angular velocity. The excep-
tion is that for a rotating bat, the place where the ball
hits the bat becomes important. If the ball hits the bat
at its center of mass the results of the linear approxim-
ation are the same as those derived considering the
rotations. However, if the ball hits the bat six inches
closer to its end then the ideal bat weight would
increase two ounces for the Little Leaguer of Fig. 2,
and three ounces for the major leaguer of Fig. 3. Allin



all, we think our approximation of linear velocity only
is reasonable,

We also neglected the effect of air resistance on
pitch speed. We calculated the ideal bat weights of the
major league players based on a pitch speed of 90 mph.
Ifthe ball was going 90 mph when it hit the bat it would
indeed be a fast pitch, because the ball loses about 10%
of its speed on its way to the plate. If we decreased our
90 mph figure by 10%, the ideal bat weights would
decrease by an ounce. This change partially cancels the
correction mentioned in the above paragraph.

Our data have low variability for physiological
data: for the data of Fig. 3 the standard deviations are
about 3 5%. However, the repeatability of our experi-
ments is not as good. On any given day the data are
repeatable. But tests run 1, 2 or 12 months apart differ
by as much as 20% in bat speed for any given bat.
However, in spite of these large differences in bat speed,
the calculated ideal bat weight varies by only an ounce
or two. We are still looking for the sources causing the
lack of repeatability. We think the most likely causes
are warmup condition, adrenlin, positioning in the
instrument, and fatigue.

Our experiments were done indoors; some of the
ball players thought things would be different out on
the field swinging against a real pitcher. So we took the
equipment out to the ball field. Right after an intra-
squad game, we measured the bat speeds of four
members of the University of Arizona baseball team
while they hit the baseball. For each player these data
fell within the range of his data collected in the
laboratory six months earlier and one week later.

Adequacy of Muscle Models

We had reservations about using the Hill equation for
our muscle model. First of all, most data for muscle
force-velocity relationships come from single muscles
or fibers, and our data are for multi-joint movements.
Second, most data for muscle force-velocity relation-
ships come from isolated frog or rat muscle at 10°C,
and our data are for whole intact human beings at
38°C. Third, traditional force-velocity curves are de-
rived from experiments where the muscle lifts weights
against the force of gravity. Only the weight is
important; ie. inertia viscosity, and elasticity are
ignored. For example, in a typical muscle model the
tension in the tendon is

T=F+Kx—Bx=Mx+Mzg.
And the active state tension of the muscle is
F=—Kx+Bx+Mx+Mg.

For typical physiological experiments, e.g., (Jewell and
Wilke 1960) the inertial component, Xz 100 mm/s?, is
only 1% of the gravitational component,
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g=9800 mm/s?. In experiments where the inertial term
was larger, its effects were often subtracted off before
the force-velocity data were plotted (Wilke 1950).
Making reasonable approximations for B and K
shows that Bx and Kx are only 1 or 2% of Mx.
Therefore, for typical physiological experiments the
weight of the load is much more important than the
inertial, viscous, and elastic terms, However, gravity
has no effect in swinging a baseball bat. The swing of
the baseball bat is horizontal; the batter does not fight
gravity at all,

As previously noted we fit three different equations
to our force-velocity data: straight lines, hyperbolas,
and exponentials. We found no interesting differences
between the hyperbolic and exponential fits. We also fit
the data with a more complicated model. We used a
model that considered the force-velocity relationship,
the length-tension diagram, the parallel elasticity, the
series elasticity, the roles of agonist and antagonist
muscles, etc.; i.e. we used a modified version of the 18
parameter linear homeomorphic model (Bahill et al.
1980). This model produced data that were indistin-
guishable from the hyperbolic and exponential fits.
Therefore, from now on we will treat the exponential,
the complicated model and the hyperbolic as one class
and call them hyperbolic.

We found two types of force-velocity relationships:
those that were fit best with a straight line of low slope
(like Fig. 3), and those where the straight line fits had
high slopes, but more importantly the hyperbolic fits
were much better (in a mean squared error sense) (like
Fig. 2).

Figure 2 shows a highly sloped force-velocity
relationship exhibited by a quick Little Leaguer. The
data are best fit with

(Wpat +28.0) x (speed +12.8)=2728.

The data of his brother, also a Little Leaguer, collected
on the same day are best fit with a straight line.

This division into two groups also holds for
members of the San Francisco Giants baseball team, as
shown in Fig. 6. The top figure is for a quick player: the
hyperbolic fit (solid line) is 35% better (in a mean
squared error sense) than the straight line fit (dotted
line). The bottom figure is for a slugger, his data are fit
best with a straight line.

Most Little Leaguers were fit best with hyperbolas:
half of our college players were fit best with hyper-
bolas: one-fourth of our major leaguers were fit best
with hyperbolas. For 22 of the 28 San Francisco Giants
the straight line and hyperbolic fits were just as good
(within 5%). For the other 6 the hyperbolic fits were
much better. For these six the percentage superiority of
the hyperbolic fits were: 11%, 18%, 20%, 23%, 27%,
and 35%.
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Fig. 6. Bat speed, and batted-ball speed as functions of bat weight
for an 90 mph pitch for two different members of the San
Francisco Giants baseball team. The player of the top graph was
a quick, singles hitter. The player of the bottom graph was a
slugger. These data were collected with a different set of bats than
that described in Table 1

We tried to correlate the slope of the straight line fit
with height, weight, body density, arm circumference,
present bat weight, running speed, etc., but had no
success. However, we noted that the subjects who had
large slopes were described by their coaches as being
“quick.” Quickness is not the same as running speed,
but it is related. Quickness is easy to identify but hard
to define. Coaches easily identified their quick players,
but when asked to explain why they called these
players quick, they waffled. Their uneasy verbaliza-
tions include phrases like they react quickly, they
move fast, they steal many bases, they get into position
to field the ball quickly, they swing the bat fast, and
they beat out bunts. But all these phrases describe
resulting behavior, not physiological characteristics.
So we decided to measure eye-hand reaction time and
try to correlate it with the bat swing data. Eye-hand
reaction time was measured by: (7) Holding a meter
stick in front of a subject. Instructing him to place his
opened index finger and thumb at the 50 cm mark and
watch the fingers of the experimenter, who is holding
the end of the meter stick. (2) When the experimenter
opens his fingers and the meter stick begins to fall the

subject should close his fingers. (3) The place on the
meter stick where he catches it indicates eye-hand
reaction time (d=1/2 at?). (4) Each subject was given
two warm up trials, then we collected data for ten trials.
Then we selected the median value of these ten trials.

The eye hand reaction time for the quick boy of
Fig. 2 was 143 ms, for his nonquick brother it was
256 ms. We collected eye-hand reaction times for 21 of
the San Francisco Giants (X=158ms, c=24) and
compared it with the percentage superiority of the
hyperbolic fit. We applied a linear regression analysis
to this data and found

reaction time (ms)
= —1.04(percentage superiority)+164.

The correlation coefficient, r, was —0.4. Now it is
obvious that this is not a large slope or a huge
correlation, but in our data base the only correlation
that was bigger was

slope of straight line fit
=0.009(percentage superiority)+ 0.58

that had r=0.55. The slope of the straight line is not a
physiological parameter. So we conclude that the
physiologic parameter that best differentiates between
players whose data can be best fit with a straight line
and those who require a hyperbola is the eye-hand
reaction time.

For our nonquick subjects the weight of the bat
seemed to have little effect on how they swung it. They
swung all bats with about the same speed, and their
data were fit best with a straight line, as shown in
Fig. 3. For our quick subjects the weight of the bat was
a limiting factor. Speed depended on weight. The
curves had steep slopes and needed hyperbolas to fit
the data, as shown in Fig. 2. We hypothesize that the
quick people change their control strategies when
given a different bat. Whereas nonquick people do not
change their strategies, they swing all bats the same.

Our experiments only covered a small part of the
possible range of bat weights; we restricted our data to
the physiological range. For some experiments we
tried using heavier bats. But, as expected, the fits were
not as good. We noticed that the batters changed their
strategies between swings. For the super heavy bats
they swung more with their feet and body and less with
their arms. Therefore, we discontinued the use of super
heavy bats because we did not want our data to
contain swings performed with different body strate-
gies. Most adults could handle bats up to 50 oz, and
most kids could handle bats up to 40 oz.

This discussion about muscle models is important
for an understanding of the human neuromuscular
system. However, pragmatically it is insignificant,
because all models predicted about the same ideal bat
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Team Figure Maximum Maximum Ideal bat Actual bat
no, kinetic batted ball weight (oz) weight (oz)
energy bat speed bat
weight (oz) weight (0z)
Little League 2 26 16 15 21
San Francisco 3 46 40 33 32
Giants
San Francisco 6 top 42 32 27 33
Giants
San Francisco 6 bottom 58 39 32 33
Giants

weight. For example, for the data of Fig. 3, the ideal bat
weight predicted by the linear, hyperbolic, and ex-
ponential fits are respectively 33, 33.75, and 33.75 oz.
Even for the data of Fig.2 the three models yield
similar results of 14.75, 12.75, and 12.75 oz.

Discussion

The physics of bat-ball collisions (specifically the
equations for conservation of momentum and the
coefficient of resititution) predicted an optimal bat
weight of 15 oz. The physiology of the muscle force-
velocity relationship showed that the professional
baseball player of Fig. 3 could put the most energy into
a swing with a 46 oz bat, ie. his maximum-kinetic-
energy bat weight was 46 oz. Coupling physics to
physiology showed his maximum-batted-ball-speed bat
weight to be 40 oz. Finally trade-offs between max-
imum ball speed and controllability showed that his
ideal bat weight was 33 oz, which is close to his actual
bat weight of 32 oz. These experiments explain why
most adult batters use bats in the 28 to 34 oz range,
they explain the variability in human choice of bat
weight, and they suggest that there is an ideal bat
weight for each person. However, they leave un-
answered questions about quickness, changes in con-
trol strategy, and the need for hyperbolic curves to fit
muscle force-velocity data.
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