Regular Paper

The Hybrid Process That
Combines Traditional
Requirements and Use
Cases

Jesse Daniels' * and Terry Bahill" 2

'BAE SYSTEMS, 16250 Technology Drive, Mail Zone 6164-E, San Diego, CA 92127

2Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020

Received 29 March 2004; Accepted 7 July 2004, after one or more revisions
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/sys.20013

ABSTRACT

For many years systems engineers have produced traditional system requirements specifi-
cations containing shall-statement requirements. The rapid adoption of use case modeling
for capturing functional requirements in the software community has caused systems engi-
neers to examine the utility of use case models for capturing system-level functional require-
ments. A transition from traditional shall-statement requirements to use case modeling has
raised some issues and questions. This paper advocates a hybrid requirements process in
which use case modeling and traditional shall-statement requirements are applied together
to effectively express both functional and nonfunctional requirements for complex, hierarchi-
cal systems. This paper also presents a practical method for extracting requirements from the
use case text to produce a robust requirements specification. © 2004 Wiley Periodicals, Inc.
Syst Eng 7: 303-319, 2004

Key words: unified modeling language; UML; requirements; object-oriented design; object-
oriented systems engineering; engineering communication

Contact grant sponsor: AFOSR/MURI, grant number F49620-03-1- 1. INTRODUCTION

0377

*Author to whom all correspondence should be addressed (e-mail: For decades a traditional requirements spec:1ﬁcat10n,

jesse.daniels @baesystems.com; terry @sie.arizona.edu). which provides textual statements of imperative, has
served as the primary means by which systems engi-

Systems Engineering, Vol. 7, No. 4, 2004) e
© 2004 Wiley Periodicals, Inc. neers bounded and communicated a system’s capabili-

303

304 DANIELS AND BAHILL

ties and constraints. In recent years, the popularity of
capturing software requirements through use cases has
increased dramatically, with use case-based analysis
becoming the foundation of modern software analysis
techniques.! Due to the success of the use case approach
in the software community, systems engineers have
begun evaluating use cases as a potential tool to docu-
ment requirements. The hope is that using a common
methodology for requirements capture will help align
systems engineers and software engineers, allowing for
ease of transition from system and subsystem require-
ments into software requirements. Adopting use cases
for systems engineering has not been as simple as this.
Pertinent questions such as “How do use cases relate to
the requirements specification?”, “Are use cases the
requirements?”, and “Where are the requirements actu-
ally documented?” have arisen. This paper argues that
traditional shall-statement requirements are not mutu-
ally exclusive with use cases. Rather, combining shall-
statement requirements and use case modeling
techniques provides a complimentary and synergistic
way to document and communicate relevant informa-
tion to effectively design, develop, and manage com-
plex systems. We believe that the resultant quality and
clarity of knowledge gained by combing the two meth-
odologies (use cases and shall-statement analysis) is
worth the time spent.

This paper assumes at least a working knowledge of
use cases. Many references are available to introduce
unfamiliar readers with use case and requirements-
gathering concepts [most notably, Cockburn, 2001; Ku-
lak and Guiney, 2000; Armour and Miller, 2001;
Leffingwell and Widrig, 2000].

2. WHY WRITE A REQUIREMENTS
SPECIFICATION ANYWAY?

Systems engineers develop requirement specifications
for a number of reasons (hopefully not just “because the
customer said so!”). First and foremost, requirements
are documented so that the characteristics of the to-be
system can be discussed and analyzed among engineers
and stakeholders to facilitate a shared clear vision of the
completed system—before it is built. Higher level de-
sign decisions are reflected to lower level design as
requirements; imperatives of textual, or model-based
nature. This is a natural consequence of hierarchical
design, and is essential when developing complex sys-
tems. Also, requirement specifications are necessary for
subsystem procurement [Request for Proposal (RFP),
proposal evaluation, award, production, and verifica-

! Although use cases are often included in object oriented analy-
sis and design methodologies, there is nothing inherently object
oriented about use cases.

tion]. In many cases, requirements are a predominant
contractual vehicle for payment of the builder and are
used to measure system performance. A requirements
specification is often called out as a deliverable in a
Contract Data Requirements List (CDRL) as part of a
Statement of Work.

Systems engineers and architects use the require-
ments set to ensure system and enterprise-wide cover-
age of capabilities and characteristics. Implementation
engineers use the agreed-upon requirements set to de-
rive additional requirements and develop subcompo-
nents that contribute to a system that meets those
requirements. Program managers track requirements
volatility to measure and monitor risks associated with
requirements creep and redefinition. Customers sign off
on requirements during acceptance testing to ensure
that the capabilities offered by the system meet their
needs and intent. It is clear that gathering, discussing,
and decomposing requirements is an essential step in
the engineering process to ensure that the system, once
built, actually satisfies the stakeholders’ needs.

Table I (adapted from Young [2004]) provides some
criteria for “good” requirements. Indeed, there are ad-
ditional criteria that could be listed [Bahill and Dean,
1999]; however, we selected a set that was at least
partially dependent on the method used to specify the
requirement. Criteria such as “attainable” and “imple-
mentation free” are good criteria for a requirement, but
whether these criteria are met is largely independent of
the method used to capture the requirement and more
dependent on the subject of the requirement. We will
use Table I later to assess whether the techniques dis-
cussed in this paper generate good requirements speci-
fications.

Another important point to mention is that, in gen-
eral, there is not a “one size fits all” requirements
development method. Some industries, such as defense,
typically require a high level of formality (or ceremony)
and detail in requirements specifications. A high level
of formalism is usually associated with very complex
systems with tight performance constraints that are hard
to prototype. Systems that are divided into subcon-
tracted components and projects that have little interac-
tion with the customer also require very precise
specifications, which usually results in formal require-
ments documents. Other industries do not need such
formal specifications. Simpler projects with frequent
customer interaction can sometimes be more informal
in their approach. The concepts described in this paper
can be tailored to develop formal or more informal
requirements specifications.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 305

Table I. Criteria of a Good Requirement [Young, 2004]

Criterion Description

Necessary Can the system meet prioritized, real needs without it? If yes, the requirement
isn’t necessary.

Verifiable Can one ensure that the requirement is met in the system? If not, the

requirement should be removed or revised. Note: The verification method and
level at which the requirement can be verified should be determined explicitly
as part of the development for each of the requirements. The verification
level is the location in the system where the requirement is met (for example,
the “system level,” the “segment level,” and the “subsystem level ”).

Unambiguous | Can the requirement be interpreted in more than one way? If yes, the
requirement should be clarified or removed. Ambiguous or poorly worded
writing can lead to serious misunderstandings and needless rework.

Complete Are all conditions under which the requirement applies stated? Also, does the
specification document all known requirements?

Consistent Can the requirement be met without conflicting with all other requirements? If
not, the requirement should be revised or removed.

Traceable Is the origin (source) of the requirement known, and can the requirement be
referenced (located) throughout the system?

Concise Is the requirement stated simply and clearly?

Standard Requirements are stated as imperative needs using “shall.” Statements

constructs indicating “goals” or using the word “will” are not imperatives.

3. PROBLEMS WITH TRADITIONAL
REQUIREMENTS STATEMENTS ALONE

A traditional requirements specification attempts to
capture the imperative functionality and constraints of
a system by enumerating each requirement using
“shall” notation through which individual capabilities
and constraints are expressed (e.g., The system shall
...). The requirements set is typically structured accord-
ing to functional areas, and each requirement is given
attributes, possibly traced to and traced from other
requirements. Shall statements are used to describe
different types of requirements from functional, per-
formance, and security to reliability, availability and
usability.

The difficulty is that if the requirements specifica-
tion consists solely of shall-statement requirements,
then for even moderately complex systems the require-
ments set can become unwieldy, containing hundreds
or thousands of requirements. This by itself is not a
problem, as modern systems are very complex and often
need this level of detail to avoid ambiguity. The problem
is that documenting the requirements as a set of discrete
and disembodied shall statements without context
makes it very difficult for the human mind to compre-
hend the set and fully interpret the intent and depend-
encies of each and every requirement. This makes it
hard to detect redundancies and inconsistencies. In
short, large shall-statement requirement specifications
make it difficult for engineers and customers to really
understand what the system does! Because there is no

straightforward way to assimilate the requirements set,
requirements are often misinterpreted, redundant, and
incomplete, which can result in inferior, overly expen-
sive systems and ultimately dissatisfied stakeholders.

To alleviate some of these problems, engineers may
take a divide and conquer approach by partitioning the
requirements set into manageable groups that are easier
to comprehend. This technique adds clarity to the set,
but it is still difficult to relate the system’s capabilities
to what stakeholders have in mind in terms of an opera-
tional system. A narrative describing a particular func-
tional area may also be developed to provide some
context for a given requirements section. Sometimes, a
set of “user requirements” or “‘source requirements” is
provided to describe the system’s intended operations
from the user’s perspective. While user requirements
better communicate the voice of the user, there is still a
translation step that must be performed by engineers
who must derive system requirements from the user
requirements based on interpretation. With this ap-
proach, there is a fair likelihood that information will
be misconstrued in the translation.

The intent of this section was to point out some
commonly observed shortcomings of the shall-state-
ment requirements specification, most notably commu-
nication, comprehension, and simplicity of the
requirements set. In the next section we introduce use
cases, which show promise in helping to overcome
these difficulties.

306 DANIELS AND BAHILL

4. ENTER USE CASES

Use cases have been proposed and almost universally
accepted by the software community as a requirements
gathering and documentation tool that captures system
requirements through generalized, structured scenarios
that convey how the system operates to provide value
to at least one of the system’s actors. The primary reason
why use cases have become a popular method is the
simple and intuitive way in which the system’s behavior
is described. Use case models are designed to serve as
a bridge between stakeholders and the technical com-
munity. Through a use case model, stakeholders should
be able to readily comprehend how the system helps
them fulfill their goals. Simultaneously, engineers
should be able to use the same information as a basis
for designing and implementing a system that upholds
the use cases.

A set of use cases (collectively referred to as the use
case model) should capture the fundamental value-
added services that user and stakeholders need from the
system [Adolph and Bramble, 2003]. Use cases can be
thought of as a structured, scenario-based method to
develop and represent the behavioral requirements for
a system. The use case approach subscribes to the
notion that each system is built to support its environ-
ment or actors—be it human users or other systems.
Use cases, by definition, describe a series of events that
when completed, yield an observable result of value to
a particular actor [Jacobson, Ericsson, and Jacobson,
1995]. The fundamental concept is that systems de-
signed and developed from use cases will better support
their users.

To further enhance the contents of a use case descrip-
tion, one or more visual models such as activity dia-
grams, statecharts, sequence diagrams (aka interaction
diagrams in UML 2.0), and collaboration diagrams (aka
communication diagrams in UML 2.0) may be associ-
ated with a use case. An activity diagram visually
depicts the logical sequencing of events (activities) that
take place when a use case is instantiated, complete with
decisions to represent alternate sequences, swim lanes
to delineate the system from its environment, and (op-
tionally, but recommended) object flows to represent
data exchange. Interaction and communication dia-
grams, from a use case modeling perspective, show the
exchange of stimuli between the system under design
and its actors. During object oriented analysis and de-
sign, interaction and communication diagrams show
how the system’s internal elements collaborate to real-
ize a use cases’s behavior. A statechart describes the
lifecycle of a use case in terms of input stimuli, states
(e.g., where are you in the sequence of events) and
outputs. Statecharts are also an excellent means to more

formally define the protocol associated with a use case
through Protocol State Machines [OMG, 2003: 464].
Such a statechart rigorously specifies the allowed pat-
terns of stimuli exchange between the system and an
actor for a given use case. There is a lot more to be said
about the object oriented analysis models that comple-
ment a use case model. Jacobson and coworkers [Jacob-
son, Ericsson, and Jacobson, 1995; Jacobson, Griss, and
Jonsson, 1997; Jacobson, 2000a, 2000b] provide good
discussions on how object analysis models complement
use case models in terms of cooperating analysis objects
(boundary, control, and entity objects, to be more spe-
cific). These object analysis models provide a very
convenient segue between requirements and design and
help solidify the understanding of requirements.

Use cases are also incorporated into the emerging
Object Oriented Systems Engineering Method
(OOSEM) proposed by Friedenthal, Lykins, and
Meilich [2000], where use cases are employed to con-
ceptualize the capabilities of a system. Using the OOSE
approach, the analysis of each individual use case’s
sequence of events provides the basis for further elabo-
rating a UML class that represents the system under
design, as well as input/output (I/O) entities in the
Elaborated Context Diagram (ECD).

Ultimately, use cases have been shown to be a very
simple and effective tool for specifying the behavior of
complex systems [Jacobson, Ericsson, and Jacobson,
1995]. Therefore, it is no surprise that systems engi-
neers have been curious about this method of capturing
and communicating requirements.

4.1. Use Cases and Concept of Operations

The notion of writing “stories” or narratives to describe
how a system operates is not a new concept. In fact, the
use case approach is similar to, but not identical to
developing a Concept of Operations (CONOPS).
CONOPS development is a well-known communica-
tion tool that has been used for many years in systems
engineering (typically for military applications) to de-
scribe the functionality of a system, usually in the
context of the overall enterprise. A CONOPS is gener-
ally written by the end-users or customers and is in-
tended to provide the vision and intent for how the
system should work within an operational environment
in an easy to read format. CONOPS documents can be
very detailed and include realistic stories in which the
system improves some aspect of a workflow during a
plausible scenario. Other CONOPS are more technical
and describe user interfaces and data flow through the
system.

Because of the variety of ways in which a CONOPS
can be written, a CONOPS document does not typically

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 307

contain the right information to be used directly for
extracting system requirements in an unambiguous
way. Indeed, CONOPS documents are rarely consistent
in content, detail, and format. However, a CONOPS
document can provide excellent input in generating a
use case model. A CONOPS usually provides the busi-
ness level context for the system, which is the ideal
setting to extract use cases. If a CONOPS document is
available, we recommend using it as the starting point
for developing use cases. In addition to providing sys-
tem context, which will lead to higher quality use cases,
relating a use case model back to a customer-developed
CONOPS will add credibility and customer buy-in to
the use cases.

5. WHERE THE DIFFICULTY COMES IN

Although use cases solve some of the problems with
specifying requirements when contrasted with the
shall-statement method, there are issues with the use
case method relative to the application of use cases in
systems engineering. There are a few possible reasons
for these issues:

1. Use cases don’t look like a traditional require-
ments spec.

2. Use cases “feel” somewhat vague.

Use cases do not contain all of the requirements.

4. The completeness of a set of use cases is difficult
to assess, especially for unprecedented complex
systems.

b

Other contributing factors result from the fact that
use cases are relatively new on the scene and systems
engineers and customers do not have much experience
with them. Systems engineers are accustomed to devel-
oping traditional requirement specifications. Use cases
are a departure from the past. It is our belief that
eventually use cases will be commonplace. Until then,
it is important to educate customers and systems engi-
neers on the use case concepts and the fact that employ-
ing use cases into the overall systems engineering
process will help reduce risk, and increase the prob-
ability of delivering the system expected by the cus-
tomer.

Additionally, the UML specifications [OMG, 2003]
do not provide much guidance on applying use cases.
Many authors, including Cockburn [2001] and Armour
and Miller [2001], have improved on the available
literature and give good practical direction on applying
use cases. The Rational Unified Process and the Ra-
tional Unified Process for Systems Engineering provide
detailed guidance on practical methods to employ use

cases in both systems and software engineering projects
[IBM RUP 2003, IBM RUP SE 2003].

6. HOW SHOULD WE STATE THE
REQUIREMENTS?

Use case modeling has shown strengths in many areas
of requirements capture. The dialog between the system
and the actor that is expressed in a use case’s sequence
of events explains clearly how a system reacts to stimuli
received by the system’s actors. What engineers typi-
cally do not realize is that the actual functional require-
ments are embedded in the sequence of events. In other
words, a use case describes the requirements. Whenever
ause cases’ sequence of events indicates that the system
performs some function, a functional requirement has
been imposed on the system. Each use case is chock full
of functional requirements (possibly multiple require-
ments per sentence!) when viewed this way. By design,
the requirements are an integral part of a use case’s
natural language story.

A use case’s strength is also its weakness. To keep
use cases simple, readable, and manageable, they can
only tell a fraction of the complete story without becom-
ing unwieldy and difficult to understand [Cockburn,
2001; IBM RUP, 2003]. The fact is that use cases alone
were not meant to capture all of the requirements. A use
case is very good at capturing the functional require-
ments for a system in an understandable and unthreat-
ening way. However, shall statements, tables,
equations, graphs, pictures, pseudo code, state ma-
chines, statistics, or other methods must still be used to
capture additional requirements and add richness to
provide a sufficient level of detail to adequately charac-
terize a system. All of these artifacts may be related to
a use case, but they are typically not expressed directly
into a use case’s natural language story. In some in-
stances, use cases are not the best method to express a
system’s functional requirements. For example, sys-
tems that are algorithmically intense and do not have
much interaction with their environment may be better
described using some other method—although use
cases can be used in these cases too [Cockburn, 2001;
Jacobson, 2000b; Cantor, 2003a, 2003b].

To summarize, use cases excel on being under-
standable, at the expense of being potentially ambigu-
ous. Shall-statement requirements are typically very
well defined and often stand alone, where individual
capabilities are expressed in a rather abstract way, out
of context with the rest of the system’s characteristics.
The use of shall-statement requirements alone makes it
more difficult for engineers and stakeholders to assess
one requirement in a virtual sea of disjointed capabili-

308 DANIELS AND BAHILL

ties. Shall statements are very good at precise expres-
sion, while use cases are good at communicating re-
quirements in context. This tension promotes the need
for a combined use case-shall-statement approach,
where the system’s behavior is documented precisely
and understandably in the same way that it is derived—
by analyzing all of the discrete, end-to-end interactions
between actor and system that ultimately provide some
value to an actor.

7. HYBRID REQUIREMENTS CAPTURE
PROCESS

Towards this end, Leffingwell and Widrig [2000] and
Rational University propose a convenient way to docu-
ment requirements imposed in use case text by includ-
ing a Specific Requirements section within each use
case report (Leffingwell and Widrig and the RUP call
this section the “Special Requirements” section). The
Specific Requirements section in a use case report was
originally intended to capture the nonfunctional re-
quirements, which are typically performance require-
ments on a particular use case step, using
shall-statement notation. In this paper, we propose us-
ing the Specific Requirements section to document not
only nonfunctional, but also functional requirements
specified in the use case using shall-statement notation.
When the shall-statement requirements are captured in
this way, they retain their context since they can be
readily traced to the use case sequence of events they
were derived from. Using this approach, the under-
standability of the use case is balanced by the razor-
sharp precision of shall statements.

Engineers will also discover requirements that do
not fit nicely within the context of one use case, but
rather they characterize the system in general. The RUP
recognizes this, and proposes including these ‘“home-
less” requirements in a separate Supplementary Re-
quirements Specification using shall-statement
notation. The Supplementary Requirements Specifica-
tion is independent of the use case model, and is in-
tended to contain all of those requirements that do not
apply cleanly to any single use case. Requirements that
describe physical constraints, security (physical secu-
rity, antitampering, information assurance), quality, re-
liability, safety, usability, supportability requirements,
or adherence to standards, for example, are good can-
didates for inclusion in the Supplementary Require-
ments Specification. These types of requirements are
typically not local to a specific use case. The FURPS+
requirements model, used in the RUP and presented in
Grady [1992], provides a good overview of functional

and nonfunctional requirements categorization
schemes.

The use case model (which contains the individual
use case reports) together with the Supplementary Re-
quirements Specification constitutes a way to com-
pletely document a system’s requirements in an exact,
yet understandable manner. In many cases, this alone
will be satisfactory for specifying the requirements.
However, some customers may still dictate that a tradi-
tional shall statement specification be developed. We
discuss this in the next section.

Table II revisits the requirements criteria introduced
in Table I. This time the criteria are used to compare and
contrast the three methods presented so far: shall state-
ments, use cases, and the hybrid process using both use
cases and shall statements. Each technique is given a
rating from 1 to 3 for each criteria (3 being the best) to
assess how well the technique promotes requirements
best practices. We believe that the hybrid process en-
compasses the strengths of each technique, and excels
in each criterion.

Necessary. The use case method excels here. Since
use cases are driven by actor needs, each use case
represents a set of capabilities that are of value to the
system’s stakeholders. It is hard to determine whether
a shall-statement requirement is necessary without con-
sidering the entire requirements set and additional
documentation. The hybrid process, due to its use case-
driven foundation, rates highly.

Verifiable. Since shall-statement requirements are
concise and discrete, they are, in principle, easier to
verify than a use case that can dish out multiple require-
ments in a single sentence. The hybrid process retains
the discrete nature of the shall-statement requirements,
which makes them easier to verify.

Unambiguous. Shall-statement requirements are
more likely to be unambiguous because they can be
written much more tersely and precisely. Use cases, due
to their narrative format, are not as well suited to the

Table II. Rating the Requirements Methods

Shall .
Criterion Statement Clizzs :,lryol::s(i
Method

Necessary 1 3 3
Verifiable 3 1 3
Unambiguous 3 2 3
Complete 2 3 3
Consistent 1 2 3
Traceable 2 2 3
Concise 3 1 3
Standard 3 1 3
constructs

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 309

same accuracy in expression. The context provided by
a use case helps remove some of the ambiguity. The
hybrid process takes the best of both worlds—context
with use cases, and freedom to use more precise word-
ing with shall statements.

Complete. A use case is structured in terms of basic
and alternative paths, giving a clear understanding of
when a requirement applies, and when it does not. Since
use cases are generated by considering the needs of all
of the system’s actors, it is much less likely that require-
ments will be missed. Use cases are an excellent way to
help ensure that the requirements set is complete. It is
difficult to determine whether a shall-statement require-
ments set is complete without referencing the entire
documentation. But many times, due to the structure of
the requirements set, you can look for incompleteness
[Davis and Buchanan, 1984]. The hybrid process re-
tains the use case method’s excellence in complete
requirements description.

Consistent. Use cases typically deal with one goal
at a time, and therefore it is easier to separate require-
ments and reduce the risk of conflicting with other
requirements. However, neither method alone excels at
ensuring a consistent requirements set. The hybrid
process, through the use of the supplementary specifi-
cations, provides a mechanism to extract requirements
that apply across use cases and specify them in one
place. This helps maintain the consistency across the set
and reduces duplicity. The authors do admit that re-
quirements extracted from use case narratives may need
to be refined and aggregated into a comprehensive,
nonredundant set of system functional requirements for
formal, high-ceremony projects.

Traceable. Use cases, through their actor-driven
derivation are easily traced to higher-level actor goals.
However, it is not as straightforward to allocate specific
use case requirements to the system components. Shall
statements can be traced through a numbering scheme
as parent—child requirements. The hybrid process re-
tains the traceability to actor goals through use cases,
and allows the shall statements to be allocated to system
components. The use of object models such as sequence
diagrams in the hybrid spec help allocate responsibili-
ties and requirements to the components of the system.

Concise. This is where shall statements really shine.
A shall-statement requirement can be worded to be very
concise and exact. Because use cases focus on under-
standability, they are typically not as concise as they
have to be readable. The hybrid process incorporates the
shall statement’s conciseness.

Standard Constructs. The shall-statement method
clearly uses the word shall for requirements. The use
case method could use this standard terminology, but

they seldom do. The hybrid process retains the use of
standard terminology.

7.1. Hybrid Process

There are many methods for gathering requirements.
For complex systems, we believe that a combined use
case and shall-statement approach be employed to cap-
ture a system’s requirements. Cockburn [2001] pro-
vides practical guidance for determining when use
cases should and should not be used to describe a
system’s requirements. Shall-statement requirements
add the precision necessary to completely and unambi-
guously specify the system. With any approach, early
and frequent interview and review iterations should be
conducted with the stakeholder community to ensure
that their concerns and desires are addressed. Leffing-
well and Widrig [2000] provide an excellent discussion
on holding requirements workshops, brainstorming,
and storyboarding to help facilitate this process.

The hybrid process for gathering requirements pro-
ceeds as follows:

1. Develop a business model to understand how the
system under design fits into the overall enter-
prise. The business model provides context for
the system and can profoundly increase the qual-
ity of later analysis. Business use case modeling
is discussed in more detail later.

2. Discover the system actors and their goals with
respect to the system under design. The business
model is a valuable input in accomplishing this
task. The IBM RUP [2003] provides a nearly
mechanical process for deriving system use cases
from a business model.

3. Use the actor goals to sketch out the use case
report, concentrating on use case names and brief
descriptions.

4. Iterate on the important or architecturally signifi-
cant use cases, filling out more and more detail
in the reports and capturing alternative sequences
of events, preconditions, and postconditions.

5. In each use case report, document the nonfunc-
tional requirements, typically performance, in
the Specific Requirements section as they apply
to each use case.

6. Iterate on the use case set to ensure consistency
and completeness as the program progresses.

7. In parallel with steps 1-5, develop a Supplemen-
tary Requirements Specification to capture sys-
tem-wide requirements that do not fit cleanly into
individual use case reports.

If a traditional requirements specification (shall-
statement requirements only) is to be developed:

310 DANIELS AND BAHILL

a. Extract all of the functional requirements from
each use case’s flow of events and document
them in the Specific Requirements section of the
use case report, or the Supplementary Specifica-
tion. Ensure that traceability is maintained.

b. Combine the requirements documented in each
use case report’s Specific Requirements section,
along with the Supplementary Requirements
Specification to generate the traditional require-
ments specification. This should be largely a
simple copy and paste operation.

Step a above is really what this paper is about, and
therefore deserves more attention. As mentioned be-
fore, a use case describes the functional requirements.
Wherever in a use case’s sequence of events, a system
capability or function is called out, e.g., “The system
finds...,” or “The system sends...,” or “The system
checks...,” or “The system displays...,” functional re-
quirements are being imposed on the system. Step a
above is really talking about scanning through the use
case’s sequence of events and extracting out all such
statements of behavior, as well as derived requirements
that are not explicitly stated. This is where the precision
comes in and is where shall statements excel. These
extracted and derived requirements can then be easily
translated into the shall-statement requirements, e.g.,
“The system shall find...,” “The system shall send...”,
“The system shall check...”, “The system shall pro-
tect....” Using natural language, as advocated with use
cases to make them accessible by everyone, it is often
difficult to be very precise and easy to understand at the
same time. Extracting functional requirements and in-
corporating derived requirements in this way allows for
very precise statements of capability without disrupting
the narrative unfolding within a use case. The fact that
these shall-statement requirements were extracted from
and traced to use cases (very likely to a specific use case
step) provides higher confidence that they actually sat-
isfy a real need from the actor’s perspective—this is
where use cases excel. What we are left with is a
shall-statement representation of the requirements con-
tained in a use case, which can be made more precise
than the use case narrative. Since these requirements are
traceable back to the use case narrative, we can always
go back and get the context from which it was derived
if needed. We cannot stress enough that it is critical that
the stakeholders be involved as much as possible in the
use case generation and validation activities to ensure
that the resulting specification is driven by their needs.
Use cases make this easier.

Individual requirements, use cases, and the trace-
ability and attributes of each should be managed in a
requirements management tool. We recommend select-

ing tools that allow free-form text-based specification
for documenting use cases and shall statements in ad-
dition to an underlying repository for storing and ma-
nipulating the requirements as database records. This
allows use of analysis tools such as trend analysis, trace
matrices, and reports, while keeping the use cases and
requirements in user-friendly document format. As re-
quirements are changed in the document, the database
is automatically kept in synch, and vice-versa, if the
database is updated, the document is synchronized ac-
cordingly.

The UML class diagram given in Figure 1 shows
how use case, requirement, and specification concepts
are related. For a given system, a Use Case Require-
ments Specification contains one Use Case Model and
one Supplementary Requirements Specification. A use
case model contains one or more use case reports (also
referred to by other authors as use case descriptions).
Each use case report contains one or more sequences of
events (one main sequence of events, and zero or more
alternative sequences), as well as one Specific Require-
ments section. The sequence of events within the use
case report contains the informal functional require-
ments for that use case, while the Specific Require-
ments section contains the nonfunctional requirements
and the formal functional requirements extracted from
the sequence of events.

The Supplementary Requirements Specification
contains system-wide requirements that do not fit nicely
within the sequence of events or Specific Requirements
section of one of the use cases. A traditional require-
ments specification can be generated by combining the
functional requirements and nonfunctional require-
ments from each use case report along with the system-
wide requirements from the Supplementary
Requirements Specification.

7.2. Hybrid Process Example

This section presents a simple use case report and
is intended to demonstrate how functional and non-
functional requirements can be derived from the
use case description. The primary sections of the
use case report are the sequence of events (and
alternate sequences), and the Specific Require-
ments Section. This example was adapted from
Bahill and Daniels [2003] and simplistically de-
scribes the behavior of a home climate control
system thermostat. In this simple example, we
chose not to include more advanced concepts such
as user-programmable thermostat control or “dead
zones” in heater/air conditioner control.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 311
Use Case
Requirements
Specification
1 1
Use Case Model Supplementary
Requirements
" Specification
otherumL | ©- . o
Diagrams =
Use Case Report
0.0 1 1

Other Sections Sequence of Specific

Events Requirements
: I Section

g Q

ks b 1.*

Functional Nonfunctional

Requirements Requirements
e A i e

g el

Q r

Traditional Requirements Specification

System Wide
Requirements

Zamm

Figure 1. An abstract UML class diagram illustrating the hybrid process for requirements development. Lines with arrowheads
represent generalization relationships and lines with diamond heads represent aggregation relationships.

7.2.1. Use Case Report: Regulate Room Temperature

Use Case Diagram: Figure 2

Use Case Name: Regulate Room Temperature

Brief description: This use case describes the
steady state behavior of the thermostat controller for a
home climate control system. The goal of this use case
is to maintain the room temperature (roomTemp) be-
tween lowerThreshold (see Rulel) and upperThreshold
(see Rule2) degrees Fahrenheit using a Heater and an
Air Conditioner, which are also part of the home climate
control system.

Added value: Home Owner controls the tempera-
ture of the house.

Scope: A typical Tucson family house

Primary actor: Home Owner

Supporting actors: Heater, Air Conditioner, Ambi-
ent Room Air

Preconditions:

e An upperThreshold and lowerThreshold are de-

fined in the system.
e The roomTemp is between the lowerThreshold
and the upperThreshold.

e The lowerThreshold is less than the upperThre-
shold.

Main Success Scenario: Hot Day

* [continuous] The system displays the current room
temperature, in degrees Fahrenheit, to the user.

1. The Home Owner turns on the thermostat.

2. The system samples the Ambient Room Air

temperature every 5 seconds.

e Thermostat® R
Subsystem

) |
! |
I
i i

Q +Initiator | ! Ambient
i House ! Room Air
1
! }
1
! i

Home

Owner

+ A

Conditioner

Heater

Figure 2. Simple use case diagram for the HVAC example.

312

DANIELS AND BAHILL

3a. The system determines that the roomTemp ex-
ceeds upperThreshold.

4. The system turns on the Air Conditioner.

5. The system determines that the roomTemp
drops below upperThreshold.

6. The system turns off the Air Conditioner [repeat
at 2].

Alternate Flow 1: Cold Day

3b. The roomTemp drops below lowerThreshold.

3bl. The system turns on the Heater.

3b2. The roomTemp exceeds lowerThreshold.

3b3. The system turns off the Heater [repeat at 2].

Alternate Flow 2: Change upper and lower tem-

perature thresholds

At any time during the use case sequence of events,
the Home Owner may change the upper and
lower temperature thresholds, subject to Rule3
and Rule5.

Rules:

Rulel: lowerThreshold default value is 70°F.

Rule2: upperThreshold default value is 73°F.

Rule3: The lowerThreshold must be less than the
upperThreshold.

Rule4: The air temperature sampling frequency is
fixed at 5 seconds.

Rule5: upperThreshold and lowerThreshold are ad-
justable to 0.5°F increments.

Author: Terry Bahill

Date: January 1, 2002

Specific Requirements

Functional Requirements:

e Req. F1: The system shall display the current
room temperature, in degrees Fahrenheit. [From
the continuous step at the beginning of the se-
quence of events]

e Req. F2: The system shall sample the ambient
room temperature (roomTemp) in degrees Fahr-
enheit. [From step 2]

e Req. F3: The system shall be able to compare the
sampled room temperature to a stored threshold
temperature given in degrees Fahrenheit. [From
steps 3a and 3b]

e Req. F4: The system shall turn on the Air Condi-
tioner when the roomTemp exceeds the upper-
Threshold temperature. [From step 4]

e Req. F5: The system shall turn on the Heater
when the roomTemp drops below the lowerThre-
shold. [From step 3b1]

e Req. F6: The system shall store user-defined val-
ues for the upperThreshold and lowerThreshold
temperatures in degrees Fahrenheit. [Derived
From Alternate Flow 2]

e Req. F7: The system shall provide a means for the
user to select the upper and lower temperature
thresholds [From Alternate Flow 2]

e Req: F8: The system shall incorporate an opera-
tional delay capability in which the Air Condi-
tioner or Heater must remain on for at least 5
minutes after the upperThreshold or lowerThre-
shold is crossed. [Derived requirement based on
experience with similar systems. If this require-
ment is not imposed, the system will wear itself
out]

Nonfunctional Requirements:

e Req. N1: The system shall sample the room tem-
perature every 5 seconds. [From step 2 and Rule4]

e Req. N2: It shall take less than 0.1 seconds for the
system to sample the room temperature. [Ob-
tained from stakeholder interviews]

e Req.N3: The system shall take no longer than one
second to turn on the Heater or Air Conditioner
when required. [Obtained from stakeholder inter-
views]

e Req. N4: The system shall be capable of sensing
a temperature range from negative 20 to 140°F.
[Obtained from stakeholder interviews)

e Req. N5: The room temperature value displayed
by the system shall be visible to a user with 20/20
vision standing 5 feet from the thermostat unit in
a room with an luminance level between 10 and
100 foot-candles. [From the continuous require-
ment to display the room temperature, and from
stakeholder interviews)

e Req. N6: The user-defined values for lowerThre-
shold and upperThreshold shall be specifiable in
the range of —20 to 140°F. [Obtained from stake-
holder interviews]|

e Req N7: The default lowerThreshold shall be
70°F. [From Rulel]

e Req N8: The default upperThreshold shall be
73°F. [From Rule2]

e Req N9: The lowerThreshold shall always be less
than the upperThreshold. [From Rule3]

e Req N10: The upperThreshold and lowerThre-
shold shall be adjustable to 0.5°F increments.
[From Rule5]

Note that some of the requirements, most commonly
those in the nonfunctional requirements section, are not
derived directly from the use case text. Some nonfunc-
tional requirements do not describe behavior, and con-
sequently these requirements will not normally show up
in the use case description, as use cases are tools to
describe the system behavior. Many times nonfunc-
tional requirements are derived from legacy systems (if
available) and interviews with designers and users.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 313

Requirements that are directly derived from the use case
text should be traced to the step or section from which
they were derived. This traceability is nicely managed
with a good requirements management tool. The exam-
ple here is simple when compared to a real use case
report for a real system. The functional and nonfunc-
tional requirements given in the Specific Requirements
Section may be further categorized if it makes them
easier to understand. For example, we might want to
group all performance requirements under a “Perform-
ance Requirements” section, etc. We have also included
a “Rules” section in this use case report to hold business
rule information. A business rule is a kind of nonfunc-
tional requirement that places specific constraints on
how a system or process should perform [IBM RUP,
2003].

Requirements that do not pertain directly to this use
case should be documented in the Supplementary Re-
quirements Specification. In this example, require-
ments pertaining to characteristics such as the
thermostat’s dimensions, weight, color, user interface
layout, wall mounting concept, shock resistance (if
dropped, for instance), reliability/availability, and
power consumption should be included in the Supple-
mentary Requirements Specification because they are
not restricted to the Regulate Temperature use case.

8. WHAT IF WE ARE REQUIRED TO
DEVELOP A TRADITIONAL
REQUIREMENTS SPECIFICATION?

Sometimes, especially in the defense or nuclear indus-
try, the customer dictates that a traditional requirements
specification be developed. In these communities, the
use case approach is often seen as too loose for meas-
uring system success. No worries—the information
captured with the hybrid process can be readily used to
populate a traditional requirements specification. As
mentioned earlier, functional requirements can be ex-
tracted from a use case’s sequence of events to form
shall-statement requirements. Once the functional re-
quirements have been extracted, they may be docu-
mented in the Special Requirements section of the use
case from which they were derived, or they may be
documented in the Supplementary Specification if they
apply to more than one use case. A traditional require-
ments specification can be mechanically generated by
taking the union of the Specific Requirements in all of
the use case reports (to get the nonfunctional and func-
tional requirements documented there), plus the Sup-
plementary Requirements Specification (to pick up the
remaining requirements).

The resulting requirements specification has a good
chance of accurately reflecting the correct require-
ments, since they were largely derived from actor-
driven use cases. It is important to note that when
documented separately from the use case from which
they were derived, each requirement should be trace-
able back to the originating use case. This provides a
way to return to the source of the requirement to better
understand its context. It is possible to write the use case
sequence of events narrative using shall-statement ver-
biage and skip the extraction step, but experience shows
that this is awkward and detracts from the readability
of the use case narrative. Therefore, we recommend
sticking with natural language for the sequence of
events, and leave the shall-statement requirements to
the Specific Requirements section of a use case report
and the Supplementary Requirements Specification
document.

9. WHAT IF THE STAKEHOLDER GIVES
YOU A REQUIREMENTS SPECIFICATION?

In some cases, the systems engineer is handed a tradi-
tional requirements specification by the customer. The
question is: Should use cases still be generated for this
system? Our general recommendation is yes, but not
necessarily for requirements gathering purposes, de-
pending on the detail and quality of the provided re-
quirement specification. A use case model can still
provide valuable information to better understand the
system under design:

1. A use case model can serve as a Concept of
Operations for the system. This CONOPS helps
engineers and stakeholders understand and agree
on the operation of the system without diving into
the detailed requirements specification.

2. A use case model can be used to validate the
requirements given by the customer to ensure that
the requirements really support the actors. This
helps ensure that the customer is asking for what
they really need. In our experience, customers
appreciate this analysis and feedback.

3. A use case model can be used to discover short-
comings in the stakeholder-generated require-
ments. Maybe the stakeholder forgot about an
important actor, or system administration or
maintenance requirements? This situation has
been observed in practice, and the results were
used as discriminators during proposal work.

4. A use case model can be used to abstract to the
right level in cases where the customer’s require-
ments specification contains a mix of system and

314 DANIELS AND BAHILL

lower level or design requirements (which often
occurs). Applying use cases allows systems en-
gineers to focus on requirements at the right
level, saving the lower-level requirements to be
addressed at the appropriate level of abstraction.

The actual customer requirements along with the
way in which the requirements are organized in the
customer’s documentation can be used to determine
which use cases are needed. Once developed, the cus-
tomer requirements should be mapped to the Specific
Requirements section of the use cases, or placed in the
Supplementary Requirements Specification as appro-
priate. This mapping exercise will ensure that the devel-
oped use cases capture the behavior of the system as
intended by the customer. It will also help identify
shortfalls in a clear way. If there is behavior that the
systems engineer believes should be part of a use case
and there are no customer requirements to support it,
then there is a potential shortcoming in the customer’s
requirements, and this should be discussed during a
requirements review with the stakeholders.

It is hard to say whether it is worth it to generate a
use case model in the case where the customer’s re-
quirements specification is robust, and is accompanied
by a Concept of Operations. We almost always generate
a use case model anyway. The problem is that the
Concept of Operations is many times not based on
system behaviors and is typically written at a higher
level, such as mission areas. A use case model can be
used as a bridge between the customer’s Concept of
Operations and their requirements. This will ensure
consistency and put all of this information into a form
that is familiar to the development team.

Depending on the level of detail given in the cus-
tomer’s specifications, a use case model may still be
developed by the systems engineers or implementation
engineers to describe the behavior of subsystems and
further refine the requirements [Booch et al., 1999].

10. HIERARCHICAL USE CASE MODELS

This section has particular importance to engineers
involved in specifying very large, complex systems
such as those encountered in military applications. This
section is a bit of a departure from the overall theme of
this paper, but we feel that it is important when it is
necessary to specify requirements for complex, multi-
subsystem projects. The hierarchical use case modeling
concepts described here are presented by Jacobson and
coworkers [Jacobson, Ericsson, and Jacobson, 1995;
Jacobson, Griss, and Jonsson, 1997; Jacobson, 2000a,
2000b] and are briefly described in this paper to show

how the use case modeling technique (and thus require-
ments gathering) scales for large systems. It would
easily be possible to devote an entire paper to this topic.
The authors are still elaborating on and validating the
techniques in this section through experience on actual
projects.

For large-scale systems it is common for the use case
model to be expressed at multiple levels, where a use
case model is developed for more than one perspective
or business area in an effort to manage complexity. In
this section, two different, but related concepts involv-
ing use case hierarchies will be explored. The first deals
with modeling the business or enterprise in which the
system operates (i.e., actually modeling the actors of the
system, and even touching on the actor’s actors!), and
the second deals with use case models at multiple levels
where a given use case model is broken down into more
manageable parts. The first concept is a shift in perspec-
tive from system modeling to business (enterprise)
modeling, while the second concept describes how a
given use case model (system or business) scales to
manage complexity.

10.1. Business Modeling

Many sources, including the authors, strongly advocate
the development of a business use case model in order
to better understand the context in which the system is
to be deployed [Jacobson, Ericsson, and Jacobson,
1995; Jacobson, Booch, and Rumbaugh, 1999; IBM
RUP, 2003, Cockburn, 2001]. A business use case
model takes a step outside of the system under design
and employs the use case modeling techniques to model
the context (business) in which the system will operate.
Therefore, along with specifying the system, the use
case technique can be applied as a powerful tool for
specifying the business that uses the system. In fact, as
advocated by Ivar Jacobson in his many publications
and books, the very same use case modeling and object
oriented analysis techniques used for system specifica-
tion can be readily applied towards specifying business
processes through a shift of focus where the “system”
being described is actually the business in which the
system will be deployed. The resulting business use
case model is then analyzed in a straightforward and
elegant way to determine use cases (requirements) for
information systems? built to help automate those proc-
esses [Jacobson, Ericsson, and Jacobson, 1995; Jacob-
son, Booch, and Rumbaugh, 1999, IBM RUP 2003].
The shift in perspective from describing an information

2The system we are interested in building is only one of possibly
many systems used at this level of analysis.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 315

system to describing the context of the system repre-
sents the first type of use case modeling hierarchy.

Within a complete enterprise architecture develop-
ment process [e.g., IBM RUP, 2003; Ronin Interna-
tional Enterprise Unified Process, 2003] a business use
case model is developed and exploited by analyzing the
interplay of the system under design with other systems
and humans to determine the business behaviors, and
subsequently find the correct use cases for the system
to be built. Then, a use case model of the system is
developed to further describe how it specifically pro-
vides the value alluded to in the business use case
model. A system use case model, in turn, is analyzed to
model the interplay between subsystems to accomplish
the system behaviors and subsequently determine a set
of requirements on each subsystem. It all fits together
in a very nice framework, using the same set of analysis
tools. Gomaa [2000], Friedenthal, Lykins, and Meilich
[2000], and Jacobson [2000b] provide practical guid-
ance for analyzing use cases to determine the subsys-
tems for complex, distributed systems. A business
model provides context for the system requirements by
linking them directly to implementation-independent
business processes as captured in the business use cases.
A business model also helps drive out a robust set of
system use case model actors.

10.2. Superordinate and Subordinate Use
Case Models

The second type of hierarchy involves developing use
case models at different levels for the same subject,
specifically through a superordinate use case model and
a subordinate use case model. The development of these
types of use case hierarchies are useful when a “flat”
use case model is not enough to fully specify all of the
functional requirements without becoming too large to
be easily understood. To apply this type of hierarchy, a
superordinate use case model is built for the top-level
system (or system-of-systems), which specifies just
enough of the requirements to derive an appropriate
subsystem structure and interfaces between the subsys-
tems, which are more manageable. Then a subordinate
use case model is developed for each of the resulting
subsystems. It is called a subordinate use case model
because it is derived directly from the superordinate
model. When taken together, the subordinate use case
models fill out the details left out of the superordinate
model to completely specify the requirements for the
overall system-of-systems.

In this way the use case modeling techniques can be
considered “fractal,” or recursive in that they can be
applied at varying levels of abstraction to specify use
cases at a system-of-systems (superordinate) level

down to each individual (subordinate) system level.
This type of scalability is essential in complex system
development. Booch et al. [1999], Jacobson [2000a,
2000b], and Jacobson, Griss, and Jonsson [1997] give
pioneering discussions on applying use cases with re-
spect to large-scale systems and reflect on the recursive
application of use cases in terms of superordinate and
subordinate models. The Systems of Interconnected
Systems pattern [Jacobson, 2000a; Jacobson, Griss, and
Jonsson 1997] more completely discusses the concepts
mentioned here. The IBM RUP SE [2003] presents a
use case flow down method introduced by Cantor
[2003a, 2003b] that compliments the superordi-
nate/subordinate use case model concepts elegantly.
With the use case flow down method, requirements
from use cases developed at a higher (superordinate)
level of abstraction are flowed down and allocated to
the subordinate systems.

The business modeling and subordinate/superordi-
nate hierarchical use case modeling techniques intro-
duced in this section help align business analysts,
systems engineers, and software engineers by applying
a common modeling methodology to specify systems
at all levels of abstraction, including the system context
itself. Using a common modeling paradigm at all levels
of abstraction will also facilitate smoother traceability
between the models so that information in one model
does not have to be translated into another modeling
style in order to be understood. Also note that develop-
ing hierarchical use case models is not analogous to
performing functional decomposition on the system.
With hierarchical use case models, the intent is still to
extract requirements for the system. Functional decom-
position is often taken too far and leads to premature
design. This is a delicate distinction.

The requirement derivation and documentation tech-
niques described in this paper apply to use case models
at any level of a use case model hierarchy. For hierar-
chical models, however, a strong emphasis should be
placed on maintaining the traceability of requirements
and use cases expressed in the models. Finally, tradeoffs
should be exercised to ensure that developing hierarchi-
cal models are worth the cost to generate them. In fact,
Jacobson [2000b] suggests that even for large, complex
systems-of-systems only one division (two hierarchical
levels) of the use case models are usually necessary.
That is, one superordinate use case model, and a set of
subordinate use case models. In any case, one level of
use case modeling is many times not enough to effi-
ciently capture the intricate requirements of modern
distributed information systems.

316 DANIELS AND BAHILL

11. VERIFICATION TESTING AND USE
CASES

Another question that arises when applying use cases
to general systems engineering is: “If we generate use
cases, what do we use for verification testing?” Many
authors, including us, believe that use cases, written as
described in this paper, serve as an excellent start for a
system-level verification test development. As part of
the systems engineering process, a test plan is com-
monly written to outline the tests that will be performed
to demonstrate that the system complies with its re-
quirements. The test plan typically references one or
more test scripts that detail step-by-step scenarios that,
when successfully performed as scripted, demonstrate
how the system satisfies the requirements. The union of
the test scripts should be sufficient to demonstrate all of
the required behavior of the system.

The use case model partitions the behavior of the
system into discrete use cases. The structure of the use
case model can be re-used to define the structure of the
test plan by including a test for each use case in the use
case model. Use cases provide a good view to the testers
early enough to adequately plan the test effort. Basing
the test plan on the use case model ensures that the
system tests will cover all of the functionality of the
system. If the concepts described in this paper are used,
there is a strong traceability between the use cases and
the requirements. Therefore, by structuring the test plan
in accordance with the use case model, each require-
ment should be covered. Each use case’s Brief Descrip-
tion, Preconditions, and Postconditions should be
incorporated into the test plan to explain each test and
the expected results.

To get deeper into the test development, one or more
verification test scripts are generated for each test de-
scribed in the test plan. A test script is typically a very
detailed, keystroke-by-keystroke sequence of steps that
are performed to confirm that the system performs as
specified in the requirements. A use case report can be
thought of as an ideal test scenario and a starting point
from which the more detailed test scripts can be devel-
oped. The use case report describes in a step-by-step
fashion how the system should behave to fulfill the
intent of the use case. The use case report will not
(should not!) include the level of detail required for a
test script. A test script is written after the system has
been designed and implemented; whereas a use case is
a requirements artifact, largely written before the sys-
tem is even designed (it will likely be updated through-
out the design and implementation phases [IBM RUP,
2003]).

For simple transaction-based systems, generating a
test script from a use case report is a fairly mechanical

process. In other cases much preparation must be done
in order to get to the test script steps. However, even in
these instances the use cases can be used to help focus
this effort. To the extent possible, a procedure for gen-
erating the test script can proceed as follows: Start with
the use case sequence of events and augment the steps
with the individual user button presses, keystrokes, and
other system details to fill out the required information
for the test script. Since the requirements were derived
from the use case, the requirements that are to be
verified by the test script are already called out in the
Specific Requirements section of the use case report, so
it is clear which requirements are being verified. This
mapping is used to develop a report indicating which
requirements were satisfied by which test scripts. Once
the test results have been generated a complete mapping
from test result to the highest level requirements can be
attained.

12. THE MISSING LINK

In a traditional systems engineering environment, 7est
Procedures are detailed and sequential. Sometimes they
look like a use case sequence of events. The Require-
ments Specification may have hundreds of requirements
and it paints a picture of the system being designed. It
is usually written before the test procedures, but it might
not bear a close resemblance. The Design Model cap-
tures the architecture and the interfaces. What do these
three views of the system have in common? In our
hybrid process, they have a common ancestor: the Use
Case Requirements Specification, as shown in Figure
3.

| Mission |
- Statement

Business
Model |

Concept of
Operations |

A S o7
k)
Ge%\ A‘a&ﬁe’
| Use Case
' Requirements
| Specification
Aw"e‘jp/

- |

By

Trace!

lo
[
1

| Traditional
| Test \ .
\ | Requirements
Procedures ‘

B ~ Specification

Figure 3. Ancestry model.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 317

A human, a chimpanzee, and an orangutan have a
common ancestor. Archeologists studying primate evo-
lution have never seen this missing link, but they have
a good idea of what it would look like. Tracing ancestors
has been a big research effort over the last few centuries.
It evidentially is a useful scientific method. Continuing
with this analogy, the Use Case Requirements Specifi-
cation is the missing link in the traditional systems
engineering process.

13. MISSILE EXAMPLE

Use case requirements specifications and traditional
requirements specifications offer orthogonal redun-
dancy that can help engineers detect mistakes. Consider
the fragment from a traditional requirements specifica-
tion for a missile printed circuit board (PCB) shown in
Table III. These requirements were read and trans-
formed into the derived requirements shown in Table
Iv.

Type P means the trace delivers power. Power traces
are 12 mm wide and signal traces are 4 mm wide. As
you can see, someone failed to denote trace-11 as a
power trace in the table. No one redid the requirements
to table translation and Testing only tested one valve at
a time, so the error was not detected until the flight test,
when the trace burned out, and the missile failed.

We do not suggest that someone should have re-
peated the task of transforming the customer require-
ments into the derived requirements: that would not add
value. But we think a use case would add value and it
would help catch the mistake. Consider the following
use case.

Name: Control Missile Attitude

Iteration: 1.0

Brief description: Valves 1-6 open and close, al-
lowing pneumatic fluid to flow through their orifices,
thereby controlling missile attitude.

Added value: Guidance, Navigation, and Control
(GNC) can control the system state.

Level: Very low

Table III. Customer Requirements for a PCB

PCB trace

Requirement

number

10 Trace-10 shall transmit signals between
element 1 and 2. Blah, blah, blah, etc.

11 Trace-11 shall supply valves 1 through 6. Blah,

blah, blah, etc. This trace shall have a capacity
of X5 mA. Blah, blah, blah.

12 Trace-12 shall deliver power to components 1
through 4. Blah, blah, blah, etc.

Table IV. Derived Requirements for PCB

Efllzbt:?ce Origin | Destination Type | Length
10 Stuff Stuff ' Stuff
11 Pin-3 Pin 4 of 10

1C-2 Valves 1 to 6
12 Stuff Stuff P Stuff

Scope: Control of attitude control valves

Primary actor: GNC

Supporting actors: Power Supply, Pneumatic

Fluid, Attitude Control Valves

Frequency: On the order of 1 Hz

Precondition: The missile is flying, and all valves

are closed.

Trigger: GNC commands a course change.

Main Success Scenario:

la. GNC commands Valve-1 to open for X1 ms.

2. Valve-1 opens, drawing X2 mA from the power
supply through printed circuit board (PCB) trace-
11, allowing pneumatic fluid to flow through its
orifice.

3. After X1 ms Valve-1 closes, drawing X3 mA,
thereby stopping the flow of fluid [exit use case].

Alternate Flows:

1b. GNC commands Valve-2 to open for X4 ms.

1bl. Valve-2 opens, drawing X2 mA from the power
supply through PCB trace-11, allowing pneu-
matic fluid to flow through its orifice.

1b2. After X4 ms Valve-2 closes, drawing X3 mA,
thereby stopping the flow of fluid [exit use case].

[Similar alternative flows exist for Valves 3—6.]

Postcondition: Missile has changed course and all

valves are closed.

Rules:

1. Valves 1-6 will open and close at the same or at
different times.

Specific Requirements

Nonfunctional requirements:

Req. N1: PCB Trace-11 is a power trace. It shall have
a capacity of X5 mA, because each of the six
valves may open or close at the same time. [From
steps 2 and 3 and Rule 1]

Req. N2: Maximum pneumatic fluid flow rate shall
be X6 kg/s. [Obtained from Stakeholder inter-
views]

Req. N3: Valve opening and closing times shall be
less than 1 ms. [Obtained from Stakeholder inter-
views]

Functional Requirements:

Req. F1: GNC shall command valves 1-6 to open.
[From step 1]

318 DANIELS AND BAHILL

Req. F2: Valves 1-6 shall open and close on com-
mand. [From steps 2 and 3]

Req. F3: Valves 1-6 shall regulate the flow of pneu-
matic fluid through them. [From step 2]

Author/owner: Terry Bahill

Date: April 1, 2004

As previously stated, Use Case Requirements Speci-
fications and traditional requirements specifications are
orthogonal, not redundant. The traditional requirements
specification concentrated on the printed circuit board
traces, whereas the use case describes the functional
behavior of the missile. We postulate that the existence
of this use case would have prompted engineers to see
the mistake in the derived requirements table.

Applying use cases might help systems engineers
discover conflicts in the requirements. For example,
consider these two requirements for an automobile. (1)
The vehicle shall accelerate from 0 to 60 mph in less
than 9.5 s. (2) The vehicle shall tow a 3000 Ib trailer at
highway speeds (65 mph). The vehicle does not have to
satisfy these two requirements simultaneously: It would
be possible, but expensive, to build a vehicle that did
so. If these two requirements existed far apart in a
traditional requirements specification, it would be dif-
ficult to discover this interaction. However, in a Use
Case Requirements Specification, these two require-
ments would appear in two different use cases; there-
fore, it would be obvious that they need not be satisfied
simultaneously. Requirements that must be satisfied for
all use cases are put in the Supplementary Requirements
Specification, not in the Specific Requirements section
of individual use cases.

14. SUMMARY

This paper has shown that use case models and tradi-
tional shall-statement requirements are synergistic
specification techniques that should be employed in a
complimentary fashion to best communicate and docu-
ment requirements. Are use cases requirements? Not
exactly—they are a vehicle to discover requirements.
The requirements are actually embedded within the use
case’s textual description, making use cases a container
for the requirements. How do use cases relate to a
traditional requirements specification? Use cases pro-
vide context for requirements that are documented
using shall-statement notation in a traditional re-
quirements spec. These shall-statement requirements
can be extracted from a use case’s narrative. Where are
the requirements actually documented? We suggest that
the requirements be documented using the require-
ments specification structure proposed in this paper,

which conforms to the specification presented in
Leffingwell and Widrig [2000] and the IBM RUP
[2003]. This specification includes (1) a use case model
for capturing requirements that are associated with
individual use cases and (2) a Supplementary Require-
ments Specification for capturing system-wide require-
ments. The specific contribution of this paper is the
introduction of a Functional Requirements Segment to
the Specific Requirements Section. This Functional
Requirements Segment contains the functional require-
ments written in formal shall statement language. This
paper has shown two examples illustrating our hybrid
process for combining use case models with traditional
shall-statement requirements. Hierarchical use case
models are common in complex, distributed system
design and deployment. The hybrid process that com-
bines use case modeling and shall-statement require-
ments also applies to hierarchical models. This paper
also briefly described the utility of use cases in the
testing and verification disciplines of system design.

ACKNOWLEDGMENTS

We thank Rick Botta of BAE Systems for supporting
this work and Sandy Friedenthal of Lockheed-Martin,
Alexander Kossiakoff of Applied Physic Laboratory,
and Rick Steiner, Joan Koesterherm, T.J. Theodore,
Joseph DelGaudio, and Bill Marksteiner of Raytheon
for astute comments on the manuscript. This paper was
supported by AFOSR/MURI - F49620-03-1-0377.

REFERENCES

S. Adolph and P. Bramble, Patterns for effective use cases,
Addison-Wesley, Reading, MA, 2003.

F. Armour and G. Miller, Advanced use case modeling, Ad-
dison-Wesley, Reading, MA, 2001.

A.T. Bahill and J. Daniels, Using object-oriented and UML
tools for hardware design: A case study, Syst Eng 6(1)
(2003), 28-48.

A.T. Bahill and FEF. Dean, “Discovering system require-
ments,” Handbook of systems engineering and manage-
ment, A.P. Sage and W.B. Rouse (Editors), Wiley, New
York, 1999, pp. 175-220.

G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Mod-
eling Language user guide, Addison-Wesley, Reading,
MA, 1999.

M. Cantor, Rational Unified Process for Systems Engineering
Part 1: Introducing RUP SE Version 2.0, http://www.thera-
tionaledge.com/content/aug_03/f_rupse_mc.jsp, August
2003.

M. Cantor, Rational Unified Process for Systems Engineering
Part II: System architecture, http://www.theration-
aledge.com/content/sep_03/m_systemarch_mc.jsp, Sep-
tember 2003.

THE HYBRID PROCESS THAT COMBINES TRADITIONAL REQUIREMENTS AND USE CASES 319

A. Cockburn, Writing effective use cases, Addison-Wesley,
Reading, MA, 2001.

R. Davis and B.G. Buchanan, “Meta-level knowledge,” Rule-
based expert systems, the MYCIN experiments of the
Stanford Heuristic Programming Project, B.G. Buchanan
and E.H. Shortliffe (Editors), Addison-Wesley, Reading,
MA, 1984, pp. 507-530.

S. Friedenthal, H. Lykins, and A. Meilich, Adapting UML for
an Object Oriented Systems Engineering Method
(OOSEM), http://www.omg.org/cgi-bin/doc?syseng/
2001-09-05, 2000.

H. Gomaa, Designing concurrent, distributed, and real-time
applications with UML, Addison-Wesley, Reading, MA,
2000.

R. Grady, Practical software metrics for project management
and process improvement, Prentice-Hall, Englewood
Cliffs, NJ, 1992.

IBM RUP, IBM Rational Unified Process, http://www-
306.ibm.com/software/awdtools/rup/, 2003.

IBM RUP SE, IBM Rational Unified Process for Systems
Engineering, available on the Rational Developer Net-
work, www.rational.net (account required), 2003.

1. Jacobson, Systems of interconnected systems, Road to the
Unified Process, Cambridge University Press, Cambridge,
2000a.

the University of Arizona.

Baseball As America.

I. Jacobson, Use cases in large-scale systems, Road to the
Unified Process, Cambridge, University Press, Cam-
bridge, 2000b.

1. Jacobson, M. Griss, and P. Jonsson, Software reuse: Archi-
tecture, process and organization for business success,
Addison-Wesley, Reading, MA, 1997.

1. Jacobson, M. Ericsson, and A. Jacobson, The object advan-
tage: business process reengineering with object technol-
ogy, Addison-Wesley, Reading, MA, 1995.

1. Jacobson, G. Booch, and J. Rumbaugh, The unified soft-
ware development process, Addison-Wesley, Reading,
MA, 1999.

D. Kulak and E. Guiney, Use cases: Requirements in context,
Addison-Wesley, Reading, MA, 2000.

D. Leffingwell and D. Widrig, Managing software require-
ments, Addison-Wesley, Reading, MA, 2000.

Object Management Group: Unified modeling language: su-
perstructure version 2.0 final adopted specification,
http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf,
2003.

Ronin International, Enterprise Unified Process (EUP),
http://www.enterpriseunifiedprocess.info/, 2003.

R. Young, Criteria of a good requirement, http://www.ralphy-
oung.net/artifacts/CriteriaGoodRequirement.pdf, 2004.

Jesse Daniels is a systems engineer with BAE Systems in San Diego. He earned a B.S. and an M.S. in
Systems Engineering in 1999 and 2000 from the Department of Systems and Industrial Engineering at

Terry Bahill has been a Professor of Systems Engineering at the University of Arizona in Tucson since
1984. He received his Ph.D. in Electrical Engineering and Computer Science from the University of
California, Berkeley, in 1975. He holds U.S. Pat. No. 5,118,102 for the Bat Chooser, a system that
computes the Ideal Bat Weight for individual baseball and softball batters. He is a Fellow of the Institute
of Electrical and Electronics Engineers (IEEE) and of INCOSE. He is the Founding Chair Emeritus of
the INCOSE Fellows Selection Committee. This picture of him is in the Baseball Hall of Fame’s exhibition

