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Linear Homeomorphic Model for Human Movement

A. TERRY BAHILL, MEMBER, IEEE, JOSE R. LATIMER, AND B. TODD TROOST

Abstract-The parameter values for this model are specific to the
human eye movement systems; however, the form of the model is appli-
cable to other neurological motor control systems. The muscle length-
tension diagram was modeled with an ideal spring. The muscle force-
velocity relationship was linearized in a manner that produced a linear
model. Initial parameter estimates were based on physiological data,
human when possible. Then a function minimization program was used
to fine tune model parameters. These parameter values were compared
to the original physiological data to ensure that they were within the
range of variability of the data. The antagonist dashpot value was se-
lected to minimize the mean squared error between human and model
responses; the value produced suggested a unique simplified representa-
tion for the original physiological data. The parameter estimation
routine was applied to make the model match atypical human eye
movements; these simulations suggested that glissades in normals are
caused by pulsewidth, not pulse height errors.

I. INTRODUCTION
T HE OCULAR motor system is ideal for studying the con-

trol of human movement: eye movements are easy to
measure, and the control of saccadic eye movements is simpler
than the control of other neuromuscular systems. It is simpler
because the load presented by the eyeball and extraocular
tissues is small and constant. Horizontal eye movements offer
a further simplification because they primarily involve only
two muscles of each eye. By scrutinizing the trajectories of
saccadic eye movements, we can infer the motoneuronal ac-
tivity, deduce the central nervous system's control strategy,
and observe changes in this control strategy caused by fatigue,
alcohol, drugs, or pathology. These eye movement control
principles should generalize to other neuromuscular systems.
An initial step in understanding this movement control sys-

tem is the development of an appropriate descriptive model.
One of the first eye movement models was developed by
Descartes [1] in 1630 to illustrate his discovery of the princi-
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ple of reciprocal innervation. The next model was a linear
second-order model proposed by Westheimer [2] in 1954.
The input to the model was assumed to be a step of muscle
force. This model worked well for 100 saccades, but not for
saccades of any other size. In 1964 Robinson [3] showed that
the actual input signal looked more like a pulse-step of muscle
force. His linear fourth-order model could simulate saccades
between 50 and 400. However, in 1968 it was pointed out [4]
that the velocity profiles generated by his model were not
realistic. Cook and Stark's sixth-order nonlinear model [4]
did produce realistic velocity profiles. Parameter values and
the treatment of the nonlinear force-velocity relationship were
changed in subsequent versions [5] -[7] to yield the reciprocal
innervation model, which produced realistic position, velocity,
and acceleration records for saccadic eye movements ranging
from 0.10 to 500. It also simulated smooth pursuit and
vergence eye movements, given appropriate input signals. A
sensitivity analysis of the model parameters was performed
[7], and the model was validated qualitatively, quantitatively,
analytically, and heuristically [8]. This model formed the
starting point for the studies presented here.
In these previous models, length-tension diagrams from cat

experiments were used. The maximum isometric force for the
feline's medial and lateral rectus muscles occurs when the
muscle length is near the primary position (looking straight
ahead) rest-length. For small variations around this length the
force would be constant. This approximation made it appear
that the length-tension characteristics were not incorporated
into the model. However, data from human experiments [9] -
[11] show that this rest-length relation is not valid for the
human horizontal recti, where the length at primary position
is shorter than the length for maximum isometric force. These
human data were used to formulate the length-tension element
in our current model.
The relationship between force and velocity is an important

characteristic of contracting muscles. The force-velocity
curves for a shortening muscle are roughly hyperbolic [12].
Numerical values for the force and velocity axes intercepts are
unique for each muscle. The velocity axis intercept Vmax is
the maximum isotonic contraction velocity for the muscle
under study. The previous models derived this constant from
cat experiments. They used 36000/s for the velocity axis inter-
cept Vmax. This value is four times larger than the maximum
recorded human extraocular eye muscle velocity and is more
than twice as large as the maximum velocity of 02 in the
model. The sensitivity analysis [7] showed that this parameter
was the fourth most important parameter in the model. For
these reasons this parameter was reformulated in our present
model.
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Nonlinearities of the model are due to this nonlinear force-
velocity relationship which is modeled as a nonlinear dashpot.
Clark and Kamat (in [13] tried to linearize the model by using
a Taylor series expansion on the model (excluding second and
higher order terms). The linear perturbation equations were
not trivial to solve and the implementation of a known
nominal solution was cumbersome. The oversimplification of
neglecting the activation and deactivation time constants was
the most likely reason that their linear model did not match
physiological data. In another effort to linearize the model,
Latimer et al. [14] plotted numerical values for the dashpots
representing the apparent viscosities of the muscles. Straight
line approximations of these time functions closely fit the ac-
tual values of the dashpots for a 100 saccade. The nonlinear
problem was thereby transformed into a time variant problem,
which was still cumbersome.
The most obvious method of linearizing is to approximate

the force-velocity curves with straight lines. Stark [151, in
formulating the BIOSIM simulation language, approximated
these curves with straight lines through the point of maximum
velocity (vm.). This linearized the force-velocity relation-
ship, but did not linearize the model because the dashpot pa-
rameters became functions of the model states [14]. The
incorporation of additional physiological data allows a linear-
ization of the force-velocity relationship resulting in the linear
homeomorphic model which is presented here.

II. RESULTS
A. Length-Tension Diagram
The maximum contractile force a muscle can generate de-

pends, in part, on its length. Muscle forces generated when
the muscle is contracted are weaker than the maximum forces.
A curve of the length-tension contribution to the dynamic
contractile force of a muscle and the purely passive contribu-
tion due to the muscle's inherent elastic resistance to stretch
appear in Fig. 1.
The linearity, constant slope, and parallel lines can be ex-

plained by the sliding filament model for muscle [16]. Force
developed is linearly proportional to the shortening or length-
ening from the primary rest-length. Over the range of normal
eye movements the horizontal recti operate within this linear
range of force and length.
The length-tension diagram can be simulated with the model

of Fig. 2. The force generator F is called the active state
tension generator. The distance L' is a hypothetical reference
length and L is the muscle length. T is the tension in the
muscle, which is also the force exerted on the eye by the
muscle. The static equations for equilibrium are

T = F + KLTL' (1)

T=KSE(L-L'). (2)

We can solve for L' in (2), substitute this into (1), and re-

arrange to get

T=KLTKSEL + KSEF

KLT + KSE KLT + KSE(

The above equation for length-tension will produce the curves
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Fig. 1. (a) Human and (b) linear model length-tension diagrams. The
human data were recorded during strabismus surgery. One horizontal
rectus muscle was de-tached from the eyeball and connected to a torce
transducer. Then the subject was instructed to look at a target with
his unoperated eye. For example, when the subject was asked to
look at a target 300 nasal (N) of primary position with his good left
eye, and the medial rectus muscle of the operated right eye was held
in a position appropriate for 150 nasal of primary position, a 40 gm
force was recorded (the box). The circles indicate muscle forces for a
normal fixating eye. PM is the curve for passive muscle. Temporal
gaze is represented by the symbol T. Human physiological data [91,
[101 were averaged together to produce (a). The curves of (b) fell
within the range of variability of the human data.

of Fig. l(b), which model the simplified human data of Fig.
l(a). The slope of these curves K' is given in the length-
tension equation (3) as

K-KLTKSE
KLT +KSE'

Since KJSE is approximately 125 N/m (2.5 gm tension/') [1 11,
and K' can be read from the graph of Fig. 1(a) as 40 N/m
(0.8 gm tension/'), KLT can be calculated.

_KSEK'KLT - KSEK'KSE-K
KLT = 60 n/m = 1.2 gm tension/!. (4)
The intersections of the dashed lines and the parabolic curve
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Fig. 2. Simplified mechanical model for human muscle. The active
state tension generator is modeled with the ideal force generator F;
the series elasticity and the length-tension diagram are modeled with
ideal springs, KSE and KLT.

in Fig. 1(a), the circles, represent the fixation forces for the
stationary eye, that is, the tension T required to hold the eye
at various angles of gaze. A two piece linear approximation to
this solid parabolic curve is shown in Fig. 1(b). This straight
line approximation is incorporated into the extraocular plant
model. The agonist fixation forces TLOC are given by

TLOC = 14+ 0.80

where 0 is the commanded final eye position. The muscle
tension axis (0 = 0) intercept TINT is found by

TINT = TLOC + K'0= TLOC + 0.80 = 14 + 1.60 (5)
Another equation for TINT can be obtained by setting L = 0
in (3) to yield

= KSEF

KLT +KSE
The force F is that produced by the active state tension gen-
erator. For the steady-state behavior of the agonist muscle,
this steady-state force is defined to be the neural activity
NAG-STEP. Now, (5) and (6) can be combined to yield

14 + 1.60 - KSE NAG-STEPKLT + KSE

NAG-STEP = (14 + 1 .6 0) (KLT + KSE)
KSE

NAG -STEP = (20.6 + 2.35 0) gm tension. (7)
The same steps can be performed for the antagonist.

TLOC = 14 + 0.30

TINT = TLOC - 0.80 = 14- 0.50

14- 0.50 =- KSE NANT-STEP
KLT + KSE

NANT-STEP = (20.6 - 0.740) gm tension. (8)

B. Force-Velocity Relationship Linearization
Previous models have been nonlinear because the force-

velocity data were fit with a family of hyperbolas through a
fixed point on the velocity axis (max). However, physiologi-
cal data has shown that Vmax varies with the motoneuronal
activity [17] -[21]. Thus, a better linearization would be a

____________________________________ ~~~~Velocity

_ > ~~~~~~~~~~Shortning
_A NIL B....v1ct

0 Vmaxl Vmax2 Vmax3

Fig. 3. Force-velocity relationship for muscle (dotted lines) and the
linear model (solid lines). For normal movements the agonist muscle
will use the upper curves in the first quadrant and the antagonist
muscle will use the lower curve in the second quadrant (the thickened
lines). The parameter estimation routine showed that for low values
of innervation the antagonist curve is best fit with only one straight
line. This greatly simplifies the model.

family of piecewise linear curves with equal, constant slopes,
shown with straight lines in Fig. 3.
When a muscle is stimulated and quickly stretched, it offers

a high resistance to the external force. This antagonist force-
velocity relationship can be modeled by a two piece linear
approximation as shown in Fig. 3. The intersection of these
two lines is a linear force dependent function. During normal
saccadic movements the antagonist muscle force is reduced,
corresponding to less than 2 percent of maximum innervation.
Our parameter estimation algorithm [22] was used in an at-
tempt to find the intersection and slopes of the piecewise
approximations of the force-velocity curves using a 100 sac-
cade. The results showed that the best fit to the data was ob-
tained by using only one line for the force-velocity approxima-
tion of the 2 percent innervation curve [22]. This unexpected
result greatly simplified the linearization of the force-velocity
relationship.
The parameter estimation routine produced the following

constant slopes for the force-velocity relationship:

BAG = 2.36 N * s/m = 0.046 gm tension - s/°
BANT = 1.12 N - s/m = 0.022 gm tension - W.

(9)
(10)

The force-velocity relationship shows that muscles produce
larger forces at lower velocities. It is as if there was an internal
dashpot decrementing the force available from the active state
tension generator. This is just how the force-velocity relation-
ship is modeled in Fig. 4: the muscle force available at the
tendon is decreased by a velocity dependent term, an apparent
viscosity.
In the previous section we derived an equation (3) represent-

ing the force available at the tendon after the active state ten-
sion was modified by the effects of the length-tension diagram.
We can change into variables appropriate for rotations by
letting 01 = -L so that

T= KSEF KLTKSEO1
KLT + KSE KLT + KSE
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Fig. 4. Muscle model which includes a dashpot B that models the ef-
fects of the force-velocity relationship, and activation-deactivation
time constants that model the conversion of motoneuronal firingN
into active state tension F. Eye position is represented by 01.

We must now decrement this available force to account for the
effects of the force-velocity relationship. The muscle force
that is applied to the globe by the tendon becomes

T-
KSEF KLTKSE01 . (11)

KLT + KSE KLT + KSEBAG2
The passive elasticity is the only muscle property not yet ac-

counted for; it will be lumped in with the element Kp.

C. ThePant and System Equations
Our linear model can now be derived with reference to Fig. 5.

Two muscles are pulling in opposite directions on the globe J.
Their forces are

TAG KSE (02 - 01) (12)

TANT KSE(O1 03). (13)
From (1 1)

TAG KSEFAG KLTKSEOI

KLT + KSE KLT + KSE

and

NT = KSEFANT +KLTKSE01 +B 3 (15)
KLT + KSE KLT + KSE

The corresponding signs that are negative in (14) are positive
in (15) because the antagonist dashpot adds to the resistive
force of the antagonist active state tension and also, as the
muscle gets longer, the length-tension diagram prescribes more
muscle force which increases the resistive force.
Now (12) and (14) can be combined to yield

KSEFAG KLTKSEO1 BAG62 =KSE(02 - 01) (16)
KLT +KSE KLT + KSE

and (13) and (15) can be combined to yield

KSEFJAL.,T KLTKSEO1

KLT+KE + KLTKSE0 +BANT63 =KSE(01- 03). (17)KLT +mKSE KLT + KSE
The two muscle forces acting on the globe [(I12) and (I13)]

can be combined with the other forces acting on the globe
to yield

KSE (02 - 01) - KSE (01 - 03) = Kp01 +Bp1 + J01. (18)
Equations (16)418) describe the movements of the model.
However, the model is a sixth-order system, so it takes six
differential equations to completely describe it. For these six
state equations we will use the three positions, 01, 02, and 03,
the eye velocity 01, and the two active state tensions, FAG and
FANT. We identify these state variables with the symbols
xl-x6.

xl = 01 = position of eye
X2 = 02 = position of agonist node, shown in Fig. 5
X3 = 03 = position of antagonist node, shown in Fig. 5
X4= 01 = eye velocity
X FAG = agonist active state tension

X6= FANT = antagonist active state tension.

The inputs to the model are the neural control signals NAG
and NANT. These signals are transformed into the active state
tensions by first-order activation and deactivation processes as
shown in Fig. 6.
This is but one of many possible assignments for the state

variables. This assignment happens to be intuitive and con-
venient. The three simultaneous equations [(16)-(18)] can
be solved for each of the variables and three auxiliary equa-
tions can be formed to yield the following six state equations:

X1 =X4

* KSE KSE KSEj= XI ~-x2 ,+
(KLT + KSE) BAG BAG ,2(KLT + KSE) BAG

K2
SE KSEX1 - S X3

BANT

KSE
(KLT + KSE) BANT

-2KSE - Kp KSE KSE BP
J4= XI

J
X

J
X

J
X4

=SNAG -X5
TAG

k6NANT - X6X6 =N -

TANT

The initial conditions are

Xl(0) =X4(0) = 0

X2(0) =-X3(0)= 1.1 mm 5.60
x5(0) =x6(0) = 0.2 N = 20.6 gm tension.

These state equations completely describe the behavior of the
model. It is sometimes more convenient to write these equa-
tions using matrix notation.

= Ax + Bu.

In this equation x, x, and u are vectors, B may be a vector or a

matrix and A is a square matrix. Using this notation our six
state equations become

T KSE
mmomdi i

62
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NANT

Fig. 5. The linear homeomorphic model. The globe and surrounding tissues were modeled by the effective inertia J, a vis-
cous element BP, and a passive elasticity Kp. (Kp also includes the passive elasticities of the muscles.) The agonist and
antagonist muscles were, respectively, modeled by active state tension generators, FAG and FANT, force-velocity rela-
tionship dashpots, BAG and BANT, series elasticities, KAG-SE and KANT-SE, and length-tension elasticities, KAG-LT
and KANT-LT. The active state tension generators convert oculomotoneuronal fiing, NAG and NANT, into force
through first-order activation-deactivation processes, the T's.

NAG-IPULSSI

TAG

t

t

DTALC,

FlAnk_ t
.L.TAN1-DE

t

Fig. 6. The oculomotoneurons produce a pulse-step of firing N for
saccadic eye movements. This firing pattern is converted into active
state tension F by first-order activation and deactivation processes.

0 0 0 1, 0

KSE -KSE
(KLT + KSE) BAG BAG

K2. SEE

(KLT + KSE) BANT

-2KSE -KP KSE
J J

0

0

0

D. Parameter Values
The parameter values of Table I are given to complete the

description of this model. Equations (4) and (7)-(10) appear
directly. The neural signals, NAG and NANT, are given units
of force to avoid cumbersome conversion factors such as
newton - second/motoneuronal spike. Forces are given in both
newtons and gm tension because in the physiological literature
muscle tensions are given in units of grams.
Length-tension and quick release experiments on the iso-

lated globe [9] -[11] were used to determine the viscosity BP
and the elasticity K, of the globe orbit. The muscle passive
elasticities were combined with K;. to yield the element Kp.
The inertial mass J was calculated based on a spherical radius
of 11 mm and a density of 1 g/cc. Initial values for pulse-
width, pulse height, and the four time constants were based
upon the values used for I0° saccades in the old model. They
are treated in greater detail in [23]. The parameter estimation
program was then run and these six parameters were adjusted
to yield the least mean squared error between the model and
human responses. These values were then fixed for 100 sac-

0

KSE
(KLT + KSE) BAG

-KSE 0

BANT

KSE -Bp
J J

0 0 0

0 0 0

0

0

-KSE
(KLT + KSE) BANT

0 0

-1

TAG

0

0

-1

'rANT

X1

X2

x3

x4

X5

X6

+

0

0

0

NAG
TAG

NANT
TANT

X1
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TABLE I
PARAMETER VALUES FOR THE LINEAR HOMEOMORPHIC MODEL

KSE = 125 N/m = 2.5 gm tension/'
KLT = 60 N/m = 1.2 gm/'
K = 25 N/m =0.5 gm/0
Bp = 3.1 N. s/m = 0.06 gm - s/0

BAG = 2.36 N - s/m = 0.046 gm * s/0
BANT= 1.12N*s/m 0.022gm *s/0

J = 2.2(10-3) N - s2/m = 4.3 (10-5) gm * S2/o
NAG-PULSE = PH = (0.54 + 0.11 AO) N = (55 + 11 AO) gm

for AO < 110
= (1.57 + 0.02 AO) N = (160 + 2 AG) gm

for AO > 110
NANT PULSE = 0.005 N = 0.5 gm

PWAG = (10 + AO) ms
PWANT = PWAG + 6 ms

(antagonist pulse circumscribes agonist pulse by 3 ms on each end)

NAG-STEP = (0.2 + 0.02 0) N = (20.6 + 2.35 0) gm
NANT-STEP = (0.2 - 0.007 0) N = (20.6 - 0.74 0) gm

TAG-AC = (11.7 - 0.2 A@) ms
TAG-DE = 0.2 ms

TANT-AC = 2.4 ms
TANT-DE = 1.9 ms

Model
Position

Velocity

cades. The parameter estimation routine was then run on a
different size saccade adjusting pulsewidth, pulse height, and
TAG-AC to minimize the error between model and human sac-
cades. This procedure was repeated for saccades between 10
and 400. Straight line approximations were then fit to these
data points to yield the equations given below. The size of the
intended saccade is AO, and the intended final eye position
isO.

E. Simulations
This linear model yields good simulations for saccadic eye

movements within ±200 of primary position (straight ahead).
During ocular movements, the two eyes follow different
trajectories [24]. The records of Fig. 7 show small differences
between the two eyes. The left eye had a 9.70 saccade with a
small amount of overshoot. The right eye had a 9.90 saccade
with no overshoot. In order to quantify these differences the
mean squared errors between the model and human saccades
were computed for 120 ms simulations. The mean squared
error between the 9.70 model saccade and the human saccade
of the left eye in Fig. 7 was 51 X 10-6 deg2. The mean squared
error between the 9.90 model saccade and the human saccade
of the right eye in Fig. 7 was 21 X 10-6 deg2. The mean squared
error between the saccades ofthe two eyes was 107 X 10-6 deg2.
The parameter estimation program has shown that the differ-
ences shown in Fig. 7 could be produced with small variations
in pulse height and pulsewidth. Increasing the pulse height
6 percent above its nominal value and simultaneously increas-
ing the pulsewidth 2 percent above its nominal value reduced
the mean squared error between the model and the left eye
from 51 to 41 X 106 deg2. Increasing the pulse height 2 per-
cent above its nominal value was sufficient to reduce the mean
squared error between the model and the right eye from 21 to
18 X 10-6 deg2. If, in addition to pulse height and pulsewidth,
the four time constants and the agonist and antagonist dashpot
values were also varied, then the mean squared error for the

Fig. 7. Human (top) and model (bottom) 100 saccadic eye movements
with small differences between the simultaneous saccades of the
right and left eyes. The left column (the left eye) and the right col-
umn (the right eye) show from top to bottom eye position, eye ve-
locity, and eye acceleration all as functions of time. Eye position,
velocity, and acceleration bandwidths were, respectively, 300, 80, and
60 Hz for the model and the human data. Small changes in pulse
height and pulsewidth were sufficient to match the right-eye left-
eye differences of the human records. Upward deflections represent
rightward movements. The calibration bar represents 100, 5000/s,
30 0000/s2, and 100 ms.

left eye could be reduced to 35 X 106deg2, and the error for
the right eye could be reduced to 16 X 10-6deg2.
Model glissades that quantitatively match human glissades

of normals can only be produced by pulsewidth variations.
In order to minimize the mean squared error between the
human eye movement with the glissadic undershoot, illustrated
in the right column of Fig. 8, the pulsewidth had to be de-
creased by a large amount. When the parameter estimation
routine was allowed to vary the pulsewidth and the pulse
height (the only two physiological parameters that are likely
to change between saccades) the best fit was obtained by de-
creasing the pulsewidth 16 percent below its nominal value,
while decreasing the pulse height 2.5 percent below its nominal
value. This saccadic eye movement moved the eye 19.70: the
dynamic saccade moved it 17.70, and the glissade moved it an-
other 20. The nominal values for a 19.70 saccade are 29.7 ms
for the pulsewidth and 199 gm for the pulse height. These val-
ues produced a mean squared error of 3100 X 10-6 deg2. The
values that gave the best simulation were 25 ms for the pulse-
width and 194 gm for the pulse height. The mean squared
error for a 120 ms simulation was 273 X 10-6deg2. When -our
estimation program was allowed to vary pulsewidth, pulse
height, and the four time constants, the fit was not improved.
Similarly, the glissadic overshoot shown in the left column of
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Eye
Position

Model
Position

Velocity

Fig. 8. Human (top) and model (bottom) 200 saccadic eye movements
with large differences between two consecutive saccades of the right
eye. The left column is a leftward movement and the right column is
the subsequent rightward movement. Glissades such as these are
caused by pulsewidth errors. This pattern is similar to those of pa-
tients with multiple sclerosis. To simulate such movements (mini-
mizing the mean squared error between the model and human
outputs) the pulsewidth in the model had to be decreased 16 percent
below its nominal value to produce the glissadic undershoot in the
right column. The model pulsewidth had to be increased 12 percent
above its nominal value to produce the overshoot in the left column.
In both cases the pulse height had to be held within 3 percent of its
nominal value. Bandwidths were 125, 60, and 45 Hz, respectively,
for the eye position, eye velocity, and eye acceleration records. The
calibration bar represents 100, 5000/s, 30 0000/s2, and 100 ms.

Fig. 8 could be fit best by making large pulsewidth changes.
The best fit was obtained with a 12 percent increase in pulse-
width and a 1 percent decrease in pulse height. This saccadic
eye movement moved the eye 20.80 from start to finish: the
dynamic saccade moved the eye 240 and the glissade brought
it back 3.20. The nominal values for a 20.80 saccade are 30.8
ms for the pulsewidth and 202 gm for the pulse height. These
values produced a mean squared error of 1500 X 106 deg2.
The values that gave the best simulation were 34.6 ms and
200 gin. The mean squared error was 136 X 10-6deg2. Chang-
ing all eight parameters simultaneously decreased the mean

squared error by 3 percent.

This confirms the suggestion of Bahill etal. [25] that glissadic
overshoot in normals is caused by pulsewidth errors. Further-
more, it also shows that glissadic undershoots are caused by
pulsewidth errors and not pulse height errors. Using the pa-
rameter estimation routine to draw these conclusions was
simpler than the previous method [25]. Furthermore, it also
ruled out a combination of pulsewidth and pulse height errors
as the cause of glissades. These results imply that central
nervous system-mechanisms can control the height of a moto-
neuronal burst quite accurately, but it is more difficult to
control the duration of a motoneuronal burst.

F. Goodness ofFit
To evaluate the goodness of fit of existing eye movement

models the differences between the outputs of several models
and some typical human saccadic eye movements were com-
puted. 100 saccades of a normal unfatigued human were re-
corded and the first 16 of these were used to test the goodness
of fit of the models. Each model was run for 60 ms. The re-
sulting record was then compared point by point to the human
saccadic eye movement, and the mean squared error was calcu-
lated. This process was repeated 50 times as the model was
shifted forward and backward in time. The shift with the
minimum mean squared error was chosen as the best possible
fit for that model. This process was then repeated for each of
the 16 saccades and the mean and standard deviation of the
mean squared errors were computed. The results are shown in
Table II. The linear homeomorphic model had the least mean
squared error.
For the linear homeomorphic model the simulations match

the human eye movements almost as well as the two eyes
match each other. Biological variations produce larger differ-
ences in saccadic trajectories than those caused by small pa-
rameter adjustments. This implies that the model parameters
have been selected optimally; further modifications are not
likely to be useful. This is an excellent general model for eye
movements. By using the parameter estimation routine the
mean squared error can be minimized for any specific saccadic
eye movement.

III. DiSCUSSION
The control of eye movements is easier to study than the

control of other neuromuscular systems as explained in the
introduction and also because of the fact that the eyeballs do
not exhibit six degrees of freedom. Translational movements
are extremely small, so only the three degrees of rotational
freedom remain. However, the eyeballs do not ordinarily
demonstrate three degrees of rotational freedom. In between
movements only two parameters specify the position of the
eye; there is one and only one torsional position for any given
direction of line of sight. This principle is called Listing's Law.
For any direction of gaze the neural signals for all of the extra-
ocular muscles are fixed. By contrast, if you move your finger
from the left side of this page to the right side you may do so
by varying wrist, elbow, and shoulder joints. Each time the
same point is reached there may be an entirely different set of
joint angles and muscle forces.
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TABLE II
MEAN AND STANDARD DEVIATION OF THE MEAN SQUARED ERRORS
(XlO6deg') BETWEEN 60 ms SIMULATIONS OF VARIOUS MODELS AND

16 HUMAN 10° SACCADIC EYE MOVEMENTS

Error in Matching
Model Description Reference Human Saccades

Oeye
zero-order, = 1 [26] 3507 ± 198

input
second-order, linear, overdamped

sr = 150 Ms, 2 = 12 ms, with
integrator and pulse input [27] 2759 ± 822

sixth-order, linear model without
length-tension element [22] 275 ± 324

second-order, linear, underdamped
wn = 120 rad/s, ¢ = 0.7, step
input [2] 250 ± 150

sixth-order, nonlinear model with-
out length-tension diagram [7] 136 ± 60

sixth-order, nonlinear model with unpublished
length-tension element data 57 ± 31

sixth-order, linear model with Fig. 5 and
length-tension element Table I 52 ± 24

left eye trying to match the right this report 45 ± 20
eye

The mean squared error between human and model saccades
was seldom zero. The model is sixth-order, linear, and de-
terministic: the physiological system is not sixth-order, is not
linear, and is corrupted by stochastic noise. Therefore, it
would not be expected that the mean squared error could be
reduced to zero for any particular saccade. Furthermore, cer-

tain saccadic eye movements are produced by controller sig-
nals that are more complex than those shown in Fig. 6. For
example, the saccadic eye movement of the left eye shown in
Fig. 7 has a small amount of dynamic overshoot. A better
simulation requires controller signals for two saccades: a 9.70
primary saccade and a 0.20 return saccade [6]. Almost all
of the error in matching this particular saccade occurred at the
end of the movement when the human saccade was exhibiting
this dynamic overshoot.
There are two major reasons why the mean squared errors

between the model and human saccadic eye movements of
Fig. 8 are larger than those of Fig. 7. First, the records of
Fig. 8 are more noisy. This noise is primarily due to move-

ments of the lid and orbital tissues. Sometimes it can be mini-
mized by a longer and more careful adjustment of the photo-
cells. It is stochastic so a noise free model will not be able to
match the records as well. Second, in the left column of Fig. 8
the eye starts drifting toward the new target position 10-20
ms before the saccade starts; the model will not produce such
presaccadic drifts.
The pulse height values used in the model are larger than the

muscle forces of Fig. 1. One reason for this is that the data of
Fig. 1 are for static fixations; the muscle forces during saccades
are larger. Furthermore, the pulse height is not equal to the
muscle force; there is a large amount of shaping done by the
various elements of the model. For example, for a 100 saccade
NAG-pulse is 165 gm. This 165 gm neural pulse is reduced to

a 146 gm active state tension, which is further reduced by the
passive elasticity, the length-tension elasticity, and the agonist
dashpot to produce a total peak muscle force of 93 gm. This

value is larger than the 30-70 gm muscle forces reported dur-
ing human saccades [9], [10] . The agonist deactivation time
constant is also smaller than was implied in these studies. The
fact that a larger force and a smaller time constant were
needed to minimize the error between the human and model
saccades suggests areas for future research.
The model was simulated by using a multistep Adams-

Moulton predictor-corrector algorithm to numerically solve
the differential equations with a Runge-Kutta routine used for
the starting values. All programs were written in C, the lan-
guage of Bell Laboratory's Unix operating system.
There are many reasons why we linearized the model. First,

a sensitivity analysis [7] showed that the force-velocity dash-
pot parameters (the cause of the nonlinearities) had large ef-
fects on the model response, yet the data for these parameters
were not robust. Therefore, the treatment of the dashpots had
to be revised and one method for doing this was linearization.
Second, data for the force-velocity relationship came from
turtle, frog, cat, and rat, but not from man. There was a great
deal of variability depending upon the species, the type of
muscle, the laboratory, and the experimental conditions.
Given the noise and uncertainty in the data, a linear approxi-
mation to the data was as good as a nonlinear approximation.
Third, the linear model is simpler and should, therefore, have
greater portability. Fourth, when a model is linear the model
can be validated using classical engineering tools. For example,
existing computer programs [28] can be used to assess stability
and compute root locus plots. Fifth, linear systems obey the
principle of superposition which makes most analyses easier.
For example, in the sensitivity analysis [7] of the old non-
linear model one parameter at a time was varied. Yet it is
possible that the interaction of two parameters could have had
a greater effect on the model than merely the sum of their
two individual effects. Thus, this whole validation technique
could reasonably be questioned. With the linear model it was
sufficient to vary only one parameter at a time in the sensi-
tivity analysis. Sixth, parameter estimation programs are more
likely to find a unique optimal solution for a linear model. In
summary, the linear model matches the physiological data and
the human output response better than the nonlinear model.
The linear model is simpler, and provides the opportunity to
apply the tools and tests of control theory in order to validate
the model.

REFERENCES
[1] R. Descartes, Treatise of Man, originally published by C. Angot,

Paris, France, 1664; republished with translation and commen-
tary by T. S. Hall, Cambridge, MA: Harvard Univ. Press, 1972, pp.
22-30.

[2] G. Westheimer, "Mechanism of saccadic eye movements," Amer.
Med. Assoc. Arch. Ophthamol., vol. 52, pp. 710-724, 1954.

[3] D. A. Robinson, "The mechanics of human saccadic eye move-
ment," J. Physiol., vol. 174, pp. 245-264, 1964.

[4] G. Cook and L. Stark, "'The human eye movement mechanism:
Experiments, modeling and model testing," Arch. Opthalmol.,
vol. 79, pp. 428-436, 1968.

[51 M. R. Clark and L. Stark, "Control of human eye movements,"
Math. Biosci., vol. 20, pp. 191-265, 1974.

[6] A. T. Bahill, M. R. Clark, and L. Stark, "Dynamic overshoot in
saccadic eye movements is caused by neurological control signal
reversals," Exper. Neurol., vol. 48, pp. 95-122, 1975.

[7] F. K. Hsu, A. T. Bahill, and L. Stark, "Parametric sensitivity of a

638

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 17:23:11 UTC from IEEE Xplore.  Restrictions apply. 



BAHILL et al.: LINEAR HOMEOMORPHIC MODEL FOR HUMAN MOVEMENT

homeomorphic model for saccadic and vergence eye movements,"
Comput. Prog. Biomed., vol. 6, pp. 108-116, 1976.

[8] A. T. Bahill, F. K. Hsu, and L. Stark, "Development, sensitivity
analysis and predictions of a reciprocal innervation model for
saccadic and vergence eye movements," in Modeling and Simula-
tion, Proc. 7th Annu. Pittsburgh Conf., W. Vogt, and M. Mickle,
Eds. Pittsburgh, PA: Instrument Society of America, 1976, pp.
1245-1250.

[9] D. A. Robinson, D. M. O'Meara, A. B. Scott, and C. C. Collins,
"Mechanical components of human eye movements," J. Appl.
Physiol., vol. 26, pp. 548-553, 1969.

[101 C. C. Collins, D. O'Meara, and A. B. Scott, "Muscle tension dur-
ing unrestrained human eye movements," J. Physiol., vol. 245,
pp. 351-369, 1975.

[11] C. C. Collins, "The human oculomotor control system," in Basic
Mechanisms of Ocular Motility and Their Clinical Implications,
G. Lennerstrand and P. Bach-y-Rita, Eds. New York: Pergamon,
1975, pp. 145-180.

[12] A. V. Hill, "The heat of shortening and dynamic constraints of
muscle," Proc. Royal Society, London, (Ser. B), vol. 126, pp.
136-195, 1938.

[13] M. R. Clark, E. I. Jury, V. V. Krishnan, and L. Stark, "Com-
puter simulation of biological models using the inners approach,"
Comput. Prog. Biomed., vol. 5, pp. 263-282,1975.

[141 J. R. Latimer, B. T. Troost, and A. T. Bahill, "Linearization and
sensitivity analysis of model for human eye movements," in
Modeling and Simulation, Proc. 9th Annu. Pittsburgh Conf,
W. Vogt and M. Mickle, Eds. Pittsburgh, PA: Instrument So-
ciety of America, 1978, pp. 365-371.

[151 L. Stark, Neurological Control Systems, Studies in Bioengineer-
ing. New York: Plenum, 1968, pp. 308-312.

[161 A. M. Gordon, A. F. Huxley, and F. J. Julian, "The variation in
isometric tension with sarcomere length in vertebrate muscle
fibers," J. Physiol., vol. 184, pp. 170-192, 1966.

[17] G. C. Joyce and P. M. H. Rack, "Isotonic lengthening and short-
ening movements of cat soleus muscle," J. Physiol., vol. 204, pp.
475-491, 1969.

[18] G. G. Joyce, P. M. H. Rack, and D. R. Westbury, "The mechanical
properties of cat soleus muscle during controlled lengthening and
shortening movements,"J. Physiol., vol. 204, pp.461-474, 1969.

[19] F. J. Julian, "The effect of calcium on the force-velocity relation
of briefly giycerinated frog muscle fibers," J. Physiol., vol. 218,
pp. 117-145, 1971.

[20] F. J. Julian and M. R. Sollins, "Regulation of force and speed of
shortening in muscle contraction," in Cold Springs Harbor Symp.
Quantitative Biol., vol. 37, 1973, pp. 635-646.

[21] L. D. Partridge, "Muscle properties: A problem for the motor
physiologist," in Posture and Movement: Prospective for Inte-
grating Sensory and Motor Research on the Mammalian Nervous
System, R. E. Talbott and D. R. Humphrey, Eds. New York:
Raven, 1979, pp. 189-229.

[22] J. R. Latimer and A. T. Bahill, "Parameter estimation by func-
tion minimization using a modified steepest descent method," in
Modeling and Simulation, Proc. 10th Annu. Pittsburgh Conf,
W. Vogt and M. Mickle, Eds. Pittsburgh, PA: Instrument Society
of America, 1979, pp. 683-690.

[23] A. T. Bahill, "Development, validation and sensitivity analyses of
human eye movement models," CRC Crit. Rev. Bioeng., vol. 4,
issue 4, 1980, in press.

[24] A. T. Bahill, K. J. Ciuffreda, R. V. Kenyon, and L. Stark, "Dy-
namic and static violations of Hering's law of equal innervation,"
Amer. J. Optom. Physiol. Optics, vol. 53, pp. 786-796, 1976.

[25] A. T. Bahill, F. K. Hsu, and L. Stark, "Glissadic overshoots are
due to pulse width errors," Arch. Neurol., vol. 35, pp. 138-142,
1978.

[26] J. B. Selhorst, L. Stark, A. L. Ochs, and W. F. Hoyt, "Disorders
in cerebellar oculomotor control," Brain, vol. 99, pp. 497-522,
1976.

[27] D. A. Robinson, "Models of the saccadic eye movement control
system," Kybernetik, vol. 14, pp. 71-83, 1973.

[28] J. L. Melsa and S. K. Jones, Computer Programs for Computa-
tional Assistance in the Study of Linear Control Theory. New
York: McGraw-Hill, 1970.

A. Terry Bahill (S'66-M'68) was born in Wash-
ington, PA, on January 31, 1946. He received
the B.S.E.E. degree in electrical engineering
from the University of Arizona, Tucson, in
1967, the M.S.E.E. degree in electrical engi-
neering from San Jose State University, San
Jose, CA, in 1970, and the Ph.D. in electrical
engineering and computer science from the Uni-
versity of California, Berkeley, in 1975.
He served as a Lieutenant in the U.S. Navy

teaching mathematics and electrical engineering
for 4 years to the students of the Navy Nuclear Power School, Mare
Island, CA. He has been at Carnegie-Mellon University, Pittsburgh, PA,
since 1976. His research interests include control theory, bioinstrumen-
tation, modeling physiological systems, model validation, and real-time
computer systems. He has recently written a textbook on bioengineering.
Dr. Bahill is a member of the IEEE Engineering in Medicine and

Biology and Systems, Man, and Cybernetics Societies. He is on the
Administrative Committee of the latter. He is a member of Tau Beta
Pi, Sigma Xi, Psi Chi, and is a Registered Professional Engineer.

Jose R. Latimer was born on February 11,
g 1955. He received the B.E. degree in electrical

engineering from Villanova University, Villa-
nova, PA, in 1977, and the M.S. degree in elec-

R trical engineering-bioengineering from Carnegie-
Mellon University, Pittsburgh, PA, in 1979.
He is now with the Applied Physics Labora-

tory, The Johns Hopkins University, Baltimore,
MD. His current interests are in system identi-
fication, estimation, modeling, and applied
systems and control theory.

Mr. Latimer is a member of Tau Beta Pi, Phi Kappa Phi, and Sigma Xi.

B. Todd Troost was born in Mankato, MN, on
July 5, 1937. He received the B.S. degree in
biophysics from Yale University, New Haven,
CT, in 1959, and the M.D. degree in medicine
from Harvard University, Boston, MA, in 1963.
He completed specialty training in neurology

at the University of Colorado Medical Center,
Denver, and pursued neuro-ophthalmology at
the University of California, San Francisco, and
at the University of Miami School of Medicine,
Miami, FL. Currently, he is with the Depart-

ment of Neurology, Case Western Reserve University, Cleveland, OH.
His research interests include ocular motor neurophysiology, control
theory, and computer applications in medicine.
Dr. Troost is Board Certified in Neurology, a member of the Ameri-

can Neurological Association, and a Fellow of the American Academy
of Neurology.

639

Authorized licensed use limited to: The University of Arizona. Downloaded on July 09,2010 at 17:23:11 UTC from IEEE Xplore.  Restrictions apply. 


