Regular Paper

Using Objected-Oriented
and UML Tools for
Hardware Design: A Case

Study

Terry Bahill"" * and Jesse Daniels?

'Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020

’BAE SYSTEMS, San Diego, CA 92127

Received March 21, 2002; Accepted October 8, 2002

ABSTRACT

This paper argues for the adoption of object-oriented design and UML tools for nonsoftware
designs, i.e., systems, hardware and algorithms: This is a controversial position. It presents a
case study, the design of a heating, ventilation, and air conditioning system, using UML tools.
This case study also shows the incremental elaboration used to progress from the require-
ments model, to the analysis model, to the design model, etc. The paper finally discusses
some difficulties that must be overcome in order to apply UML tools to system designs. © 2002
Wiley Periodicals, Inc. Syst Eng 6: 28-48, 2003.

Key words: unified systems engineering process; unified modeling language; UML; design
tools; object-oriented design; object-oriented systems engineering; engineering communi-

cation

1. INTRODUCTION

Most 20th century systems were primarily mechanical
hardware systems. Most 21st century systems will be

*Author to whom all correspondence should be addressed (e-mail:
terry @sie.arizona.edu).

Systems Engineering, Vol. 6, No. 1, 2003
© 2002 Wiley Periodicals, Inc.

28

primarily electronic software systems. In moving from
the 20th to the 21st century, systems engineering tools
should evolve. It would be nice if these new tools were
used by both systems and software engineers. It would
also be nice if systems and software engineers spoke the
same language.

Software engineers traditionally have been about 5
years ahead of systems engineers in creating computer
tools to help them do their jobs. Fifteen years ago
software engineers developed CASE tools; 10 years ago

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 29

systems engineers developed requirements tools like
RDD-100, DOORS, Slate, RTM, Excel etc. Within the
last 5 years, they created the Unified Modeling Lan-
guage (UML), a Unified Software Development Proc-
ess [Jacobson, Booch, and Rumbaugh, 1999] and the
Rational Unified Process [RUP, 2002]. We think it is
time for systems engineers to adopt some of these tools.

To design systems, systems engineers use require-
ments, specifications, block diagrams, scenarios, time-
lines, functional decomposition, functional flow block
diagrams, finite state machine diagrams, verification
matrices, etc. [Bahill et al., 1998]. There is no standard
usage, however, and these tools do not link together. The
software folks have taken these tools, improved them,
and made them interact. Then, they created a standard
for using these tools, a standard that most universities
are teaching and hundreds of companies are using.

The Unified Modeling Language™ (UML) is a
standard for specifying, visualizing, constructing and
documenting system designs. It encourages hierarchi-
cal designs. The UML is a collection of tools for com-
municating system designs [Fowler and Scott, 2000].

The UML supports about nine views of a system.
There are two important reasons why so many views
are used. First, a system cannot be described with only
one view: multiple views are necessary. Second, much
of the information in a UML model appears in several
views. This produces double-checking and incremental
growth of the models. However, using UML support
tools, you only have to change an item in one place, and
the change automatically propagates throughout all the
views.

1.1. Problem Statement: The Deficiency

Systems engineering design tools are old-fashioned,
they do not link together, and they are used differently
by different people. Systems and software engineers do
not communicate well. Some systems engineers are still
using waterfall processes. Flow-down of requirements
often causes excess design margins and expensive re-
designs. Late changes in requirements cause costly
redesign.

1.2. Unified Systems Engineering Process

The Unified Systems Engineering Process [based on
Bahill and Gissing, 1998; Jacobson, Booch, and Rum-
baugh, 1999] is iterative and incremental. It does not
use a waterfall process. In a waterfall process, the
requirements are flowed down from top-level require-
ments. This produces multiple analyses of requirements
at each new level of detail. It causes design margins to
increase at each new level, creating requirements that
are more stringent than necessary. Finally, if the require-

ments are not achievable at the lowest level, specifica-
tions and designs must be radically changed.

Instead, the Unified Systems Engineering Process
uses vertical requirements development in which each
requirement (use case) is developed through iterative
increments: the requirements model, the analysis
model, the design model, etc. The behavioral require-
ments (use cases) and supplemental requirements (per-
formance, reliability, usability, maintainability
requirements) are analyzed and expanded during each
iteration. Each iteration involves push back on un-
achievable requirements and a series of negotiations
and tradeoffs between systems engineers, designers and
stakeholders.

The Unified Systems Engineering Process, shown in
Figure 1, has time running from left to right through the
system lifecycle: Inception, Elaboration, Construction,
Transition, and Operation, Retirement and Replace-
ment. The orthogonal direction shows the development
of the design though the various models: Requirements,
Analysis, Design, Implementation, Verification and
Operations.

The Unified Systems Engineering Process has five
major themes: (1) requirements (get them early and get
them right, but plan for change), (2) architecture (design
the interfaces early), (3) use and reuse components, (4)
plan frequent small iterations, and (5) manage risk (start
risk analysis early and develop high-risk subsystems
first).

1.3. Advantages

The Unified Systems Engineering Process is based on
what the software community calls object-oriented de-
velopment. Douglas [2000] described the following
advantages of object-oriented development: (1) The
same modeling tools and views are used in all phases
of development. Therefore, there is a consistency be-
tween the models mentioned in Figure 1. This is doubly
an advantage when systems engineers hand over a
design to software engineers. (2) Object-oriented mod-
eling has a strong cohesion among data items and the
functions that manipulate them. This improves problem
domain abstraction. (3) Because many object-oriented
abstractions are based on the real world, they are more
stable. Accommodating changing requirements may
necessitate the addition or removal of objects, and the
reassignment of responsibilities among objects, but it is
less likely to require a total reconstruction of the system.
(4) The techniques of generalization and refinement
improve prospects for reuse. (5) The abstraction and
encapsulation properties of object-oriented models al-
low a looser coupling between components and pro-
vides further resilience to change. This, along with the

30 BAHILL AND DANIELS

Life Cycle Phases

| I I |
Models| Inception [Elaborationy Construction | Transition |

Requirements

Analysis

Design

Implementation

Operation,
Retirement &
Replacement

'

|
|
|
|
|
|
I
|
|
|
]
|
|
|
|

|
|
|
Verification| g |[
|

|
|
|
|
I 1
Operations i . ! l : :
lter. | lter. | lter.} | ! | P !lter. | Iter.
#1 1 #2 | #3 1 | \ i | 1 | 1#n-11 #n
lterations Time —»

Figure 1. The Unified Systems Engineering Process.

previously mentioned consistency of views from analy-
sis to design to implementation, creates better scalabil-
ity to large systems. (6) Better abstraction,
encapsulation, and definition of interfaces improves
reliability, because you can control how the compo-
nents interact. (7) Object-oriented systems are inher-
ently concurrent, which enhances the ability to model
complex, real-world systems where concurrency is also
inherent.

In addition, Marasco [2002] emphasizes that the
UML tools are universal and graphical. A picture is
worth a thousand words, because humans are visual
creatures. Figure 2 [based on Marasco, 2002] shows
some graphical symbols from ancient disciplines. They

2+2="7

Figure 2. These four questions are posed nonverbally.

are understandable without words of explanation. They
communicate among diverse peoples. Someday the
UML tools might be just as universal.

1.4. The Controversy

In this paper, we argue for the adoption of UML tools
for hardware and algorithm design. Others share our
sentiments; see, for example, Ogren [2000], Bienvenu,
Shin, and Levis [2000], and the OMG Systems Engi-
neering Domain Special Interest Group (OMG SE
DSIG) at http://sysengr.omg.org. But this proposition
is controversial. Many systems engineers argue vocif-
erously that systems engineers should not use UML
tools. Time will tell.

When Raytheon submitted their preliminary pro-
posal for the DD(X) program, the customer said their
use of object-oriented design and UML tools for system
design was a “weakness.” Eighteen months later in May
2002 when they won the proposal, the customer said
that their use of object-oriented design and UML tools
for system design was a “major strength.” It had sys-
tems and software engineers talking the same language
[Brian Wells, personal communication, 2002].

In 2001, Lockheed Martin won the Joint Strike
Fighter (JSF) program. Early on they noted a govern-
ment suggestion in the RFP that object-oriented design
and UML tools be used for the system design. Lockheed
Martin’s proposal was substantially superior in this
aspect.

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 31

1.5. What the UML Is Not

The UML design tools do not replace all other tools.
You still need Mathematica, MatLab, Maple, Microsoft
Project, Kalman filters, Minitab, etc. Also, you still
have to create measures of effectiveness and investigate
alternative designs so that you can do tradeoff studies,
define system boundaries, run simulations, decide on
“make or buy,” do configuration management and per-
form sensitivity analyses. The UML does not supplant
Linear Systems Theory or Statistics. In selecting actors,
classes, and functions, the systems engineer must still
avoid using preconceived solutions as statements of the
problem. The UML does not fill the shoes of intelli-
gence or creativity. A fool with a tool is still a fool. You
can bungle a design using UML just as easily as any
other tool.

The rest of this paper is a case study illustrating the
Unified Systems Engineering Process and some of the
UML tools. A reader unfamiliar with the UML might
want to read the Appendix first.

2. CASE STUDY: AN HVAC SYSTEM

2.1. Case Study Problem Statement

Design a heating, ventilation and air conditioning
(HVAC) system for a typical Tucson family house.
Assume that the outside air temperature varies between
25°F and 115°F (-4°C and 46°C) and that the room
temperature is supposed to stay between 70°F and 73°F
(21°C and 23°C). The primary components, of this
HVAC system are the heater, air conditioner, fan,
thermostat, and controller. Please note that Section 3 of
this paper is a glossary of HVAC specific terms.

2.2. The Requirements Model

The requirements model establishes what the system
should do and defines the boundaries of the system. It
should start with an investigation of the highest risk
aspects of the proposed system. High-risk aspects are
identified by analyzing behavioral threads through the
system, possibly constrained by performance measures,
which are flagged as high priority by the customer. New
or advanced technology and complex algorithms may
also contribute to the risk. The requirements associated
with such characteristics of the system should be thor-
oughly validated. The requirements model starts with a
skeleton of these high-risk functions. The essence of
this model, and the fundamental basis of the Unified
Systems Engineering Process, is the use case.

2.2.1. Use Cases

A use case is an abstraction of a required function of a
system. A use case is described by a sequence of inter-
actions between one or more actors and the system.
[Cockburn, 2001; Kulak and Guiney, 2000].

2.2.1.1. Use Case Example

Name: Regulate Temperature.

Brief description: Maintain the room temperature
(roomTemp) between lowerThreshold (see
Rulel) and upperThreshold (see Rule2) degrees
Fahrenheit using a Heater and an Air Conditioner.

Scope: An HVAC controller for a typical Tucson
family house.

Primary actor: Home Owner.

Supporting actors: Heater, Air Conditioner, and
Environment.

Precondition: All equipment is in good working
condition.

Main Success Scenario:

1. The Home Owner turns on the Controller and sets
the temperature thresholds.

2a. The roomTemp exceeds upperThreshold.

3. The system turns on the Air Conditioner.

4. The roomTemp drops below upperThreshold.

5. The system turns off the Air Conditioner [repeat
at step 2].

6. Home Owner turns off the Controller

Anchored Alternate Flow:

2b. The roomTemp drops below lowerThreshold.

2bl. The system turns on the Heater.

2b2. The roomTemp exceeds lowerThreshold.

2b3. The system turns off the Heater [repeat at step
2].

Rules:

Rulel: lowerThreshold default value is 70°F.

Rule2: upperThreshold default value is 73°F.

Author: Terry Bahill

Date: January 1, 2002

This is a simplistic example of a use-case descrip-
tion. This use case describes how the primary actor,
Home Owner, expects to use the Controller and also
how the Home Owner expects the system to operate as
a result of the Home Owner’s interactions with the
system. The engineer designing the Controller for this
system would accept this use case as input to understand
how the controller is to be used by the Home Owner,
and how the Home Owner expects the system to oper-
ate. Then, in accordance with the Unified Systems
Engineering Process, the controller designer would
write lower level use cases based on this one that
describe the exact algorithm for controlling the inter-
faces between the Air Conditioner and Heater, as well

32 BAHILL AND DANIELS

as specify the protocol for communicating with these
external systems (to the Controller designer, anyway).

This use case would also be very important to poten-
tial users and user interface designers. Potential users
of the system can provide input and suggestions to the
operation of the system through a use case such as this
one. The use case serves as a communication tool
between the systems engineers and the user community.
User interface designers can extract information that
helps them design an efficient interface based on the
usage of the system as described in the use case.

There is no standard that specifies which fields
should be in a use-case description. Your minimal set
should be based on your company requirements’ tem-
plate. The number of fields and the detail in each field
increases as the design progress from the requirements
model to the analysis model to the design model to the
implementation model. Bahill’s use case template is
available at http://www.sie.arizona.edu/sysengt/slides/
templates.doc.

2.2.1.2. Definitions

A use case is an abstraction of a required function of a
system. A use case produces an observable result of
value to the user. A typical system will have many use
cases each of which satisfies a goal of a particular user.
Each use case is described by a sequence of interactions
between one or more actors and the system. This se-
quence of interactions is described in a use case de-
scription and the relationships between the system and
its actors are portrayed in a use-case diagram.

A use case description is written in a natural lan-
guage. It is written as a sequence of numbered steps
with a main success scenario and alternate flows. It
contains the name of the use case, a brief description
and the sequence of steps: it may also contain its level,
the scope, the primary and supporting actors, precondi-
tions, postconditions, the trigger, the priority, the fre-
quency of use, and the owner/author. The steps should
be written in clear, concise, present tense, active voice.

Actors reflect roles of things outside the system that
interact with the system. Primary actors initiate the
functions described by use cases. Supporting (or secon-
dary) actors are used by the system. They are not a part
of the system, and thus cannot be designed or easily
altered. They often represent external systems or com-
mercial off the shelf (CotS) components.

2.2.1.3. Another HVAC Use Case
Name: Display System Status.
Brief description: The system shall monitor the
health of each component in the system and
display the status of the complete system.

Scope: An HVAC controller for a typical Tucson
family house.

Primary actor: Home Owner.

Frequency: System Status shall be displayed con-
tinuously.

Main Success Scenario:

1. The Home Owner asks the system for its status.

2. Each component in the system reports its status
to the Controller.

3. The system accepts this information and updates
the system status display.

4. The Home Owner observes the System Status
[repeat at step 1].

Author: Terry Bahill

Date: January 1, 2002

Most fields in a use-case description are optional:
Use them when they are useful; do not use them when
they are not. An exception is the scope: The scope is
almost always useful. In this example, the design would
be quite different if the scope were an HVAC system for
auniversity or an automobile. The scope is the same for
each use case in this household HVAC system. This is
not true in general, and defining the scope, or the system
boundaries, is a difficult task.

2.2.2. A Use-Case Diagram

A use-case diagram, as shown in Figure 3, shows the
relationships between the use cases and the actors. The
Unified Systems Engineering Process is architecture
based. It also requires investigation of alternatives, risk
analyses and business analysis.

2.2.3. Other Important Parts of the Requirements
Model

Candidate Architecture. We plan to use a natural
gas heater and an electric air conditioner. There
will be one central thermostat.

Alternatives. An important task is investigating al-
ternative designs. For our HVAC system, we will
also consider electric heat, wood, oil, coal, heat
pumps, solar panels, three-phase electricity,
steam, hot or chilled water systems, fans, ice
farms and cooling towers. In our tradeoff study,
we will use criteria like total life cycle cost and
performance. A possible performance measure of
effectiveness would be how quickly the system
can heat or cool the house by 10°F.

Preliminary Risk Analysis. At this point, we have
identified three major risks: (1) The capacity
might be inadequate to heat or cool the house. We
will investigate typical equipment in a dozen
Tucson homes and also use professional guide-
lines in selecting equipment. (2) The air condi-

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 33

Home Owner

Display System Status

)
A
7
L - ,/ \
Heater

~

’

E¥neatair()

Figure 3. Requirements-model use-case diagram.

tioner could be too expensive for the homeowner.
We will be cognizant of his and her budgets. (3)
If the air conditioner were to turn on and off every
minute, it would be very annoying.

Initial Business Case. On a hot day, an air condi-
tioner can use $7 of electricity. On a cold day, a
heater can burn up $3 of fuel. The annual cost of
operating this system is a measure of perform-
ance that should be tracked.

2.3. The Analysis Model

The analysis model serves as a point of inflection in our
modeling effort. While the requirements activity fo-
cuses on the “voice of the customer,” the analysis
activity shifts that focus to the “voice of the designer.”
In analysis, we begin to reason about architectural
components, or classes, and the relationships among
them. These decisions are diagrammed with additional
UML models.

Analysis starts with the skeleton use cases derived
in the requirements model. It adds muscle to those
skeletons and then creates more skeleton use cases. In
our HVAC case study, our customer has just given us a
new nonfunctional performance requirement. If the air
conditioner were to turn on and off every minute, it
would be very annoying. Therefore, on—off cycles
should last at least 15 minutes. Creating a temperature
dead zone is one obvious solution for this problem.

2.3.1. Analysis-model Use Cases

In moving from the requirements model to the analysis
model, use cases should be added and details should be

added to the existing use cases as decisions are made
during the analysis-modeling activity. Here we have
decomposed the Regulate Temperature use case into
Cool House and Heat House use cases, and we have
added detail to all use cases.

Name: Cool House.

Brief description: When it is hot outside, cool the
house with an Air Conditioner (AC) and maintain
the room temperature (roomTemp) between
ACLowerLimit (see Rule2) and ACUpperLimit
(see Rule3) degrees Fahrenheit.

Scope: An HVAC controller for a typical Tucson
family house.

Primary actor: Home Owner.

Supporting actor: Air Conditioner.

Frequency: The system operates continuously.

Precondition: The Home Owner has turned on the
cooling system and the roomTemp is between
ACLowerLimit and ACUpperLimit.

Main Success Scenario:

1. The roomTemp exceeds ACUpperLimit.

2. The system turns on the Air Conditioner [in ac-
cordance with Rulel].

3. The roomTemp drops to the ACLowerLimit.

4. The system turns off the Air Conditioner [Rulel]
[exit use case].

Rules:

Rulel: When the Air Conditioner is on, turn the Fan

on.
When the Air Conditioner is off, turn the Fan
off.

Rule2: ACLowerLimit default value is 72°F.

34

BAHILL AND DANIELS

Rule3: ACUpperLimit default value is 73°F.

Nonfunctional performance requirement: On-off
cycles should last at least 15 minutes.

Author/owner: Terry Bahill

Date: January 8, 2002

Name: Heat House.

Brief description: When it is cold outside, heat the
house with a Heater and maintain the roomTemp
between heaterLowerLimit (see Rule2) and
heaterUpperLimit (see Rule3) degrees Fahren-
heit.

Scope: An HVAC controller for a typical Tucson
family house.

Primary actor: Home Owner.

Supporting actor: Heater.

Frequency: The system operates continuously.

Precondition: The Home Owner has turned on the
heating system and the roomTemp is between
heaterLowerLimit and heaterUpperLimit.

Main Success Scenario:

1. The roomTemp falls below heaterLowerLimit.

2. The system turns on the Heater [in accordance
with Rulel].

3a. The roomTemp rises to the heaterUpperLimit.

4. The system turns off the Heater [Rulel] [exit use
case].

Alternate Flows:

3b. Home Owner smells “gas.”

3bl. Home Owner turns off the Heater [exit use
case].

Rules:

Rulel: When the Heater is on, turn the Fan on.

When the Heater is off, turn the Fan off.

Rule2: heaterLowerLimit default value is 70°F.

Rule3: heaterUpperLimit default value is 71°F.

Nonfunctional performance requirement: On—
off cycles should last at least 15 minutes.

Author/owner: Terry Bahill

Date: January 8, 2002

Name: Display System Status.

Brief description: The system shall monitor the
health of each object in the system and display
the status of the complete system. The display
could be a simple go/no-go or it might be more
sophisticated.

Scope: An HVAC controller for a typical Tucson
family house.

Primary actor: Home Owner.

Frequency: The system shall display System Status
continuously.

Main Success Scenario:

1. The Fan reports status to the Controller.

2. The Air Conditioner reports status to the Control-
ler.

3. The Heater reports status to the Controller.

4. The Thermostat reports status to the Controller.

5. The Controller computes the System Status and
sends results to the Thermostat.

6. The Thermostat displays the System Status.

7. The Home Owner observes the System Status
periodically [repeat at step 1].

Author/owner: Terry Bahill

Date: January 10, 2002

Figure 4 shows the use-case diagram for the analy-
sis-model use cases.

2.3.2. Potential Classes

A class is an abstraction of common properties from a
set of similar objects. For example, the class mammal
would contain dogs, tigers, and platypuses. Their com-
mon properties are that they have fur, are homoeother-
mic and feed their offspring milk.

Now, we need to identify the classes that may be
needed in our HVAC system. Thinking about key ab-
stractions, we get Heater and Air Conditioner (AC).
Thinking about interfaces, gives us the Thermostat, the
Heater Interface, and the Air Conditioner Interface.
Most systems have a controller, such as our Regulate
Temperature Controller. Underlining nouns in the prob-
lem statement and use cases gives us the Fan and Room
Temperature. Douglas [2000] gives many more strate-
gies for identifying classes.

Next, we identify particular instances of these
classes, called objects. For this case study we used the
objects :Thermostat, :Controller, : AC Interface and :Air
Conditioner.

2.3.3. Collaboration Diagram

The analysis model often introduces a new view, the
collaboration diagram, which shows sequential mes-
sages being passed between these objects [Gomaa,
2000]. Figure 5 shows such a collaboration diagram.

2.3.4. Class Diagram

The collaboration diagram helps us understand the re-
lationships between the classes. These relationships are
shown in the class diagram, as shown in Figure 6. Each
class box nominally has three compartments: the top
contains the name, the middle lists the attributes, and
the bottom lists the operations, which are the functions
[Oliver, Kelliher, and Keegan, 1997: 44].

2.3.5. Other Important Parts of the Analysis Model

Candidate Architecture. To ameliorate the risk of
being too expensive, we have decided to switch to a
piggyback cooling system. In the winter, the house will

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 35
p— M
\\\ /// i //;\\
/ T 7N
) s Heat House Heater
,,// (from Business Use-Case Model)
7 J———
e -~ i
o E¥heatair)
Ny -
J - / \)
= \\ /
/ T \\\\
Cool Ho T~
Home Owner . ° use T~
(from Business Use-Case Model) N T — (’" ~
=\
\\ - /K
. /
\ Air Conditioner

(from Business Use-Case Model)

f¥coolAin)

Display System Status

(from Business Use-Case Model)

Figure 4. Analysis-model use-case diagram.

use a natural-gas heater. In the spring and fall, it will
use an evaporative cooler. And July to September, it will
use a 220-V electric air conditioner. A Cooling System
is a generalization of the classes Evaporative Cooler and
Air Conditioner. There will be one central thermostat
for all three systems. Because of our new performance
requirement that the on—off cycles should last at least
15 minutes, we have a new measure of effectiveness:
average duration of on—off cycles.

Interface Definition. During the discovery of po-
tential classes in the analysis model, thought should be
given to the interfaces between these classes. The port,
connector, and protocol concepts of the future UML 2.0
release can be used to define interfaces in a UML model
[Hofmeister, Nord, and Soni, 2000; U2 Partners, 2001].

A port represents an interaction point between con-
ceptual classes or components in a UML model. A port
may be used to model both inputs and outputs of a class.
A port obeys a well-defined protocol. The protocol
should be described in terms of incoming and outgoing
messages that flow into and out of the ports. Sequence
diagrams can be used to show the time-sequenced re-
ceipt and dispatching of messages that define the pro-
tocol. A connector joins two ports and serves as a

conceptual communications path between the classes.
A connector may be physical or conceptual.

Interfaces between classes can be described by de-
fining and describing the ports associated with each
class (both input and output ports should be consid-
ered), the protocol expected when communicating with
the class through each port, and the connectors between
the classes. See Hofmeister, Nord, and Soni [2000] and

1: set(tooHot)
4: reset(tooHot)

: Thermostat > | : Controller
e]
2:turnOnAC
5: turnOffAC
: Air :AC
Contoner [< Intertace |
3:turnOn
6: turnOff

Figure 5. Analysis-model collaboration diagram.

36 BAHILL AND DANIELS

Thermos tat

Controller
muppeﬂhreshold :Integer=73 m
B2ACIlowerThreshold : Integer = 72 goocmd e

&room Temperature : Integer

&FheaterUpperThreshold = 71 et)
@nheaterLowerThreshold = 70 @

—X

eset() / Air Conditioner
/‘g\ / (from Business Use-Case Model)
| / gl
| o E8coolair()
% gurnom)
umot()
N) e
Home Owner Heater Interface .
(from Business Use-Case Model) ", >
E8urnonHeaten) "/ """"
WOt ete) The Heater and AC \ 7N
Interfaces should also Heaker
have functions that turn !
MaEanob andon ' (from Business Use-Case Model)
8heatair()
Figure 6. Analysis-model class diagram.
U2 Partners (http://cgi.omg.org/docs/ad/01-11-01.pdf) should contain more concise business rules that exer-
for a more detailed treatment. cise many alternative paths through the use case.
Risk Analysis. At this point, we have identified two
major risks: (1) The capacity might be inadequate to Name: Cool House.
heat or cool the house. So, in selecting equipment, we Brief description: When it is hot outside maintain
will consult HVAC specialists as well as electrical and the room temperature (roomTemp) between
mechanical engineers. (2) The air conditioner could be C(.)O].CI‘LOWCI‘lelt (see Rule2) and coolerUpper-
too expensive for the homeowner. We have mitigated Limit (see Rule3) degrees Fahrenheit using a
Cooler (either an Evaporative Cooler or an Air

this risk by using a piggyback cooling system.

The Business Case. Assume the system is for an
existing 2000 square foot house. On the hottest of days,
without adequate insulation and careful caulking an air
conditioner can cost as much as $7 a day. On a very cold
day, heating could cost as much as $3 a day. Several
aspects of the business case are given in Table I. The
business case should also investigate schedule, cost, and
performance.

Conditioner).

Scope: An HVAC controller for a typical Tucson
family house.

Level: Low.

Primary actor: Home Owner.

Supporting actor: Cooler.

Frequency: The system operates continuously.

Precondition: The Home Owner has turned on the
system, the system mode is Cooler, system state
is Cooler Off, and the roomTemp is between
coolerLowerLimit and coolerUpperLimit.

The design model takes the skeletons and the muscular- Trigger: The roomTemp exceeds coolerUpper-

ized skeletons developed in the analysis model and then Limit.

adds muscle to the skeletons, develops the muscularized

skeletons, and adds new skeleton use cases. It also

further develops the system’s classes. The Unified Sys-

tems Engineering Process uses iterative, incremental Maximum

elaborations. Our design model must accommodate the Purchase ~ Annual — Daily

2.4. The Design Model

TABLE I. Part of the Business Case

.) System Capacity Price Maintenance Cost
new piggyback cooling system.
Heater 100,000 $ 500 $ 40 $3
2.4.1. Design-model Use Cases) BTU
As with analysis modeling, design modeling is likely to g‘(’)ﬁgaﬂve Zg)or?l $ 500 $ 50 $1
produce more inputs into the use case model as specific Air Conditioner 4 tons $3000 $250 $7

design areas are finalized. The elaborated use cases

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 37

Main Success Scenario:

1. The system turns on the Cooler [in accordance
with Rulel].

2. The roomTemp drops to the coolerLowerLimit.

3. The system turns off the Cooler [Rulel] [exit use
case].

Rules:

Rulel: When the Air Conditioner is on, turn the Fan
on.

When the Air Conditioner is off, turn the Fan

off.

Rule2: coolerLowerLimit default value is 72°F.

Rule3: coolerUpperLimit default value is 73°F.

Nonfunctional performance requirement: On—
off cycles should last at least 15 minutes.

Author/owner: Terry Bahill

Date: January 31, 2002

Name: Heat House.

Brief description: When it is cold outside, maintain
the roomTemp between heaterLowerLimit (see
Rule2) and heaterUpperLimit (see Rule3) de-
grees Fahrenheit using a Heater.

Scope: An HVAC controller for a typical Tucson
family house.

Level: Low.

Primary actor: Home Owner.

Supporting actor: Heater.

Frequency: The system operates continuously.

Precondition: The Home Owner has turned on the
system, system mode is Heater, system state is
Heater Off, and roomTemp is between heater-
LowerLimit and heaterUpperLimit.

Trigger: The roomTemp falls below heaterLower-
Limit.

Main Success Scenario:

1. The system turns on the Heater [in accordance
with Rulel].

2a. The roomTemp rises to the heaterUpperLimit.

3. The system turns off the Heater [Rulel] [exit use
case].

Alternate Flows:

2b. Home Owner smells gas.

2bl. Home Owner turns off Heater [exit use case].

Rules:

Rulel: When the Heater is on, turn the Fan on.

When the Heater is off, turn the Fan off.

Rule2: heaterLowerLimit default value is 70°F.

Rule3: heaterUpperLimit default value is 71°F.

Nonfunctional performance requirement: On—
off cycles should last at least 15 minutes.

Author/owner: Terry Bahill

Date: January 31, 2002

Name: Display System Status.

Brief description: The system shall monitor the
health of each object in the system and display
the status of the complete system. This display
should simply indicate ready or fault.

Scope: An HVAC controller for a typical Tucson
family house.

Level: Medium

Primary actor: Home Owner.

Frequency: The systemStatus shall be computed
periodically (e.g. every minute) or it may be event
driven (e.g., on each state transition). The system
shall display the systemStatus continuously.

Precondition: None.

Main Success Scenario:

1. The Fan Interface executes its Built in Test (BiT)
for the Fan and the Fan Interface and reports the
results to the Controller.

2. The Air Conditioner Interface executes its BiT
and reports the results to the Controller.

3. The Evaporative Cooler Interface executes its
BiT and reports the results to the Controller.

4. The Heater Interface executes its BiT and reports
the results to the Controller.

5. The Thermostat executes its BiT and reports the
results to the Controller.

6. The Controller executes its BiT and computes the
systemStatus.

7. The Controller sends the systemStatus to the
Thermostat.

8. The Thermostat displays the systemStatus.

9. The Home Owner observes the systemStatus pe-
riodically [repeat at step 1].

Author: Terry Bahill

Date: January 31, 2002

Note: Other system modes that could be displayed
by the same display unit include on/off,
heat/cool, fan/auto.

Name: Set Temperature Limits.

Brief description: Home Owner changes the HVAC
limits.

Scope: An HVAC controller for a typical Tucson
family house.

Level: Medium.

Primary actor: Home Owner.

Frequency: Daily.

Precondition: systemStatus must be ready.

Main Success Scenario:

. Home Owner sets coolerUpperLimit.

. Home Owner sets coolerLowerLimit.

. Home Owner sets heaterUpperLimit.

. Home Owner sets heaterLowerLimit.

. Exit Set Temperature Limits use case.

R O I S R

38 BAHILL AND DANIELS

Postcondition: All four limits are set.

Author/owner: Terry Bahill

Date: January 31, 2002

Alternative designs:

1. The Home Owner might set the upperLimits and
a deadZone.

2. The deadZone might be fixed (at say 2°F) and the
Home Owner only sets the coolerUpperLimit
and the heaterLowerLimit.

3. Use a timer instead of a dead zone.

Energy saving hints: Raise the Air Conditioner
limits 1°F for each hour that the house will be
unoccupied. Do not switch back and forth be-
tween the evaporative cooler and the air condi-
tioner more frequently than weekly.

Name: Choose Equipment.

Brief description: Home Owner selects the equip-
ment to turn on: heater, air conditioner, or evapo-
rative cooler.

Scope: An HVAC controller for a typical Tucson
family house.

Level: High.

Assume that if the Home Owner wants heating and
cooling on the same day, then he or she will
switch back and forth manually.

Primary actor: Home Owner.

Frequency: There is an annual cycle.

Precondition: systemStatus must be ready.

Main Success Scenario:

1. March 21 Home Owner turns Heater off and
Evaporative Cooler on.

2. June 21 Home Owner turns Evaporative Cooler
off and Air Conditioner on.

3. September 21 Home Owner turns Air Conditioner
off and Evaporative Cooler on.

4. November 21 Home Owner turns Evaporative
Cooler off and Heater on [cycle back to step 1].

Postcondition: One of the three systems is turned
on.

Author/owner: Terry Bahill

Date: January 31, 2002

Alternative designs: Instead of switching on fixed
dates, we could use rules to determine when to
switch from heater, to cooler, to AC. Rule inputs
would be average humidity, dew point tempera-
ture, lowest daily temperature, cost of AC, cost
of evaporative cooling, number of days since the
last switch and customer preferences.

Other use cases that might be considered for this
HVAC system include “Switch Fan between Automatic
and On” (this would change Rulel), “Control Humid-
ity,” and “Ventilate with Fresh Air.”

Figure 7 shows the design-model use-case diagram.
This diagram serves as a table of contents for the
design-model use cases. That is, all of the use cases that
have been developed for the model are shown on this
diagram, and only those use cases are shown.

2.4.2. Sequence Diagrams

Sequence diagrams show the messages (or commands)
being passed between the objects for one particular
instance of one flow of one use case. A sequence
diagram contains the same information as a collabora-
tion diagram: it is just displayed differently. In fact, the
computer usually creates one from the other. Figure 8
shows a sequence diagram for the normal operation of
the Cool House use case. Figure 9 shows a sequence
diagram for the normal operation of the Heat House use
case. Figure 10 shows a sequence diagram for the
alternate flow of the Heat House use case when the
Home Owner smells “gas.”

2.4.3. Design-model Class Diagram

In the design model, we will add detail to the classes
identified in the analysis model and we will add more
classes. For each class we might add attributes, respon-
sibilities, stereotypes, roles, dependencies, associations
or multiciplicies.

Attributes: For each attribute we show
name: Type = default value
Thermostat
coolerUpperLimit: Integer = 73
| HvACController |
sy

_House /
Heater

 Set

Tempe.ratub,

S /

Cool Evaporative
House Cooler

Choose ™\
Equipment
System Air

Display
Status Conditioner

>0

T
€]
3
®

o
=
5
]

Figure 7. Design-model use-case diagram.

: Thermostat

from top to
bottom.

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN

: Controller

: AC Interface

} Air Conditionemr;
*
L

' roomTemp >= coolerUpperLimit

roomTemp=<coolerLowerLimit

turnOnAC

T
1
I
i
|

The arrows are labeled with messages or commands. i\
Asequence diagram shows onlyone flow.

turnOffAC

T
|
|
|
|
|
1
'
1
|
|
|
1

turnOn

turnOff

—- -

Figure 8. Design-model sequence diagram for Air Conditioner normal operation.

: Thermostat

Time runs
from top to
bottom.

I roomTemp=<heaterLowerLimit |

roomTemp>=heaterUpperLimit

T
i
|
|
'
1

: Controller :Heater # :Heater

Interface |

I |

1 1 1

| 1

I |

tumnOnHeater | |

‘ |

I

turnOn !

turnOffHeater

turnOff

|
|
I
'
1
|
!
1

R R |

Figure 9. Design-model sequence diagram for Heater normal operation.

39

40 BAHILL AND DANIELS

|

turnOI'1Heater

roomTemp<=heaterLowefLimit
| 1

turnOnHeater

turnOn

|
|
|

turnOff

|
|
>
|
>
|
|

/[turnOffHeater
|
|
|

Figure 10. Design-model sequence diagram when the Home Owner smells gas.

coolerLowerLimit: Integer = 72
heaterUpperLimit: Integer = 71
heaterLowerLimit: Integer = 70
roomTemp: Integer
Controller
systemStatus: Boolean = fault
Thermostat operations

roomTemp >= coolerUpperLimit could be renamed
contactsClosed.

roomTemp <= coolerLowerLimit could be re-
named contactsOpened, etc.

This level of detail would be appropriate for an imple-
mentation model, but a design model should stay closer
to the problem domain and farther from the solution
domain.

Other classes that may be necessary: Calendar,
Timer, and Algorithm (for selecting equipment).

Figure 11 shows the class diagram for this model.
However, this is an impoverished example of a class
diagram. It lacks associations, roles, multiplicities, visi-
bility, etc. This often happens with extremely simple
hardware examples. We could make the diagram richer
by positing a class called Cooler, of which Air Condi-

tioner and Evaporative Cooler are subtypes; this would
show the inheritance relationship. We could add multi-
plicities, but most are one, except the Home Owner and
the evaporative cooler could be one or two. However,
too much detail may confuse rather than clarify. Be-
cause actors are not a part of the system being designed,
they are often excluded from class diagrams.

2.4.5. Statechart

A statechart shows the dynamic behavior of an object
[Douglas, 2000; Gomaa, 2000]. Statecharts are typi-
cally constructed to understand the behavior of Active
Classes. An active class represents a thread of control
in the system. Objects that are instances of active classes
can initiate communication with other classes and serve
to control the overall flow for a particular behavioral
thread—usually to help satisfy a given use case. Figure
12 shows the statechart for the controller class in our
system.

2.4.6. Other Stuff
Because we switched to a piggyback cooling system,
we now have an evaporative cooler, which is inexpen-
sive, but it does not have a small dead zone. This
therefore necessitates a new measure of effectiveness:
excursions out of the dead-zone; number, size, and
duration.

Infrastructure. The house will need to have a gas
line, a water line, a drainpipe, 110- and 220-V electric-
ity and air ducts.

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 41

Thermostat <<active>> AC Interface N
. ™
oolerUpperLimit : Integer = 73 Controller -
oolerowerLimit : Integer = 72 ElsystemStatus : Boolean = fault}-——— EJUMONAC() ———=>
#&neaterUpperLimit : Integer = 71 EBumOftAC() VAN
“aheaterLowerLimit: Integer= 70" =)) .
EAroom Temp : Integer Air Conditioner
\ \\ (from Use Case View)
?rr?)pareﬂoom TempToLimits() \\ Evaporative Cooler _gml_l_;w
\ 00l Air
@displaySystemStatus) \ Interiace 0
X \\ urnOnEvapCooler() ~
\ umnOffEvapCooler() ™. . Q)
; BIT() = i
I \
7 \ VRN
\
S ; A Evaporative Cooler

Home Owner

(from Use Case View)

Notes: The bottom third of each
class boxlists the functions, which

(from Use Case View)

Heater

are also called operations or
responsibilities. ol letoee I (from Use Case View)
BiT stands for Builtin Test. .
rmOnFan() = >)
MU rnOffFan () RN
3BiT()
Fan

(from Use Case View)

E¥biowAir()

Figure 11. Design-model class diagram.

2.5. Implementation Model

In this case study, we did not do anything for the
implementation model because we are designers, not
builders. We would hire specialty engineers to help us
construct the implementation model. The class descrip-
tions would contain or reference manufactures’ names,
models, and specifications. This model should also
contain schematic diagrams, blueprints, deployment
diagrams, etc. Most importantly, it would be based on
our design model using the same UML tools. Of course,
we already got advice from these specialty engineers in
the first phase of the project where we defined the
operational scenario.

2.6. Verification Model

System verification means building the system right:
ensuring that the system complies with its requirements
and conforms to its design. Requirements verification
means proving that each requirement has been satisfied:
this can be done by inspection, modeling, simulation,
analysis, test or demonstration.

Plans for testing the system should start at the begin-
ning of the project. Tests should be performed at the end
of each iteration. The following shows some of the tests
that could be performed at the end of the construction

phase. Obviously, the verification model for a system
should be much bigger than this example.

2.6.1. Cooling System Test Case

Tests can be designed using statecharts. Normal inputs
should be used as well as those that stress the system.
The following inputs would be suitable for testing the
Cooler:

Normal:

coolerUpperLimit = 73°F and coolerLowerLimit = 72°F
Extremes:

coolerUpperLimit = 85°F and coolerLowerLimit = 83°F
coolerUpperLimit = 65°F and coolerLowerLimit = 63°F
Mistakes:

coolerUpperLimit = 71°F and coolerLowerLimit = 73°F

These inputs would be applied to the system and
changes of state would be observed. Table II shows a
matrix of test vectors for the Cooler. Notice that this test
case reveals the need for another output: signalError.

42 BAHILL AND DANIELS

HVAC Controller

Heating System

Heater Off

entry turnOffHeater

=

<
room Temp\c\lf aterUpperLimit

roomTemp 5</hé'éTé rLowerLimit

e

Zi

Heater On ’
|
entry/ turnOnHeater l
L J
Cooling System
Cooler Off
entry turnOffCooler

roomTemp =< coolerLowerLimit i

N roomTemp >= coolerl&pem.l)mit

.

Cooler On

entry/ tumOnCooler

Figure 12. Statechart for the HVAC controller.

The following test procedure specifies how the test
vectors will be applied.

1. Choose a hot day, e.g., outside temperature >
90°F.

TABLE II. Test Matrix for the Cooler

2. Set Cooler On/Off switch to On.

3. Set coolerUpperLimit and coolerLowerLimit ac-
cording to the Test Case [].

4. Observe room temperature for 1 hour.

Initial State Event (Inputs) Next State Resulting Output
Any roomTemp > coolerUpperLimit Cooler on Cooler on
Cooler off roomTemp < coolerUpperLimit Cooler off Cooler off
Cooler off roomTemp = coolerUpperLimit Cooler on Cooler on
Cooler on roomTemp > coolerLowerLimit Cooler on Cooler on
Cooler on roomTemp = coolerLowerLimit Cooler off Cooler off
Any roomTemp < coolerLowerLimit Cooler off Cooler off
Any coolerUpperLimit < coolerLowerLimit Cooler off SignalError

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN

TABLE III. Test Matrix for the Heater

43

Initial state Event (Inputs) Next State Resulting Output
Any roomTemp > heaterUpperLimit Heater off Heater off
Heater off roomTemp > heaterL.owerLimit Heater off Heater off
Heater off roomTemp = heaterLowerLimit Heater on Heater On
Heater on roomTemp < heaterUpperLimit Heater on Heater on
Heater on roomTemp = heaterUpperLimit Heater off Heater off
Any roomTemp < heaterLowerLimit Heater on Heater on
Any heaterUpperLimit < heaterLowerLimit Heater off SignalError
5. If it goes outside the coolerLimits, record a de- Scenario:

fect.

2.6.2. Heating System Test Case
The following inputs would be suitable for testing the
Heater.

Normal:

heaterUpperLimit = 71°F and heaterLowerLimit = 70°F
Extremes:

heaterUpperLimit = 80°F and heaterLowerLimit = 78°F
heaterUpperLimit = 36°F and heaterLowerLimit = 34°F
Mistakes:

heaterUpperLimit = 70°F and heaterLowerLimit = 72°F

These inputs would be applied to the system and
changes of state would be observed. Table III shows a
matrix of test vectors for the Heater.

The following test procedure specifies how the test
vectors will be applied.

1. Choose a cold day, e.g., outside temperature <
60°F.

2. Set Heater On/Off switch to On.

3. Set heaterUpperLimit and heaterLowerLimit ac-
cording to the Test Case [].

4. Observe room temperature for 1 hour.

5. If it goes outside the heaterLimits, record a de-
fect.

2.6.3. Testing Using Use Case Scenarios

The system can also be tested using the use cases.
Particular instances of use cases (as in collaboration and
sequence diagrams) can be used to test the system. For
example,

Use Case Name: Heat House.

1. Pat Harris starts this scenario on January 8 with
the outside temperature = 40°F, the heater off, the
roomTemp = 70.5°F and the heaterLowerLimit
and heaterUpperLimit at their default values.
The roomTemp falls below 70°F.

The system turns on the Heater and the Fan.
The roomTemp rises to 71°F.

The system turns off the Heater and the Fan.
For the next 15 minutes, the roomTemp must
remain greater than the heaterLowerLimit [end
of test].

ok v

This is called an instance or an instantiation of a use
case, because particular names, dates, places, times and
temperatures are substituted for the parameters in the
use case.

2.7. Operations Model

The operations model (usually a computer simulation)
should be built from the implementation model. It
should reflect the structure of the system as it was
actually built [Wymore, 1993]. It will be used to man-
age and improve the operational system. It will be
updated anytime the operational system is changed.
Most importantly, it will used to help with retirement
of the system. Another UML tool called an activity
diagram will be used to show the workflows, that is who
does which tasks.

3. GLOSSARY FOR THE HVAC SYSTEM

A glossary is a mandatory part of a Unified Systems
Engineering Process design.

Built in Test (BiT)—systems should be designed so
that they test themselves and make the results of
the test known.

44 BAHILL AND DANIELS

coolerLowerLimit—when the room temperature
gets below this, temperature the cooler should be
turned off.

coolerUpperLimit—when the room temperature
gets above this temperature, the cooler should be
turned on.

Dead zone—When the room temperature is in this
zone between the upper and lower limits, nothing
should be turned on.

Evaporative cooler—an effective but inexpensive
cooling system for dry climates. A unit has a box
with water absorptive pads. When dry air is
blown through the pads, water evaporates and the
air is cooled.

heaterLowerLimit—when the room temperature
gets below this temperature, the heater should be
turned on.

heaterUpperLimit—when the room temperature
gets above this temperature, the heater should be
turned off.

HVAC—heating, ventilation, and air conditioning
system

Piggyback system—a cooling system with both an
air conditioner and an evaporative cooler. The
evaporative cooler is used when the relative hu-
midity is low, and the air conditioner is used
when the humidity is relatively high.

systemStatus—a Boolean flag that indicates
whether or not all systems are functional.

4. LEVELS AND ASPECTS

Most systems are impossible to study in their entirety,
but they are made up of hierarchies of smaller subsys-

TABLE IV. Two Aspects of the HVAC System

tem that can be studied. Simon [1962] discusses the
necessity for such hierarchies in complex systems. He
shows that most complex systems are decomposable,
enabling subsystems to be studied outside the entire
hierarchy. For example, in studying the motion of a
baseball, it is sufficient to apply Newtonian mechanics
considering only gravity, air, the ball, and the bat. One
need not worry about electron orbits or the motions of
the sun and the moon. Forces that are important when
studying objects of one order of magnitude seldom have
an effect on objects of another order of magnitude.
Engineers, therefore, study subsystems of large sys-
tems. The order of magnitude could be for forces,
physical size, time intervals, or complexity. Often this
dimension is called the /evel. It is important that inter-
acting elements of a model be at the same level. If the
use case is at one level and the classes are at a different
level, the model will be hard to understand.

In our HVAC system, we modeled objects that the
user is likely to interact with, such as the thermostat, the
controller, the heater, the air conditioner, and the eva-
porative cooler. We did not worry about low-level de-
tails such as the colors of the wires interconnecting the
equipment and the electrical voltages. Likewise, we did
not worry about high-level issues, such as possible
brown outs or heating of the city caused by operation
of a million air conditioners. Our use cases were all at
the user level, although we did find it useful break these
up in to sublevels, as indicated in the use case descrip-
tions. When dealing with use cases at one level, you
might be interested in use cases one level above or
below, but you would seldom be interested in use cases
two levels above or below.

Operations Aspect

Level Use cases

City Heat the city, cause brown outs

Architect Choose and install equipment and insulation, specify architecture of the house

User Heat house, cool house, display system status, set temperature limits, choose equipment
Equipment Turn equipment on and off, open and close windows and vents

Electricity Specify colors of wires interconnecting equipment, choose electrical voltages

Element Freon changes phases, helical spring expands, mercury capsule tilts

Maintenance Aspect

Level Use cases

Generational Freon depletes ozone layer

Multi year Vacuum ducts, caulk small openings, sweep chimney, bleed radiators

Seasonal Light pilot, dust fans, add Freon, oil motors, change cooler pads, adjust storm windows
Periodic Clean or replace filters, replace fuses

Continuous Circulate oil, pump water

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 45

Maintenance
Aspect

Generational

Operations
Aspect

i /
City Mulitiyear

Architect Seasonal

User
Periodic

Equipment
Continuous

Electricity

Element

Figure 13. Most of the use cases in this paper exist at the
intersection of the User Operations level and the Periodic
Maintenance level.

It is important to select the correct level for each
model. But is it is also important to identify alternative
aspects of the system under study. For the HVAC sys-
tem, we will first look at the operations aspect and the
maintenance aspect as defined in Table IV.

The operations aspect is a physical decomposition,
and the maintenance aspect is a temporal decomposi-
tion. Many other aspects of an HVAC system are pos-
sible, such as functions, forces, economics, recycling,
and airflow. Often the aspects of the system will inter-
sect at an operating point, as is shown in Figure 13. The
use cases in this paper exist at the intersection of the
user operations level and the periodic maintenance
level.

In Zachman Frameworks, the levels are Scope, Busi-
ness Model, System Model, Technology Model, and the
Detail Model. The aspects (called perspectives) are
who, what, when, where, why, and how. They empha-
size that in order to understand an enterprise, each cell
in the framework must be modeled [Zachman, 1987].

5. CHALLENGES

There are challenges in teaching hardware and algo-
rithm designers to use these new software tools.

5.1. Changing from Finite State Machines
to Statecharts

In the old days, we designed computer systems so that
they sampled all of their inputs on every clock cycle.
These systems looked at the present state and the pre-
sent inputs and then determined their next state. That
was fine when the clock was running at a megahertz.

But now that the clocks are running at over a gigahertz,
we do not want to load down the controllers like that.
Instead, we want our state transitions to be event driven
or at least sampled with different clocks. Often this
means putting intelligence in the sensors. We no longer
want the sensors to be simple switches that are polled
by the controller each nanosecond. Instead, we want the
sensors to interrupt when significant events have oc-
curred. (However, the UML does have the ability to
check guard conditions on every clock cycle, so design-
ers could still use the UML in the old-fashioned polling
fashion, if they wanted to.) Our old finite state machines
were either Mealy (pulse outputs labeled on the transi-
tions between states) or Moore (level outputs labeled
with the states) machines. UML statecharts encourage
both types of outputs in the same diagram. Finally,
statecharts encourage concurrent state machines and
hierarchies of state machines. Switching from finite
state machines to statecharts requires a change in think-
ing for hardware designers.

5.2. Changing from Functional Thinking to
Object Orientation

In the old days, we focused on the functions that the
system had to perform. Functional flow block diagrams
showed the functions the system had to perform and the
inputs that were transformed into outputs by those
functions. Some designers also listed the physical ele-
ment that the function was assigned to, but, in general,
there was no formality to the mapping between func-
tions and the components that would implement them,
Wymorian notation being the exception [Wymore,
1993]. Systems engineers seeped in the functional men-
tality might think that the UML ignores functions. It
does not. The functions are listed in the bottom part of
each class box. In fact, the purpose of analysis and
design is assigning responsibilities or functions to can-
didate classes. This is the art form of system design. The
way in which you assign responsibilities defines the
characteristics of your system (flexibility, reliability,
scalability, etc.) The result of responsibility assignment
is the system architecture, or the essence of your sys-
tem. So traditional hardware design tools focus on the
functions and only mention the components in passing,
and the UML techniques focus on the objects and
merely list the functions in passing. This shift in em-
phasis from functions to objects requires a paradigm
shift for hardware designers.

5.3. Progressing from Use Cases to Classes

UML designs are use-case based. Use cases capture the
required functionality of the system. Designers use the
use cases to discover the fundamental classes that the

46 BAHILL AND DANIELS

system will require. But, because the use cases capture
the required functionality of the system, it may be hard
for a hardware designer to give up on the functions and
concentrate on the classes. After all, the functions are
what he or she wants. This also requires a different way
of thinking.

Most of the classes created by hardware designers
are abstractions of physical objects. Sometimes it is
hard to discover classes that are not based on physical
objects, an example of such a nonphysical class is the
algorithm for selecting equipment in our HVAC system.

5.4. Changing from Waterfall Processes to
Incremental Iterations

Our last paradigm shift is changing from waterfall
processes to incremental iterations. In the old days,
requirements engineers dug out the requirements, wrote
them up, and threw them over the wall to the designers.
They created designs and threw them over the wall to
manufacturing, etc. The Unified Systems Engineering
Process encourages designers to start with the high-risk
and high-priority portions. Produce a skeleton design
and try it out. Then in the next iteration add muscle to
that skeleton and add skeletal designs for additional
functions, etc.

5.5. Using UML for Real-Time Systems

The UML was not designed for real-time systems.
However, many authors have discussed ways of dealing
with timing issues. Douglas [2000] has several exam-
ples including a cardiac pacemaker. Axelsson [2002]
used UML tools to model an automobile engine throttle
system, and Neill and Holt [2002] created UML exten-
sions to handle timing issues. Also old-fashioned trans-
fer functions should be used in conjunction with UML
tools when they help communicate the designs; see, for
example, Gomaa [2000: Figure 20.1].

6. CONCLUSIONS

The Unified Modeling Language and the new software
development processes can be used for hardware and
algorithm design. This paper primarily illustrated the
Unified Systems Engineering Process that was derived
from these new software development processes. In
passing, it showed rudimentary use of some of the UML
tools. Finally, it presented some ideas that might help
hardware and algorithm designers to use the Unified
Systems Engineering Process and some of the UML
tools. The UML tools are excellent communications
tools. They are improvements of ancient systems engi-

neering tools but they were designed to function to-
gether.

APPENDIX: UML NAMES AND
RELATIONSHIPS

The following comments are generalizations drawn
from a large number of sources. No source stated things
exactly this way. Someone somewhere would probably
disagree with each statement. But if these gross gener-
alizations help, then use them.

Actions and activities are the outputs in statecharts.
Actions are associated with transitions between states,
and activities are associated with the states. They should
be named with verbs or verb phrases. Typically, the first
letter of the first word is lowercase, the first letters of
subsequent words are uppercase, and there are no
spaces between the words.

Actors are named with nouns or noun phrases. Their
names should reflect the roles that are played and not
the names of actual people. Names of actors are usually
written with the first letter of each word capitalized and
spaces between the words. Supporting (or secondary)
actors are not a part of the system being designed, and
thus cannot be designed or easily altered. They often
represent external systems or commercial off-the-shelf
(CotS) components.

Attributes help specify the state of a class. They
should be named with nouns or noun phrases. They are
usually written with the first letter of the first word in
lowercase, the first letters of subsequent words upper-
case, and no spaces between the words.

An event is an occurrence that has a location in time
and space. In statecharts, events are the inputs that cause
transitions between states. Events should be named
with verbs or verb phrases. Typically, the first letter of
the first word is lowercase, the first letters of subsequent
words are uppercase, and there are no spaces between
the words.

A Function converts an input into an output at a
specified boundary. The function signature identifies
the inputs and outputs. Functions (also called responsi-
bilities and operations) should be named with verbs,
verb phrases, or clauses. Typically, the first letter of the
first word is lowercase, the first letters of subsequent
words are uppercase, and there are no spaces between
the words.

Inputs and outputs can be identified using an object
(or context) diagram [Gomaa, 2000]. Arrows pointing
into an active object represent inputs (events) that trig-
ger state transitions. Arrows going out of an object show
the functions (activities and actions) that are the outputs
on the statechart.

OBJECT-ORIENTED AND UML TOOLS FOR HARDWARE DESIGN 47

Messages (also called commands) tell an object to
do something that it knows how to do. The system
inputs and outputs are often specified here. Messages
should be named with verbs or verb phrases. Typically,
the first letter of the first word is lowercase, the first
letters of subsequent words are uppercase, and there are
no spaces between the words.

Objects and classes are named with nouns or noun
phrases. They are usually written with the first letter of
each word capitalized and no spaces between the words.
Object names are usually underlined.

The precondition, the trigger, and the first step of
the main success scenario are interrelated and are often
confused and interchanged. If you already have a
statechart, then use it to help rewrite the use case. The
precondition (and the postcondition) should contain,
among other things, the state of the system and values
for pertinent attributes. The trigger should contain the
event that causes a transition from the precondition
state. The first step of the main success scenario may
contain actions and activities.

States should be named with historical statements
or temporal phrases describing past or present activities.
A state name should reflect an interval of time when
something is happening. A state name can be a gerund,

TABLE V. Things That Can Be in Different UML Diagrams

anoun phrase, a clause, or even a sentence. State names
should not sound like combinations of input conditions.
State names are usually written in sentence case with
the first letter of each major word capitalized and spaces
between the words.

The type of an attribute is initial letter uppercase,
such as Boolean or Integer. Types are adjectives.

Use cases should be named with verb—noun phrases.
They should relate to the problem domain and not to
any particular solution. The verb should be in the im-
perative mood. Use case names are usually written with
the first letter of each word capitalized and spaces
between the words. Bahill’s use cases template is avail-
able at http://www.sie.arizona.edu/sysengr/slides/tem-
plates.doc.

Some UML things on one diagram seem to be the
same or similar to other UML things on other diagrams.
Table V shows what things are allowed on what dia-
grams. Inputs, outputs, and functions are not UML
things, but we have included them because systems
engineers want to know about them. Once again, we
warn that Table V presents gross generalizations. We
doubt that anyone would agree with every detail. Also,
we have not included all of the UML views; for exam-
ple, we have omitted activity diagrams and packages.

Use Case Collaboration

Sequence

Class Statechart ~ Deployment Object

Actions

Activities

Actors X X X
Associations X

Attributes

Classes

Events

Focus of control X
Functions X

Guard conditions

Inputs

Messages X X
Multiplicities

Nodes

Objects X X
Operations

Outputs

Responsibilities

Roles X

States

Visibility

X
X

XXX X

Number of use cases Many
represented 1 1

A fraction of A fraction of

A fraction of
1

All Many All

48 BAHILL AND DANIELS

Actions and activities are different, but each is syn-
onymous with functions, operations, responsibilities,
and outputs. Oliver, Kelliher, and Keegan [1997: 44]
also treat function, method, operation, and activity
synonymously. Some messages on collaboration or se-
quence diagrams can become activities or actions on a
statechart, while other messages can become events,
which are synonymous with inputs. Actors and roles are
related.

REFERENCES

J. Axelsson, Model based systems engineering using a con-
tinuous-time extension of the Unified Modeling Language
(UML), Syst Eng 5(3) (2002), 165-179.

A.T. Bahill and B. Gissing, Re-evaluating systems engineer-
ing concepts using systems thinking, IEEE Trans Syst
Man Cybernet Part C Appl Rev 28(4) (1998), 516-527.

A.T. Bahill, M. Alford, K. Bharathan, J. Clymer, S. Dahlberg,
D.L. Dean, J. Duke, G. Hill, E. LaBudde, E. Taipale, and
A. W. Wymore, The design-methods comparison project,
IEEE Trans Syst Man Cybernet Part C Appl Rev 28(1)
(1998), 80—103; available, with additional commentary
and examples, at http://www.sie.arizona.edu/sysengr/
methods?2.

M.P. Bienvenu, I. Shin, and A.H. Levis, C4ISR architectures:
III, An object-oriented approach fro architecture design,
Syst Eng 3(4) (2000), 288-312.

A. Cockburn, Writing effective use cases, Addison-Wesley,
Reading, MA, 2001.

B.P. Douglas, Real-time UML, Addison-Wesley, Reading,
MA, 2000.

As America.

the University of Arizona.

M. Fowler and K. Scott, UML distilled: A brief guide to the
standard object modeling language, Addison-Wesley,
MA, 2000.

H. Gomaa, Designing concurrent, distributed, and real-time
applications with UML, Addison-Wesley, Reading, MA,
2000.

C. Hofmeister, R. Nord, and D. Soni, Applied software archi-
tecture, Addison Wesley, Reading, MA, 2000.

I. Jacobson, G. Booch, and J. Rumbaugh, The unified soft
ware development process, Addison-Wesley, Reading,
MA, 1999.

D. Kulak and E. Guiney, Use cases: Requirements in context,
Addison-Wesley, Reading, MA, 2000.

J. Marasco, Explaining the UML, 2002, http://www.thera-
tionaledge.com/content/apr_01_uml_jm.html.

C.J. Neill and J.D. Holt, Adding temporal modeling to the
UML support systems design, Syst Eng 5(3) (2002),213—
222.

I. Ogren, Possible tailoring of the UML for systems engineer-
ing purposes, Syst Eng 3(4) (2000), 212-224.

D.W. Oliver, T.P. Kelliher, and J.G. Keegan, Engineering
complex systems with models and objects, McGraw-Hill,
New York, 1997.

RUP, Rational Unified Process, 2002, http://www.ra-
tional.com/products/rup/index.jsp.

H.A. Simon, The architecture of complexity, Proc Am Phil
Soc 106 (1962), 467-482.

U2 Partners, Revised submission to OMG RFPs ad/00-09-01
and ad/00-09-02: Unified Modeling Language 2.0 Pro-
posal version 0.64 (draft), 2001, http://cgi.omg.org/docs/
ad/01-11-01.pdf

A.W. Wymore, Model-based systems engineering, CRC
Press, Boca Raton, FL, 1993.

J. A. Zachman, A framework for information systems archi-
tecture, IBM Syst J 26(3) (1987), 454-470.

Terry Bahill has been a Professor of Systems Engineering at the University of Arizona in Tucson since
1984. He received his Ph.D. in electrical engineering and computer science from the Universty of
California, Berkeley, in 1975. He holds U.S. Patent Number 5,118,102 for the Bat Chooser, a sysem that
computes the Ideal Bat Weight for individual baseball and softball batters. He is a Fellow of the Institute
of Electrical and Electronics Engineers (IEEE), of Raytheon and of INCOSE. He is chair of theINCOSE
Fellows Selection Committee. This picture of him is in the Baseball Hall of Fame’s exhibition Baseball

Jesse Daniels is a systems engineer with BAE Systems in San Diego. He earned a B.S. and an M.S.in
Systems Engineering in 1999 and 2000 from the Department of Systems and Industrial Engineering at

