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Abstract .  A two-point central difference algorithm is 
often used to calculate the derivative of a function. This 
estimate is only valid over a limited frequency range. 
Therefore, the algorithm can be modeled as an ideal 
differentiator in series with a low-pass filter. The filter 
cutoff frequency is a function of the time between the 
points. We discuss the accuracy and limitations of 
using this algorithm on human saccadic eye move- 
ment data. To calculate the velocity of saccadic eye 
movements the algorithm should have a cutoff fre- 
quency of 74 Hz or above. 

Frequency Characterist ics  of  the Two-Po in t  Central  
Di f ference  Algor i thm 

Computing derivatives is an important facet of many 
data analysis tasks. It is usually necessary to low-pass 
filter these derivatives to remove high-frequency noise. 
An ideal differentiator would require a separate low- 
pass filter. However, the two-point central difference 
algorithm differentiates and filters. This algorithm is 
popular because of its speed, simplicity, and accuracy. 
More complicated derivative algorithm exist (Young 
and Gregory, 1972; Rabiner and Gold, 1975; Ham- 
ming, 1977; Marble et al., 1981; Tole et al., 1978), 
however, they are not necessarily better. One experi- 
mental comparison of five derivative algorithms found 
the two-point central difference algorithm to be the 
most accurate technique for 12 bit data (Marble et al., 
1981). Usui and Amidror (1981) investigated several 
integer arithmetic derivative algorithms and found 
the best to be a two-point central difference algorithm 
with a built in digital low-pass filter. In this paper we 
examine the frequency response of the two-point 
central difference algorithm. 

For sinusoids, the magnitude of the derivative 
increases linearly with frequency. For example, if x(t) 
= sin cot, then its time derivative 2(t)=co cos cot. It is 

often convenient to study the Fourier transform of 
2(0 which is je) times the Fourier transform of x(t) 

2(0)) =jcox(co). (1) 

A two-point central difference algorithm produces 
similar results only up to a certain frequency. To 
investigate this algorithm's frequency characteristics, 
let us represent it in the following form 

y([k+ 1 ] r ) - y ( E k -  lIT) 
p(kW) = 2T (2) 

T is the sampling interval and k is the index for dis- 
cretized time, i.e., k = 0 ,  1, 2, 3 . . . .  , n. The Z-transform 
of (2) is 

l>(z) = V(z)(z-z-1) 
2T ' 

where I~z) represents the Z-transform of p(kT). We 
can examine the frequency response by substituting 
z = e j~T = cos co T + j  sin co Z This produces 

Ik(co T) - Y(co T)jsinco T (3) 
T 

Equation (3) is the frequency response of the derivative 
calculated with a two-point central difference algo- 
rithm; it is plotted in Fig. la. Figure la and lb show 
the comparison of the ideal derivative and the deri- 
vative calculated with the two-point central difference 
algorithm. For this figure and for the rest of this paper 
we assume a one kHz sampling rate. For a sampling 
rate of N kHz, our numbers can be multiplied by N. 

Equations (l) and (3) can be used to compute the 
ratio of the magnitudes of the calculated derivative to 
the true derivative. If the data have been correctly 
low-pass filtered with analog filters to prevent aliasing, 
then the Fourier transform of the continuous signal, 
X(co), is equal to the Fourier transform of the discrete 
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Fig. 1. a Absolute value of gain for a true derivative and a derivative calculated with a two-point central difference algorithm, Eq. (2) with 
1000 Hz sampling rate. b The difference between these two curves suggests that the two-point central difference algorithm can be modeled as an 
ideal derivative in series with a low-pass filter, e A Bode diagram of the equivalent low-pass filter. There is no phase shift with a two-point 
central difference algorithm. To prevent atiasing artifacts, frequencies above the dashed line must be removed with analog filters 

signal, Y(coT), at the sampling points, and the ratio 
becomes 

I)(coT) _ sincor 
X(co) coT (4) 

When this ratio IS plotted on log-log scales, as is 
traditional for filters, the low-pass filter characteristics 
of the two-point central difference algorithm can be 
seen, Fig. lc. This ratio is within I% of unity for 
frequencies below 39 Hz, and is within 10% of unity 
for frequencies less than 125 Hz. This algorithm acts 
as a low-pass filter that attenuates the signal by 3 dB 
at 221 Hz and by 4 dB at 250 Hz. 

Using y([k-2]T) and y([k+2]T) in (2) would 
yield the same result as using y([k-1]T) and 
y([k+l]T) at half the sampling rate. Doubling the 
spread halves the bandwidth of the algorithm from 
221 Hz to ii1 Hz. Using +_3 points (a spread of 6) 
would produce one third the bandwidth, 74 Hz 

0.443 sampling rate (in Hz) 
bandwidth (in Hz) = 

spread 

If a real-time, or causal, derivative algorithm were 
desired, (2) could be modified 

y(kT)- y([k- 1] T) 
)(kT) = T (5) 

This backward difference algorithm has a bandwidth 
that is twice as large as the two-point central dif- 
ference algorithm using y([k+ I-IT) and y([k-1]T), 
but it is less accurate because of the digital computa- 
tions involved (Young and Gregory, 1972; Marble et 
al., 1981), and its phase differs from that of a true 
derivative by -coT/2. We do not use such a backward 
difference algorithm because the phase shift precludes 
transfering information, such as the start or stop of a 

movement, between the position and velocity records. 
However, for real-time applications or for latency 
measurements such an algorithm would be prefered 
(van der Tweel et al., 1980). (For latency measurements 
the target and eye movement data should also be 
filtered by identical analog low-pass filters.) 

To graphically illustrate the frequency behavior of 
the two-point central difference differentiation algo- 
rithm we summed a large number of sinusoids to 
create a discrete waveform with one data point per 
millisecond. We applied a 512 point Fast Fourier 
Transform (FFT) with a Hamming window to this 
waveform, and computed its power spectral density. 
Next, we calculated the first derivative of this waveform 
with the 221 Hz bandwidth two-point central difference 
algorithm, Eq. (2) with a 1000 Hz sampling rate, and 
the second derivative of this waveform with a 160 Hz 
algorithm, Eq. (2) applied twice. Then we computed 
their power spectra shown in Fig. 2. This algorithm 
performed well below 120 Hz. 

Frequency Characteristics o/ Human Saccadic Eye 
Movements 

In our specific application we measured human 
eye movements in order to develop clinically useful 
diagnostic tools and to help understand how the 
human brain controls movement. We performed a 
power spectral density analysis of our data to help us 
select an optimal sampling rate, and optimal measure- 
ment and computational bandwidths. To save memory 
space the measurement and computational band- 
widths should not be larger than the bandwidth of 
the physiological system being studied. On the other 
hand, information will be lost if the measurement and 
computational bandwidths are too small. 
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Fig. 2. Power spectral densities of (top) a waveform 
composed of the sum of 133 sinusoids with frequen- 
cies between 1 and 400 Hz, (middle) its first deriva- 
tive, and (bottom) its second derivative. Between 1 
and 400 Hz the spectrum of the original waveform 
should be a horizontal line; the spectrum of its first 
derivative should be linear; the spectrum of the 
second derivative should be parabolic, Departures 
indicate limitations of the derivative algorithm. This 
is a linear plot of power versus frequency 

The movements of each eye were measured with a 
standard photoelectric system (Bahill, 1981; Bahill et 
al., 1981). Target and eye movements were amplified 
(0-300 Hz bandwidth), passed through a 12 bit analog 
to digital converter sampling at 1000Hz, and were 
then stored on a disk in~ the computer. The linear range 
for the measurement of horizontal eye movements 
extended _+ 10 deg from primary position. Linearity 
was assessed while the subject tracked a target moving 
sinusoidally. Calibration factors were derived while 
the subject tracked a target that jumped between 
points _+5 deg from primary position. Calibration 
factors for each eye were computed by averaging one 
to two seconds of data from four to ten manually 
selected periods when the eye was stationary and 
looking at a target. Instrumentation noise was less 
than ten millivolts. It was one thousandth of the full 
scale range. One minute of arc movemef/ts have been 
recorded with this equipment. When all the limiting 
factors were considered it was concluded that for ten 
degree saccades eye position was accurate to 0.1 deg, 
and eye velocity was accurate to 5 deg/s (Bahill et at., 
1981). 

We calculated the power spectral densities of posi- 
tion, velocity, and acceleration records for typical eye 
movements and eyeblinks of normal human subjects. 
The bandwidths of the measurement and computation 
processes for these records were 300, 221, and 160 Hz 
respectively for position, velocity, and acceleration. 
Figure 3 shows these spectra for a typical 10 deg sac- 
cadic eye movement. The power in the position spectra 
was attenuated by 40 dB at 33 Hz. The power in the 
velocity spectra was attenuated by 40 dB at 40 Hz. 
The acceleration spectra seemed to represent only 
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Fig. 3. Power spectral density of (from top to bottom) position, 
velocity, and acceleration for a typical ten degree human saccadic 
eye movement. This is a log-linear plot with the ordinate in decibels 
(dB) and abscissa in hertz (Hz) 

noise above 40 Hz. We studied a variety of saccadic 
eye movements between 0.5 and 20 deg in magnitude: 
the power in the position spectra was always atten- 
uated by 40 dB before 50 Hz; the power in the velocity 
spectra was always attenuated by 40 dB before 74 Hz; 
all acceleration spectra resembled Fig. 3C, there was 
no noticable information above 45 Hz. Use of a 40 dB 
criterion meant that the power at higher frequencies 
was less than 1% of the power at low frequencies. 
This was a conservative guideline. 

These data guided the selection of equipment and 
algorithms for our laboratory. We calculated the eye 



velocity using 

y([k + 3] T) - y ( [ k -  3] T) 
p(kT) --- 6T (6) 

For a 1000 Hz sampling rate this produced a velocity 
record with a 3 dB bandwidth of 74 Hz. We calculated 
eye acceleration from the eye velocity record using 

)?([k + 4] T) - 29([k- 4] T) 
j i (kr)  -- 8 T  (7) 

A two-point central difference algorithm using +4  
points has a bandwidth of 55 Hz. When it is used on 
data that have already been filtered by the velocity 
algorithm of (6), it produces an acceleration record 
with a 3 dB bandwidth of 45 Hz. A one step algorithm 
was tried for calculating the acceleration directly from 
the position, but it offered no advantages. The two- 
point central difference algorithm has no phase shift, 
so the position, velocity, and acceleration records are 
temporally aligned. 

This frequency domain analysis indicates that 
maintaining a velocity channel bandwidth of 74 Hz 
puts the most severe restriction on the analog to 
digital conversion rate; 333 Hz minimum. This sug- 
gests that a 100 Hz analog low-pass filter and a 333 Hz 
sampling rate would be sufficient for studying posi- 
tion, velocity, and acceleration of human saccadic eye 
movements. We actually used a one kHz sampling rate 
for our analog to digital conversions because this rate 
was large enough to capture all the available informa- 
tion, yet low enough so that it did not swamp the 
storage device with superfluous data. We found that 
the peak velocity only lasted one or two milliseconds. 
Therefore, sampling at a lower rate often missed the 
peak and produced lower apparent peak velocities. A 
one kHz sampling rate also allowed duration resolu- 
tion of one millisecond. This sampling rate requires 
an analog filter with a cutoff frequency less than 
500 Hz. We used a 300Hz analog low-pass filter 
because it was available and suitable. 

These results are important because, in the past, 
various investigators, knowingly or unknowingly, 
used different bandwidths and got different results. 
If bandwidths at least as large as those outlined here 
would be used by all investigators there would be less 
interlaboratory variation in saccadic eye movement 
parameters. 

Note added in proof. Using y ( [ k -  2] T) and y([k + 23 T) in (2) would 
yield the same result as using y ( [ k - l l T )  and y ( [ k + l ] T )  at half 
the sampling rate and twice the gain. In general 

y([k + n 3 T) - y([k - n] T) 
~(kT) = 2nY 

where n is an integer. Increasing n decreases the bandwidth without 
changing the gain. The 3dB bandwidth is equal to 0.443/nT. 

Each eye movement record (position, velocity, or 
acceleration) has a different, optimal bandwidth for 
removing noise while retaining relevant information. 
The time and expense involved in filtering derivatives 
can be avoided by using the two-point central dif- 
ference algorithm as the low-pass filter. A two-point 
central difference can be considered to be an ideal dif- 
ferentiator in series with a low-pass filter. 
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