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Frequency Limitations and Optimal Step Size for the
Two-Point Central Difference Derivative Algorithm
with Applications to Human Eye Movement Data

A. TERRY BAHILL anp JACK D. McDONALD

Abstract—There are many algorithms for calculating derivatives. The
two-point central difference algorithm is the simplest. Besides simplicity,
the two most important characteristics of this algorithm are accuracy
and frequency response. The frequency content of the data prescribes
a lower limit on the sampling rate. The smoothness and accuracy of
the data determine the optimal step size. We discuss the low-pass filter
characteristics of this algorithm and derive the optimal step size for two
types of human eye movement data. To calculate the velocity of fast
(saccadic) eye movements, the algorithm should have a cutoff frequency
of 74 Hz. For typical slow (smooth pussuit) eye movements, a step size
of 25 or 50 ms is optimal.

INTRODUCTION

Computing derivatives is an important facet of many control
and data analysis tasks. Many derivative algorithms exist; the
simplest is the two-point central difference algorithm defined
by the following equation:

y(k+n]T)-p(k-n]T)
2nT ’

In this equation T is the sempling interval (in seconds), nT is
the step size (n =1 for the simplest case), and & is the index
for discrete time, The output of this equation can be computed
with integer arithmetic and simple shift operations, which
makes it appealing for microcomputer applications.

More complicated derivative algorithms exist [1]-]6]; for
some data they should be preferred. For each application, the
choice of an algorithm_ depends upon simplicity, desired
accuracy, frequency characteristics of the algorithm, and
characteristics of the data being analyzed. Intuitively, if more
points are used for a calculation, the derivative estimate should
be more accurate. However, one experimental comparison
of five derivative algorithms found the two-point central
difference algorithm to be the most accurate technique for
12-bit sampled data [4]. Usui and Amidror [6] investigated
several integer arithmetic derivative algorithms and found the

»(&T) = (1
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Fig. 1. (2) and (c) Absolute value of gain for a true derivative and a
derivative calculated with a two-point central difference algorithm.
(b) and (d) Bode diagrams of the equivalent low-pass filters. There
is no phase shift with a two-point central difference algorithm. To
prevent aliasing, frequencies above the dashed line must be removed
with analog filters. Based on a figure from [7].
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best derivative algorithm to be a two-point central difference
algorithm with a built-in digital low-pass filter.

Two parameters in (1) must be selected for each application;
the sampling interval T and the step size nT'. We will discuss
the frequency limitations of the two-point central difference
algorithm, and derive the optimal step size for two types of
human physiological data.

FREQUENCY LIMITATIONS

For sinusoids, the magnitude of the derivative increases
linearly with frequency. For example, if x(¢) = sin w¢t, then
its derivative is X%(#) = w cos wt. A two-point central differ-
ence algorithm produces a similar output up to a certain fre-
quency. The frequency response of the two-point central
difference algorithm, as derived by [71, is

Y(wT) jsinwnT
Y(wT)  nT

Fig. 1(a) shows the comparison of the frequency responses of
the ideal derivative and the derivative estimated with the two-
point central difference algorithm. Throughout this note, we
assume a 1 kHz sampling rate.

The ratio of the derivative calculated with the two-point
central difference algorithm to the ideal derivative is

Y(wT)
X(w)

When this ratio is plotted on log-log scales [Fig. 1(b)], as is
traditional for filters, the low-pass filter characteristics of the
two-point central difference algorithm can be seen. This alge-
rithm acts as a low-pass filter that attenuates the signal by 3 dB
at 221 Hz. Using n =2 in (1) yields the same result as using
n =1 at half the sampling rate. Doubling the step size halves

the bandwidth from 221 to 111 Hz. Using n = 3 produces one-
third the bandwidth (74 Hz) as shown in Fig. 1(c) and (d).

The 3 dB bandwidth (in Hz) = 0.443/2aT

sin wnT
wnT

(3

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-30, NO, 3, MARCH 1983

POSITION

VELOCITY

188 ms

ACCELERATION

_———

TIME

Fig. 2 P;osition velocity and acceleration as functions of time fora typi-
cal 30 saccadioc ¢ye movement. The calibration bar represents 10°,
5007/s, 30 000°/s2, and 100 ms. Position channel bandwidth was 300
Hz, velocity channel bandwidth was 74 Hz, and acceleration channel
bandwidth was 45 Hz. This wasa leftward movement of the right eye,

OPTIMAL STEP SIZE

There is an optimal step size that will produce the smallest
error in any derivative estimate. This optimal step size is a
function of the smoothness and accuracy of the data. For the
two-point central difference algorithm, the maximum error in
estimating the derivative has two components; one due to the
inherent error in the numerical algorithm and the second due
to applying (1) to noisy data. Following the development of
Young and Gregory [1], let the derivative step size (nT) be
called 2. The maximum total error is given by
_h*M; e

6 h

where M3 is the maximum value of the third derivative in the
interval and € represents the maximum value of the noise in
the data. Taking the derivative of this equation with, respect
to 2 and setting the result equal to zero, we find the optimal
step size A, is

13

¢

3¢

h, =
(2] M3

(4

APPLICATIONS TO HUMAN EYE MOVEMENTS

We measure human eye movements to develop clinically
useful diagnostic tools and to help understand how the human
brain controls movement., We analyzed the frequency content
and the noise in our data to help us select the optimal sampling
interval and the optimal step size.

The movements of each eye were measured with a standard
photoelectric system [8], [9]. Target and eye movements
were amplified (0-100 Hz bandwidth), passed through a 12-bit
analog-to-digital converter with a 1 ms sampling interval, and
were then stored on a computer disk, The linear range extended
%10° from primary position. Linearity was obtained by adjust-
ing the instruments while the subject tracked a target moving
sinusoidally. Calibration factors for each eye were computed
by averaging 1-2 s of data from four to ten manually selected
periods when the eye was stationary and looking at a target
+5° from primary position,

We measured two types of eye movements—fast position cor-
recting movements called saccades and slow velocity correcting
movements called smooth pursuit. Typical examples are shown
in Figs. 2 and 3. Their frequency characteristics and optimal
step sizes were different,
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Fig. 3. Two types of eye movements—saccadic and smooth pursuit. The
saccade is the fast eye movement occuring 200 ms after the start of
target motion; the rest of the eye movements are smooth pursuit. The
top trace shows target (doited) and eye (solid) positions as functions
of time. The bottom trace shows target (solid) and eye (dotted) veloc-
ities as functions of time. Eye position traces are solid, so that sac-
cades can readily be seen. Target velocity traces are solid to clearly
illustrate the velocity waveform that was tracked. The velocity of the
saccade was so large it saturated the plotting range. The abcissa is
labeled in seconds. Position and velocity bandwidths were 80 and
4.4 Hz, respectively.

SaccApiC EYE MOVEMENTS

To determine the frequency content of our data, we calculated
the power spectral densities of position, velocity, and accelera-
tion for typical eye movements of normal human subjects. The
power in the position specira fell off 40 dB before 50 Hz; the
power in the velocity specira was down 40 dB before 74 Hz
[7]. Therefore, to calculate saccadic eye velocity and not filter
out any significant information, the 3 dB bandwidth should be
at least 74 Hz. For this bandwidth and a 1 ms sampling inter-
val, (3) yields a step size of 3 ms. An appropriate equation is

y(k+31T)-p(k-3]1T)
6T :

To determine the optimal siep size, we analyzed the noise in
our data. When measuring 10° saccades, we set the amplifier
gains so that 20° represented full scale. Instrumentation
noise was then less than 10 mV, corresponding to an error of
1.2’ of arc. Error due to the 12-bit analog to digital conversion
was 0.3’ of arc. Biological noise was about 1.5’ of arc. In a
typical data file, the maximum value of the third derivative of
eye position was 6 X 106%s3, (This was the maximum value
of the third derivative of the signal plus noise. The third de-
rivative of the signal alone should have been used, but it was
not measurable. However, for saccades, the two values should
be close in magnitude,) Using these numbers in (4) yielded an
optimum step size of 3 ms.

y(kT) = &)

SMOOTH PURSUIT EYE MOVEMENTS

In contrast to saccadic system data which have a large band-
width, smooth pursuit system data have a small bandwidth.
This bandwidth depends upon the frequency of the target
waveform. We kept the target frequencies below 2 Hz, because
humans cannot track targets moving at higher frequencies. The
programs in our laboratory were optimized for the saccadic
system because we studied it first. The top of Fig. 4 shows the
effects of using saccadic system parameters on mixed data; the
saccade is readily discernable, but the smooth pursuit velocity
is buried in the noise. We had to find optimal parameters for
smooth pursuit data.

Several computational processes were used on the smooth
pursuit data starting with 1 ms sampling and digital low-pass
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Fig. 4. Data plotted with optimal saccadic parameters (top) and optimal
smooth pursuit parameters (bottom). The optimal saccadic parameters
were 1 ms sampling interval, 300 Hz position channel bandwidth, 3 ms
derivative step size, 74 Hz velocity channel bandwidth, and solid lines
for eye velocity. The optimal smooth pursuit parameters were 5 ms
sampling interval, 80 Hz position channel bandwidth, 25 ms derivative
step size, 8.9 Hz velocity channel bandwidth, and solid lines for target
velocity. These data show unusual off-foveal tracking—for over 1 s
there is an uncorrected position error of about 1°,

filtering at 80 Hz. This filter used 35 data points representing
five lobes of a sinc function in the time domain, i.e., a rectan-
gular window in the frequency domain [9]. It took 12-bit
integers as input and produced 60-bit floating point numbers
as output. These floating point numbers were stored as 16-bit
integers at 5 ms intervals. Only one of five points was stored,
thereby producing data reduction. (The analog filter cutoff
was low enough to prevent aliasing at this reduced sampling
rate.) This combination of digital filtering and data reduction
smoothed the data. Thissmoothing facilitated the computation
of velocity because it reduced the quantization noise. Velocity
records computed from data sampled at 1 ms intervals, filtered
at 80 Hz, and stored at 5 ms intervals were smoother than
records computed from data sampled at 5 ms intervals, filtered
at 80 Hz, and stored at 5 ms intervals. Velocities were com-
puted using a program that allowed the operator to interactively
choose the step size. The most common choices were 25 and
50 ms—these step sizes produced bandwidths of 8.9 and 4.4
Hz, respectively.

The optimal step size for smooth pursuit data was computed.
The noise in the data was the same as for saccadic eye move-
ments, 3’ of arc. The third derivative of the smooth pursuit
data could not be used in (4) because, unlike the saccadic
data, the third derivative of the signal plus noise was much
greater than the third derivative of the signal alone. Therefore,
the maximum value of the third derivative of the target motion
was used; when the eye was tracking well, the third derivative
of the eye motion would be slightly higher. For a 1 Hz, £5°,
sinusoidal target motion, the maximum value of the third
derivative was 1240°s3. Using this value in (4) yielded an
optimum step size of 49 ms.

DiScuUssION

This note was written in past tense, implying that the theo-
retical analysis guided our choice of algorithms and parameter
values. In reality, our theoretical calculations only confirmed
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what years of experience had dictated. The frequency content
and noise analysis arguments both indicated that the optimal
step size for saccadic data was 3 ms (74 Hz bandwidth). This
step size was routinely used long before these theoretical calcu-
lations were made. Robinson (in 1964) [10] recommended a
bandwidth of 100 Hz for all saccadic eye movement data. In
1975, Bahill, Clark, and Stark [11] used a position channel
bandwidth of 500 Hz and velocity channel bandwidths of 111
and 74 Hz. In 1981, Bahill, Brockenbrough, and Troost [9]
recommended a velocity channel bandwidth of 74 Hz.

The smooth pursuit data were studied using a graphics termi-
nal that allowed the operator to interactively choose a 3, 4, or
5 point derivative algorithm with the additional option of
choosing the step size. The most common choice was the two-
point central difference algorithm with a step size of either 25
or 50 ms. We used these values for over a year before we dis-
covered that they make the 60 Hz noise fall in a notch of the
filter response [e.g., one of the deep valleys in Fig. 1] and
disappear from the final velocity traces. After we made our
theoretical calculations, we realized that we had gradually
drifted to the two-point central difference algorithm with a
step size of 25 or 50 ms for our velocity computations. We
seldom used 20 or 30 ms, but we were not originally aware of
this prejudice. The 50 ms step size is the optimal step size de-
rived from (4) when the maximum value of the third derivative
of the data was approximated with the maximum value of the
third derivative of the target waveform. The actual value of
the third derivative of the data should be slightly larger, which
should make the optimal step size slightly smaller. The next
lower step size that also cancels out 60 Hz noise is that de-
scribed by using a step size of 25 ms.

The velocity algorithm of (5) uses data £3 points from the
center., If intervening points, such as 2 and %1, were used,
the algorithm would have better filter characteristics [5], [6].
It would not have a sharper rolloff, but once the response
declined, signals would remain attenuated; the second hump
shown in Fig. 1(a) would be half as large. For (5), this second
hump occurs at 250 Hz. If there were noise at this frequency,
the intervening points should be used. However, this would
require more arithmetic operations, which would slow down
the velocity computation and, depending upon the sampling
rate, possibly prevent real-time implementation. It would also
prevent a simple calculation of the optimal step size.

The Nyquist frequency is equal to twice the highest frequency
contained in the signal being sampled. It is prescribed by the
low-pass filter characteristics of the amplifier connected to the
analog-to-digital converter. To prevent aliasing, it must be less
than or equal to the sampling frequency.! A 1 kHz sampling
frequency requires an analog filter with a cutoff frequency of
less than 500 Hz. We adjusted the cutoff frequency of our
analog low-pass filter for 100 or 300 Hz, because these values
were available and suitable.

The two-point central difference algorithm can be modeled
as an ideal differentiator in series with a low-pass filter. The
filter does not have a sharp rolloff, but on the other hand, it
also does not have a phase shift, nor does it ring even for a step
input,

The selection of proper algorithms and parameter values for
calculating derivatives should be guided by knowledge of the
frequency limitations of the data, the noise in the data, and
also by intuition and experience. The extremely simple two-

ITheoreticians consider the signal being sampled to be unchangeable;
they adjust their computer programs to accommodate the signal. Thus,
they say the sampling frequency must be greater than or equal to the
Nyquist frequency. Experimentalists consider the computer and its
programs to be immutable; they adjust their amplifiers to accommodate
the computer. They say the Nyquist frequency must be less than or
equal to the sampling frequency.
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point central difference algorithm is a good algorithm. More
complicated algorithms should only be used if their superior
performance has been demonstrated.
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