
=

\rtide
Expert systems made with neural
networks

Rafeek M. Kottai and A. Terry
Bahill

Systems and Industrial Engineering^ University of
Arizona, Tucson, AZ 85721, USA '*

Abstract: Neural networks are useful for two
dimensional picture processing^ while induction type
expert system shells are good at inducing rules from a
large set of examples. This paper examines the
differences and similarities of expert systems built with
a neural network and those built with traditional expert
system shells. Attempts are made to compare and
contrast the behavior of each with that of humans.

1, Introduction

Neural networks are good >for two dimensional picture
processing [1,2]. Induction type expert system shells
are good at inducing rules from a large set of examples,
How are these two tasks similar? They are both doing
pattern recognition. This similarity of function made us
think that a neural network could be used to make an
expert system,

This paper examines the differences and similarities
of expert systems built with a neural network and those
built with traditional expert system shells, Attempts
are made to compare and contrast the behavior of each
with that of humans.

2. Neural networks

All of our neural network-based expert systems were
built using the back-propagation algorithm [3], Figure
1 shows the architecture of a typical back-propagation
network. The neural network in this figure has an input
layer with two units, a hidden layer with three units, and
an output layer with two units. Theoretically there is
no limit on the number of units in any layer, nor is there
limit on the number of hidden layers. For simplicity, we
used one or two hidden layers for all our neural network-
based expert systems. Each layer wa,c_ fully connected to

the succeeding layer, and each connection had a corre-
sponding adjustable weight. For example, the weight of
the connection between the first unit in the input layer
and the second unit of the hidden layer are not labeled
in Figure L During training, the weights between the
last hidden layer and the output layer were adjusted to
reduce the difference between the desired output and
the actual output. Then, using the back-propagation
algorithm, the error was transformed by the derivative
of the transfer function and was back-propagated to the
previous layer and the weights in front of this hidden
layer were adjusted. The process of back-propagating
errors continued until the input layer was reached. The
back-propagation algorithm derives its name from this
method of computing the error term. All the neural
network-based expert systems described in this paper
were developed using ANSim — Artificial Neural Sys-
tems Simulation program written by Science Applica-
tions International Corporation, although we have sub-
sequently used Neural works by Neural Ware Inc. with
similar results. We note explicitly that ANSim is a neu-
ral network simulation package, and it was never in-
tended to be an expert system development tool. So
in this paper we point out some of the problems that
would have to be overcome if someone were to use it as
an expert system development tool,

3. Neural network-based expert
systems

We developed two score expert systems; some with a
neural network, some with traditional expert system
shells. We used an IBM AT compatible computer with 4
Mb of memory. All of these expert systems were based
on demonstration systems provided by the companies
who market the traditional expert system shells. These
demonstration systems were designed to show off the
features of their products. So if the neural network-
based expert systems are better it is not because we
chose straw men. These demonstration systems were
developed for the shells M.I by Teknowledge Inc., VP-
Expert by Paperback Software International and 1st
Class by Programs in Motion Inc. While M.I is a rule-
based system, the other two are induction-based expert
system shells, i.e. they form the rules by induction from
examples given by the expert. These expert systems
were small and clear enough to illustrate the advantages
and disadvantages between a neural network-based ex-
pert system and shell-based expert systems.

international Journal of Neural Networks, VoL 1, No. 4, October 1989 211

INPUT DATA

Figure 1:

ADAPTIVE WEIGHTS

\T DATA

INPUT LAYER OUTPUT LAYER

HIDDEN LAYER

4. Building neural network-
based expert systems

The first step in building a neural network-based expert
system was to identify the important attributes that
were necessary for solving the problem. Then all the
values associated with these attributes were identified.
All the possible outputs were also listed. Then several
examples were listed that mapped different values of the
attributes to valid results. This set of examples formed
the training file for the network. The attributes and val-
ues defined the input layer of the neural network. The
results formed the output layer,

In this section a Wine Color Advisor that gave advice
on the color of wine to choose given the type of sauce,
the preferred color and the main component of the meal
is shown to illustrate the steps involved in creating a
neural network-based expert system. For building this
system the 13 examples shown in Table 1 were used.
The steps involved in creating the neural network-based
Wine Color Advisor are given below.

Step 1: Identify the attributes.

(A) Type of sauce

(B) Preferred color

(C) Main component

Step 2: Identify values for all the attributes.

(A) Type of sauce

1. Cream
2. Tomato

(B) Preferred color

1. Red
2. White

(C) Main component

L Meat
2. Veal
3. Turkey
4. Poultry
5. Fish
6. Other

Step 3: Identify the outputs.

1. Red

2. White

Step 4: Make a set of examples as shown in Table 1.

Step 5: Use the example to train the network.

The input layer of the neural network consists of all
attributes and values of the problem. Since there were
three attributes, (type of sauce, preferred color, and
main component) there are three rows in the input layer,

212 International Journal of Neural Networks, Vol. 1, No. 4, October 1989

Table 1: The Wine Color Advisor

Example
No.

1
2
3
4
5
6
7
8
9
10
11
12
13

Sauce

*
tomato

#
cream

*
*

cream
cream
tomato
tomato

*
cream
tomato

Preferred
Color

red
*

white
*
*
*
*
*
*
*
*
*
*

Main | Advised
Component | Color

*
*
*
*

meat
veal

turkey
poultry
turkey
poultry

fish
other
other

red
red

white
white
red

white
white
white
red
red

white
white
red

* means any value is acceptable for that attribute

shown in Table 2. Because the main component had six
values, there are six columns in the input layer, There-
fore the input layer was (3x6) , which means it has 3
rows having 6 units each. Because type of sauce and
preferred color have only two values each, eight of these
18 input units will never be used. So the unused inputs
were given values of zero. (We tried other values for un-
used inputs, but the large bias terms drove the net out
of the central operating region, and inconsistent advice
was given.) The other input units can take on values
ranging from -0.5 to +0.5. Many of the values in Ta-
ble 1 are represented with an * , meaning any value is
acceptable. When traditional induction shells encounter
such entries, they first expand the example into as many
rules as there are possible values, then they try to opti-
mize the rule base to minimize the number of rules (or
whatever else they are optimizing). For example they
would expand example 7 into the following two rules.

1. If type of sauce = cream and preferred color — red
and main component = turkey then advised color
= red.

2. If type of sauce = cream and preferred color = white
and main component = turkey then advised color
— white.

To make the neural net behave similarly both of the
inputs for preferred color must be set to true, i.e. set
to +0.5. An input layer showing the 7th example from
Table 1 is shown in Table 2.

Here the first element in the first row takes a value
+0.5 to denote that it is activated, i.e. type of sauce is

Table 2: The input layer of the neural network

Attributes
Sauce
Preferred
color
Main compo-
nent

1
+0.5
+0.5

-0.5

2
-0.5
+0.5

-0.5

3
0.0
0.0

+0.5

4
0.0
0.0

-0.5

5
0.0
0.0

-0.5

6
0.0
0.0

-0.5

cream. If the type of sauce were tomato, then the first
element in the first row would be -0.5 and the second
element of the first row would be +0.5. Since the sec-
ond attribute, preferred color, is denoted by a * in the
example table, both units in row 2 have values of +0.5.
The third row of the input layer takes on the value for
main component, for this example the third column is
+0.5 representing turkey. The above describes inputs
to the system during training mode. However, during a
consultation inputs are treated similarly. The user can
supply any number between -0.5 and +0.5 for any value
of any attribute; -0.5 means false or no, +0.5 means
true or yes, and 0 means unknown. Multiple values can
be assigned and certainty factors can be used. Unused
inputs are kept at zero.

The best size, shape, and number of the hidden lay-
ers depends on the particular problem being studied and
the number of examples in the training file. We expected
small hidden layers would lack sufficient richness and we

Internationa! Journal of Neural Networks, Vol. 1, No, 4, October 1989 213

Table 3: The output layer
Wine Color

Red
White

Node Value

-0.5
+0,5

expected large hidden layers to exhibit increased noise
because they would be under constrained. However, in
experiments where we varied the size of the hidden layer
form (1 x 1) (!) to (40 x 40) and computed the errors
between the outputs of these neural networks and the
outputs of a 1st Class-based expert system, we found no
significant differences. Of course, the number of units
in the hidden layer also depends upon the output layer,
For an output layer of sise (n x m) the minimum number
of cells in the hidden layer would be Iog2(n x m) or, de-
pending upon the particular knowledge being encoded,
perhaps Iog2(max m, n). A more detailed discussion of
the hidden layer is beyond the scope of this paper. For
building the neural network-based expert systems of this
paper, we used either one or two square hidden layers.
The hidden layer for our wine color advisor was arbi-
trarily chosen to be (6x6).

The output layer was assize (2x1) because the soli-
tary output (reeommended^colqr) had 2 values (red and
white). The output vector for the above example is
shown in Table 3.

Now that the knowledge was formulated, it was time
to train the neural network, The 13 examples of Ta-
ble 1 were coded to form the input training file. This
file was repeatedly presented to the network until the
root mean squared error between the desired output and
the actual output dropped below a preset value (usually
0.1). During the training process the network learned
and adapted the values of the weights to reduce the error
between the actual and desired outputs for the various
combinations of inputs,

The output node values of the network ranged from
-0.5 to 0.5. These values indicate how certain the net-
work was in its answer. However, because M.I, VP-
Expert and 1st Class used certainty factors that ranged
from 0 to 100, for comparison purposes, we mapped the
output node values of the neural network into a range
between 0 to 100.

In almost all cases the node values derived by the
neural network-based expert systems were quite similar
to the certainty factors derived by the traditional shell-
based expert systems. We have found three exceptions
to this rule. The first of these is illustrated by gradual
learning.

5. Gradual learning

As more examples were added to the input training file
the network changed its output node values. However,
unlike induction-based expert systems where certainty
factors changed abruptly, the neural network-based ex-
pert systems changed their output node values gradu-
ally, which shows gradual learning by the neural net-
work. To demonstrate this property, the examples of
Table 4 were added incrementally to the Wine Color
Advisors, developed using 1st Class and the neural net-
work.

After each example was added the systems learned
or induced new rules, then a consultation was run with
each system with the user specifying a cream sauce, a
preferred color of red, and the main component of fish.
The changes in output certainty as these examples were
added are shown in Table 5,

Table 5 illustrates the gradual change in the output
values of a neural network for each additional example
that was used to teach the network. This shows that
each additional example increased the knowledge repre-
sented among the connections in a neural network. This
is analogous to a human gaining more experience. Here
the network behaves more human like than an induction-
based expert system.

6. Contradictory conclusion

Unlike traditional induction-based expert systems, a
neural network-based expert system will not accept con-
tradictory conclusions. To illustrate this, the original 13
example Wine Color Advisors of Table 1 were trained
adding the new example shown in Table 6. Note that
the new example, number 14, contradicts a previous ex-
ample, number 13.

From these examples, the following rules were created
by the induction-based expert system shell 1st Class:

1. IF sauce = tomato
THEN color = red.

2, IF sauce = tomato
THEN color = white.

While the induction-based shell created rules from
these examples, the neural network would not. The
training phase exhibited 20 cycles of transient behav-
ior followed by steady-state behavior, where the out-
put error oscillated between 0 and 0.5. This shows that
contradictory conclusions cannot be taught to a neural
network. We cannot conclude which behavior is more
human like.

214 International Journal of Neural Networks, Vol. 1, Mo. 4, October 1989

Table 4: Examples added to the wine color advisors

Example | Sauce
No. I
14
15
16
17
18

cream
tomato
tomato
tomato
cream

Preferred
Color

*
*
*
*
*

Main II Advised
Component J[Color

meat
veal

turkey
fish

meat

red
red
red

white
white

Table 5: Changes in output certainty

No. of last example
in training set

13
14
15
16
17
18

1st Class Certainty
Factors
White

50
50
50
50
50
75

Red

50
50
50
50
50
25

Neural Network
Node Values
White

52
62
80
92
95
98

Red

48
43
27
8
7
7

Table 6: Contradictory examples

Example
No.

Sauce

13 || tomato
14 || tomato

Preferred
Color

*
*

Main
Component

other
other

Advised
Color
red

white

International Journal of Neural Networks, Vol. 1, No. 4, October 1989 215

Table 7: Animal Classification Examples

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Coat hair
Feeds offspring milk
Coat feathers
Flies
Lays eggs
Eats meat
Pointed tooth
Extermities claws
Eye position forward
Extermities hooves
Chews cud
Habitat ships
Swims
Color black & white
Long neck
Long leg
Black stripes
Dark spots
Color tawny
Does not fly

Albatross

•
•
*

*

-

Penguin

*

*

*
•

*

Ostrich

*

•

*
•
•

*

Zebra
• •
•

*
•

•

Giraffe
•
*

•
*

•
•

•

Tiger

•

*

•

*

*

•

Cheetah

*
• •
*
*

•
*

Note; The animals have the attributes indicated by the »?s

7. Continuous output

Traditional expert systems collect all the pertinent in-
formation, and then at the end of the consultation, give
their advice. The neural network-based expert systems
gave outputs continuously. As they collected more input
information they gradually become more certain of an
answer and they gave more certain advise. To demon-
strate this, the Animal Classification Expert System
based on Winston [4] was created using a neural net-
work for identifying an animal given its features. The
system was trained to classify seven different animals,
Twenty different features were used to identify these an-
imals. The examples showing the features associated
with each animal are given in Table 7.

The size of the input layer of this neural network-
based expert system was (20 x 1). The one hidden layer
was of she (10 x 10), The output layer was (1x7) ,
It took about 30 minutes to train this network. During
one consultation, when the user had a tiger in mind, the
following six features were given:

1. Eats meat

2. Pointed tooth

3. Extremities claws

4. Eye position forward

5. Black stripes

6. Tawny color

To show the effect of adding .more and more features
to an input vector, the network was first given one fea-
ture, then two features, then three features etc. The
result of this test is shown in Table 8^

As more and more attributes were added to the input
vectors, the output values of the units increased and the
neural network grew more confident in its answer. It also
eliminated other animals having similar features. This
example demonstrated that neural network will give a
good answer even with partial input.

8. Erroneous inputs

To demonstrate the effect of erroneous data in the in-
put, an input vector having the following attributes were
given to the Animal Classification Expert System.

1. Eats meat

2. Extremities claws

3, Eye position forward

4, Black stripes

216 international Journal of Neural Networks, Vol. l rNo. 4, October 1989

Table 9: Training Examples for Cheese Advisor
Example
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Legend

Cours
A | S

*
9

0

*

*

*
*
*
*
*
•

*
•
*
•
•
*
*

$e
D

*
•
*
*
*
*
*
*
*
*
*
*
•
*
*
*
*_
*
*

Sav
M
*

*

*

•

*

*

*

*

*

*

onness
F | P

*

•

*

*

•

*

*

*

*

*

*

*

*

*

*

*

*

*

•

*

*

Consistency
S j M | F
•
*
•

•
*
*

•
*

•
*
•

*
*
•

•
*
*

*
•
•

•
*
*
*

•
•
•

*
*
*
*

Cheese

Montrachet
Montrachet
Gorgonsola

Stilton
Stilton
Kasseri

Montrachet
Montrachet
Gorgonzola

Stilton
Stilton
Kasseri

Camembert
Camembert

Tallegio
Italian Fontina
Italian Fontina

Appenzeller
Brie
Brie

Chevres
Gouda
Gouda
Asiago

Brie
Brie

Chevres
Gouda
Gouda
Asiago
Edam

Complement

C&B
C&B
C&B
C&B
C&B
C&B
C&B
C&B
C&B
C&B
C&B
C&B
B&F
B&F
B&F
B&F
B&F
B&F

B
B
B
B
B
B
B
B
B
B
B
B
B

Course: A = Appetizer, S=Salad, D— Desert
Savoriness: M=MiId, F=Flavorful, P=Pungent
Consistency: S-Soft, M^Medium, F=Firm
Complement: C&B=Crackers and Bread, B&F=Bread and Fruit, B=Bread

218 Internationa! Journal of Neural Networks, Vol. 1, No. 4, October 1989

Table 8: Neural Network Identifying a Tiger

Input
vector^

1

2

3

4
5
6

Features
activated
5

5,6

5,6,1

5,6,1,2
5,6,1,2,3
5,6,1,2,3,4

Output

Tiger
Zebra
Tiger
Zebra
Tiger
Zebra
Tiger
Tiger
Tiger

Node
value

14
14
31
8
66
.7
91
91
98

5. Tawny color

6. Coat feathers

7. Animal swims

Here note that the attribute 2 was removed from the
previous set and incorrect additional attributes 7 and 8
were added. In this case, even from partial information
the neural network gave the correct answer, tiger, with
a certainty of 87. Of course with a neural network all
possible outputs have some non-sero certainty factor.
For example, the last two features in the above input
vector are true for a penguin. But the output node
value for this animal was only 12. So the net was pretty
sure that it was a tiger despite the erroneous inputs.

In this example the user gave seemingly incorrect an-
swers. It would be short sighted to say 4Well if the users
cannot give the right answer, then they should not be
using our system.' There are many reasons for users
giving incorrect answers: new experiences, cultural dif-
ferences and developmental differences. When users try
different scenarios or experiment with unknown situa-
tions they often give answers the expert system was not
prepared for. Also in the real world, as opposed to nice
well defined model situations, complete knowledge of a
situation is rare. So it is a desirable property for an
expert system to allow erroneous inputs from its users.
The above example shows that a neural network-based
expert system can handle erroneous inputs very well.

When we gave erroneous inputs to our traditional ex-
pert systems, they responded with comments like Iden-
tity of animal Is unknown5, and 'What is the value of:
lays-eggs?'. Clearly the neural network-based expert
system is friendlier and more human like.

9. Global knowledge
representation

The Cheese Advisor neural network-based expert sys-
tem was created to give advice about what cheese and
complement to choose given the main course, preference
in taste and preference in consistency of cheese. The
example file, Table 9, was created from a VP-Expert
demonstration expert system.

An input layer of size (3 x 3), two hidden layers each
of size (10 x 10), and an output layer of size (13 x 1)
were used to build this network. There were 12 200 con-
nections in this network and it took about 5 hours to
train it.

The information about specific objects is spread out
among the connections in a neural network. So it has
the natural ability to form categories and associations
among these objects during the learning phase. Knowl-
edge is represented in the form of weights throughout
the network, Unlike a shell-based expert system, a neu-
ral network considers all the knowledge encompassed in
its connections to come to a conclusion. This is demon-
strated by a modified example from the Cheese Advisor,
Two of the rules in the VP-Expert knowledge base are
given below,

1. IF Complement = bread-and-fruit
AND Preference = Mild
OR Preference = Flavorful
AND Consistency = Firm
THEN The-Cheese = Italian-Fontina;

2, IF Complement = bread-and-fruit
AND Preference = Pungent
THEN The-Cheese = Appenzeller,

Because of the OR clause in the premise of the first
rule, VP-Expert actually considers the above knowledge
base as 3 rules. They are:

la. IF Complement = bread^andjruit
AND Preference = Mild
AND Consistency = Firm
THEN The-Cheese = Italian-Fontina;

Ib. IF Complement = bread_andJruit
AND Preference = Flavorful
AND Consistency = Firm
THEN The-Cheese = Italian-Fontina;

2. IF Complement = bread-andJfruit
AND Preference == Pungent

International Journal of Neural Networks, Vol. 1, No, 4, October 1989 217

AND Consistency = Firm
THEN The-Cheese = Appenzeller;

When VP-Expert was asked to give advice about the
type of cheese using the above rules given the following
user answers,

Complement = bread and fruit
Preference = Flavorful with cf 50
Preference = Pungent with cf 50
Consistency = Firm

two of the three rules fired and the advice was

Cheese = Italian JPontina with cf 50 and
Cheese = Appenzeller with cf 50,

However, when the same input was given to a trained
neural network, the output was,

Cheese = Appenzeller with node value 89 and
Cheese = ltalian_Fontina with node value 38.

The VP-Expert system recommended Italian JPontina
and Appenzeller with equal certainty, whereas the neu-
ral network-based expert system preferred Appenzeller
with a node value of 89. Which of these is more human-
like? To answer this question, let us look at what each
system is doing logically. In the VP-Expert system,
two of the three rules fired: one recommended Ital-
ianJFontina and the other said Appenzeller. The third
rule failed, so VP-Expert could gather no information
from that rule. Therefore VP-Expert concluded rules
Ib and 2 fired, so we are about 50-50. The VP-Expert
system, like most commercially available back-chaining
expert system shells, uses modns ponens logic. With
this type of logic we can evaluate the truth value of the
conclusion, if we know the truth value of the premise.
For example in this rule:

IF Preference = Pungent
THEN The-Cheese = Limberger

If we know that the person prefers pungent cheese then
we can recommend Limberger. However, with modus po-
nens we cannot go backward. For example, if we know
that the recommended cheese is not Limberger, we know
nothing about the person's preference. Furthermore, if
we know that the recommendation was Limberger, we
still do not know what the person's preference was be-
cause some other rule could have caused the recommen-
dation to be Limberger.

However, there are other types of logic. Some expert
system shells use modus tolans logic. This is similar to
if and only if (iff) rules. With modus tolans if you can
prove that a conclusion is false then you know that the
premise is false. For example for the rule:

IF no gas
OR no spark
OR starter bad
THEN car will not start.

We can go forward, like modus ponens: if we find out
that the car has an empty gas tank we can conclude
that the car will not start. However, in addition, if we
find out that the car does start, then with modus tolans
logic, we can conclude that the car has gas, has spark
and the starter is good.

We do not know what type of logic the neural network
uses, but it is not modus ponens or modus tolans. The
neural network saw that rule la was false. Therefore it
concluded that Italian-Fontina was not to be preferred.
Hence it decreased the certainty for this cheese. Its rec-
ommendation was therefore Appenzeller, The neural
network, which considers all of the information stored
in its connections, not just the rules that fire, gave dif-
ferent certainty than the traditional expert system. We
have not done a post mortem dissection of the neural
net, so we cannot say exactly how the output values
were derived, but they seem to be more human-like.

Human experts often have great difficulty providing
certainty factors to the knowledge engineer. We suggest
that this might be a good use of a neural network. Let it
provide numbers to help human experts formulate cer-
tainty factors for their knowledge. These certainty fac-
tors could then be used in a traditional expert system.

Usually neural network node values are pretty close
to traditional expert system certainty factors. How-
ever, as previously stated, we have found three instances
where the neural network node values behaved differ-
ently from traditional expert system certainty factors.
We discussed these in the sections titled gradual learn-
ing, continuous output and global knowledge represen-
tation. Furthermore, we found that if an example in the
training set exactly matched an example in the test set,
then the node values of the neural network based ex-
pert systems and the certainty factors of the traditional
expert systems were the same.

10. Lesion
The knowledge is widely distributed among the connec-
tions in a neural network-based expert system. Because
of this, damage to a few connections need not impair
the overall performance of the network. This is possi-
ble because of the highly parallel nature of neural net-
works that is analogous to biological neural networks,
To demonstrate the degree of robustness of a network,
the neural network-based Cheese Advisor was used. The
connections from input layer to the first hidden layer are

Internationa) Journal of Neural Networks, Vol, 1, No. 4, October 1989 219

analogous to the axons of a sensory system of a human
being. The connections between hidden layer 1 and hid-
den layer 2 are analogous to CNS interconnections and
the connections from hidden layer 2 to the output layer
are analogous to axons of the motor system. All the
connections in the network had weights ranging from -5
to 5, A lesion was afflicted on a connection by setting
its weight to 0, Starting at the top left hand corner of
the weight matrix, the connections were systematically
lesioned in increments of 5% of the total number of con-
nections. The effect of varying degree of lesion on the
connections from input layer to hidden layer is shown in
Figure 2,

The network was given the same 10 input vectors af-
ter each increase in the amount of lesion. Reducing the
weight values to 0 for some of the 900 weights between
input and the first hidden layer caused the final certainty
for recommended cheese for some input vectors to de-
crease more than others. For example Figure 2 shows
the input vectors that were affected the most, and the
least, vectors 9 and 5 respectively. This is similar to
what would happen as a result of a lesion in a biologi-
cal system. The vectors that used the values that were
lesioned out would be affected more than those that did
not.

Figure 3 shows the effects pf lesions in between the two
hidden layers. As expected, different input vectors are
now rnbs^t and least affected. Vectors 3 and 2 respectively.
More importantly we see that the effects are distributed
more evenly than in Figure 2, The most affected vector
only drops to 73 (versus 70 for Figure 2) and the least
affected vector drops all the way down to 85 (versus 93
for Figure 2), These effects are also similar to lesions
in biological systems. Sensory lesions affect one aspect
more than others. But CNS lesions do not have such
precise effects. Effects of CNS lesions are more general
or diffused.

In traditional expert systems, to make deficits similar
to the sensory lesions, we could remove a few questions.
If an input vector needed to invoke fliat question, then
a deficit would be noticed. If it did not need that ques-
tion no deficit would be seen. This is similar to neural
network performance except that the degradation of the
neural network is gradual and that of the traditional ex-
pert system is abrupt.

Similarly, lesions in the motor output of a neural net-
work would be akin to erasing the output advice of a
traditional expert system. However, there seems to be
no analog of CNS lesions in traditional expert systems.
There are no rules that you can erase that will affect, all
input vectors marginally, without causing major effects
in some.

11. Sparse input layer

The Flower Planning Guide was an expert system cre-
ated using a neural network to give suggestions on the
flowers for a garden based on: color, season, average
height, flowering time and shade tolerance. The exam-
ples used to train this system are shown in Table 10.

This table has five attributes, and one of them, aver-
age height, has 33 possible values, ranging from 4 to 36
inches. Therefore, we tried to create a network with an
input layer of size (33 x 5). Experience seems to indi-
cate that the smallest edge of the hidden layer should
be at least as big as the biggest edge of the input layer.
This would have required an hidden layer of 33 by 33.
The output layer has to be (1 X 25) because 25 differ-
ent flowers are specified. Such a neural net would have
required 206910 connections, and with only 4 Mb of
RAM we were limited to 60000 connections. Therefore,
we restricted the values for average height to be even
numbers, and an input layer of size (17 x 5) was built.
The hidden layer was of size (17 x 17) and the output
layer was (1 x 25). There were 31 790 connections in this
network. This expert system correctly learned all 31 ex-
amples. However, after 336 passes through the input
training file, which took 23 hours, the total root mean
squared (rms) error was still decreasing.

We believe this long learning time was caused byjthe
sparse use of the input layer. In this network only ^the
attribute average height used all the 17 units in its low
to encode information about different flowers. The rest
of the attributes all had less than six values. So the full
input layer was not completely used by these attributes.

To eliminate the effect of sparse input layer, we made
another network in which the different attributes formed
a linear input vector. There were 30 units representing
the total number of values of all attributes. There were
two values for life span, five values for color, three for
flower season, 17 for average height, and three for shade
tolerance. So the input layer for the network was of sige
(30 x 1), the hidden layer was (17 x 17) and the outpuo
layer was (25 x 1). However, this network got caught
in a local minimum during training; the total rms error
quickly dropped to 0,19, but then it stayed there forever
(actually we stopped it after 18 hours).

We used several different techniques to shake networks
out of local minima.

1. We added input noise that decayed away after a few
cycles, and then we started retraining,

2. We damaged some weights, and then started re-
training,

3. We damaged weights and added input noise, and
then started retraining.

220 international Journal of Neural Networks, Vol, 1, No. 4, October 1989

Table 10: Flower planning guide examples

Example
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3.0
31

Life
Span

Perennial
Perennial
Perennial
Perennial
Annual

Perennial
Annual

Perennial
Perennial
Perennial
Perennial
Annual

Perennial
Perennial
Perennial
Perennial
Annual

Perennial
Annual

Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial
Perennial

Color

Red
Blue
Red

*
White
Violet
Violet

*
Violet
Red

Yellow
White
Red

White
Yellow

Red
White
Yellow
Yellow

*
*

Blue
White
Blue

Yellow
*

Red
Blue
Red

White
Red

Flower
Season

Spring
Spring

Summer
Summer
Spring
Spring
Spring

Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Summer
Spring

Summer
Autumn
Summer
Autumn
Autumn
Autumn
Summer

Average
Height
(inches)

12
12
12
6
6
6
24
30
12
30
30
4
30
30
24
8
6
30
10
24
24
30
30
10
30
16
18
30
20
36
30

Sun or
Shade

Shade
Shade
Shade

Part-Shade
Sun

PartJShade
Part-Shade

Sun
Sun

*
*

Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun

Part-Shade
Sun
Sun

Shade
Sun
Sun

Part-Shade
Part-Shade
Part-Shade
Part-Shade

Sun

Flower
Type

Berginia
Blueberry

Bleed-Heart
Viola

Candytuft
Ajuga

Honesty
Delphinium

Lavender
Dalily
Dalily

Alyssum
Peony
Peony
Peony

Dianthus
EngJDaisy

Yarrow
Gazania

Columbine
Columbine
Japan Jris
JapanJris
Lungwort

BLEyed-Su
Hardy-Aster
Cranesbill

Lobelia
Lobelia

Jap_Anemon
Poppy

Note: When 1st Class
network is trained, an

encounters an asterisk (*) it
item with an asterisk is given

assumes any value is legal. When the neural
a node value of zero.

International Journal of Neural Networks, Vol. 1, No. 4, October 1989 221

OUTPUTVALUES OUTPUT VALUES

oO-J COm

I
I

$

0

4i

O

W

ffl
S-"

I

O-

1

a
1
to
I-H

3

O
J3-

4. We set the learning rate for the input-to-hidden
layer higher than the hidden-to-output layer and
trained the network until a plateau was reached,
then we lowered the learning rate and proceeded to
retrain. Often these techniques had to be repeated
five or six times.

When we used these techniques on the (30 x 1) input
vector network, it learned 25 of the 31 examples and
the rms error dropped to 0.09, Therefore, we conclude
that the linear input array is satisfactory, but it is not
superior to the (17 x 5) input layer. Perhaps the problem
was that the edge of the input layer was larger than that
of the hidden layer.

In summary, the network with the (17x5) input layer
was convenient, because each attribute had its own row.
This network worked well but wasted a lot of connec-
tions with unused inputs. In an attempt to ameliorate
this problem we changed the input layer to (30 x 1),
but this network did not perform as well as the network
with the (17x 5) input layer. It seems that we could now
try several other configurations for the input layer, e.g.
(10 x 3) or (6 x 5). However, rather than discuss these
other configurations, let us now look at a different way
of encoding the average height information. Instead of
binning the average height data so that only one of the
17 input units can be active at a time, let us encode the
average height as a binary number so that from zero to
six input units will be active. In this representation the
binary number 0 is encoded with -0.5 and the binary 1
is encoded with + 0.5. Table 11 shows this encoding for
the Viola, example 4 of Table 10. The average height
for this example is six inches or 000110 binary, as shown
in the fourth row of the following table.

When this binary coding was applied to the network
with a (17 x 5) input layer, a network with a (6 x 5)
input layer illustrated in Table 11 was produced. This
network also had problems getting stuck in local minima
during training. It learned only 25 of the 31 examples.
For completeness we also Lried the other combination;
we applied the binary coding to the (30 x 1) input layer
network to produce a network with a (19x 1) input layer.
It also got stuck in local minima and it learned only 22
of the 31 examples. Therefore we have shown that the
shape of the input layer is important. We have not seen
similar reports in the literature.

So, summarizing this section, we can say that the net-
work with a (17 x 5) input layer was the best. Networks
with linear input layers or binary coding did not work
as well, unfortunately we cannot explain why, However,
the techniques of using linear input layers and binary
coding worked well for our smaller Wine Color Advisor.
As a second summarizing point we note that our pre-
vious sections showed that a neural network may be an

Table 11: Input layer with binary coding for height

Attributes
Life
Span

Color

Flower
Season

Average
Height

Shade
Tolerance

1
+0.5

+0.5

-0.5

-0,5

-0,5

2
-0.5

+0.5

+0.5

-0.5

+0.5

Values
3 4

0.0

+0.5

-0.5

-0.5

-0.5

0.0

+0.5

0.0

+0.5

0.0

5
0.0

+0.5

0.0

+0.5

0.0

6
0.0

0.0

0.0

-0.5

0.0

appropriate tool for problems with discrete values for
the attributes, However, this flower selection system il-
lustrates that they may be inappropriate for problems
where the attributes have a continuous distribution of
values, such as weight, height and temperature, unless
these attributes can be binned into a small number of
ranges.

12. Time for training

The expert systems we created using a neural network
required 15 minutes to 23 hours for training. As the
number of units in the network increased, the time for
training also increased. This is due to the fact that all
the networks were simulated in software and trained on
a sequential machine. The inherent property of paral-
lelism in neural networks cannot be fully exploited if
they are trained on this type of machine. This is a dis-
advantage of a neural network-based expert system if
created in a sequential machine. The induction-based
systems took only a few seconds to form the rule base
from the examples. However, hardware implementation
of neural networks which will consist of highly intercon-
nected electronic components can be used to train it
much faster. In this case, neural network-based expert
systems can be used for many real time applications.

International Journal of Neural Networks, Vol. 1, No. 4, October 1989 223

13. Comparison of expert
tern tools

sys-

Neural networks use a different technology for building
expert systems than other expert svstem shells. When
using a neural network-based expert system the domain
need not be as well understood as when using traditional
expert system shells, Experts are not required to detail
how they arrive at a solution, since the system learns
this on a stimulus/response basis and self configures
into a structure capable of solving the problem. The
most significant advantage of using this type of expert
system is that it requires no explicit algorithms or soft-
ware. Hardware implementation of this technology will
result in more speed, reliability (robustness) and real-
time adaptivity. However, there is no formal method to
validate the results of this system. This is one major dis-
advantage. Another problem with neural network-based
expert systems is that the networks are not adaptive to
growth in problem size. Also the number of connections
and thus memory and time requirements tend to grow
exponentially (especially in a sequential computer).

In this study we made expert systems using four com-
mercial software packages: (1) M.I by Teknowledge, (2)
VP-Expert by Paperback Software International, (3) 1st
Class by Programs in Motion, and (4) AN Sim by Science
Applications International Corporation. Once again we
explicitly note that ANSim was not designed to make
expert systems so some of these comparisons may be
unfair. To make a pinpoint comparison between these
four tools, we made the same expert system using all
four tools. We chose to do this with the Wine Color
Advisor. The results are shown in Table 12.

14. Putting it all together

In general neural networks were not designed to make
expert systems. However, we have shown that they can
be used to successfully create expert systems. We have
shown several examples in this paper and we know of
one commercial system [5]. Although the expert sys-
tems shown in this paper had only 13 to 31 examples,
in general neural networks work better if they have far
more examples.

To make the expert systems we had to overcome some
obstacles. For example, in this paper we showed how we
treated unknown and unused inputs. We also compared
and contrasted neural network-based expert systems to
expert systems made with traditional shells. A neural
network-based approach may give us a system that es-
sentially builds its rule base from examples given by the
human expert. But unlike conventional expert systems,

this can be achieved with minimum of outside interven-
tion, so that over time the network gradually takes over
the task of the human expert, However, we caution
that the rules and generalizations made by the neural
networks are not open to examination, although tools
for examining such networks will surely be forthcoming.
Even if some of the connections are damaged the neural
network will still give a reasonable answer. This is not
the case with the traditional expert system shells where
if some of the rules were taken out of the knowledge base,
the system failed. They may not even give an answer
at all. The neural networks behaves much better with
erroneous or incomplete input than a shell-based expert
system because it uses all the knowledge encompassed in
its connections. In fact, neural networks-based expert
systems can be used to help suggest certainty factors
to humans. A neural network-based expert system will
increase the knowledge represented in its connections
over time by learning from more examples. However,
we again caution that we could not determine how the
node values were derived by the neural network.

15 * Acknowledgement

Research of this paper was partially supported by Grant
Nr. AFOSR-88-0076 from the Air Force Office of Scien-
tific Research.

16. References

[1] J.J. Hopfield and D.W, Tank, 'Computing with neu-
ral circuits: a model7, Science, 233, 1986, pp. 625
-633.

[2] M. Caudill, 'Neural networks primer, part IV, AI
Expert, 38, 1988, pp. 61 - 66.

[3] D.E. Rumelhart, G.E. Hinton and R.J. Williams,
'Learning representations by back-propagating er-
rors', Nature, 323, 1986, pp. 533 - 536.

[4] P.H. Winston, Artificial Intelligence, Addison-
Wesley, 1977.

[5] E. Collins, S. Ghosh and C. Scofield, 'Risk Analysis',
in DARPA Neural Network Study, 1988, Fairfax
VA, Armed Forces Communications and Electron-
ics Association (AFCEA), pp. 429 - 443.

224 International Journal of Neural Networks, Vol. 1, No. 4, October 1989

Table 12; Comparison of Expert System Tools

Creates expert system
from examples
In example file *
means
Access to dBase, Lo-
tus 1-2-3 etc.
Use any ASCII editor
Multi-valued expres-
sions
User can respond un-
known
cf supplied by user
cf in premises
cf in conclusions
Variables
Single valued cutoff
Backward chaining
Forward chaining
User interface
Explanation facility
Intermediate values

Gradual learning
Continuous output
Fault tolerance
Global Knowledge
representation
Contradictory conclu-
sions
Effect of lesions
Time to make knowl-
edge base
Time to induce rules

M.I
no

NA

hard

yes
yes

yes

yes
yes
yes
yes
yes
yes
yes

good
yes
yes

no
good
good

no

accepts

significant
1 hour

NA

VP-Expert
yes

Any

very easy

yes
yes

only if written in
rules

yes
yes
yes
no
no
yes

a little
poor
yes

yes, by linking
knowledge bases

no
okay
okay
no

accepts

significant
1/2 hour

5 seconds

Ist-class
yes

Any

easy

no
yes, with ICO

yes, in match
mode

no
no
yes
yes
yes
yes

somewhat
super

yes
yes, by linking
knowledge bases

no
poor
poor
no

accepts

significant
1/2 hour

5 seconds

ANSim
yes

any

yes

yes
yes

yes

yes
yes
yes
NA
no
no
yes

difficult
no

yes,
by linking differ-
ent networks

yes
super
super

yes

no

small
1/2 hour

1 hour |
NA - means this item does not apply to expert systems created using this technology

International Journal of Neural Networks, Vol. 1, No, 4, October 1989 225

The authors
A. Terry Bahill

A. Terry Bahill was born in Washington, PA, on Jan-
uary 31, 1946. He received a BS in electrical engineering
from the University of Arizona, Tucson, in 1967, an MS
in electrical engineering from San Jose State University,
in 1970, and a PhD in electrical engineering and com-
puter science from the University of California, Berkeley,
in 1975.

Since 1984 he has been a Professor of Systems and in-
dustrial Engineering at the University of Arizona in Tuc-
son. His research interests include systems engineering
theory, modelling physiological systems, head and eye
coordination of baseball players, and expert systems.

Dr. Bahill is a member of the following IEEE soci-
eties: Systems, Man and Cybernetics; Engineering in
Medicine and Biology; Computer; Automatic Controls
and Professional Communications.

Rafeck Kottai

Rafeck Kottai was born in India on 28 May, 1964.
He received a BTech degree from the Government En-
gineering College, Trichur, India, in 1986, and an MS
in systems engineering from the University of Arizona,
Tucson, in 1988, He is now working as a systems engi-
neer in San Francisco, CA.

226 International Journal of Neural Networks, Vol. 1, No. 4, October 1989

