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PHYSIOLOGICAL MODELS, DEVELOPMENT there is another box labeled Computer simulation of model on
the right side of Fig. 1. Our model was composed of mathe-

Modeling is an important facet of engineering. Models are matical equations that we had to solve on a computer. If ev-
erything goes right, the digital computer simulation shouldsimplified representations of real-world systems. For this rea-

son, models are also an important part of everyday life. If you produce the same results as the mathematical equations. But
care must be taken to ensure that this is true. Things thatwanted to drive from Tucson, Arizona to Madison, Wisconsin

you would use a model of the highway system called a road you must worry about include (a) the accuracy of the com-
puter code; (b) numerical factors, such as the integration stepmap. Such a map would allow you to understand the highway

system of the United States without driving on every road. If size truncation errors, and the integration technique (e.g.,
quadrature, Adams-Moulton, Runge–Kutta) [see Yakowitzyou wanted a model of the life of Southern aristocrats at the

time of the Civil War, you could use the book Gone with the and Szidarovszky (4) for details]; (c) implementation consider-
ations such as using a commercial simulation package that isWind. Highway engineers create models to see how traffic-

light synchronization or lane obstructions would affect traffic much bigger than the model, like using a calculator to add
single-digit numbers (the point is that in some situations theflow. Ohm’s law may be a good model for a resistor. F � ma

is a simple model for the movement of a baseball. Models unused routines could cause problems, like overwriting areas
of memory or forcing pointers out of bounds); and (d) the pos-allow us to apply mathematical tools to real-world systems.

We use models to understand things that are big, compli- sibility that the hardware is defective (How often do you run
the diagnostics on your personal computer?). In our study, wecated, expensive, or far away in space or time. Certainly,

physiological systems fall into some of these categories and carefully assessed each of these to see how they would affect
our predictions about the real world. In addition, matchingare often modeled in the field of biomedical engineering.

Figure 1 shows the relationships between models and the the output of the model to the real-world system can be a
useful experimental approach to numerical validation inreal world. On the extreme left, people do experiments on

real-world systems. Baseball players often fit into this cate- general.
Finally, at the extreme right side of Fig. 1 we find puregory. Over the years, there has been a lot of experimentation

with the baseball bat. Most of this experimentation was ille- mathematicians working in the computer world often with no
regard to the real world. Early studies of fractals fit into thisgal, because the rules say that (for professional players) the

bat must be made from one solid piece of wood. However, to category. For more on the philosophy and practice of model-
ing, see Bahill (5).make the bat heavier, George Sisler, who played first base for

St. Louis Browns in the 1920s, pounded Victrola phonograph
needles into his bat barrel and in the 1950s Ted Kluszewski

STEPS IN THE MODELING PROCESSof the Cincinnati Reds hammered in big nails. To make the
bat lighter, many players have drilled a hole in the end of the

• Describe the system to be modeled.bat and filled it with cork. Detroit’s Norm Cash admitted to
• Gather experimental data that describe the behavior ofusing a corked bat in 1961 when he won the American League

the system to be modeled.batting title by hitting .361. However, the corked bat may
have had little to do with his success, because he presumably • Investigate alternative models.
used a corked bat the next year when he slumped to .243. • Make the model.
Some players have been caught publicly using doctored bats.

• Validate the model.
In 1974, the bat of Graig Nettles of the Yankees shattered as

• Show that the model behaves like the physical system.
it made contact, and out bounced six Super Balls. In 1987

• Use the model to simulate something that was not
Houston’s Billy Hatcher hit the ball and his bat split open, used in its design.
spraying cork all over the infield. These are all examples of

• Perform a sensitivity analysis.
experimentation with no concrete models to guide them.

• Show how the model interacts with models for other sys-To lessen the waste of time and decrement of perfor-
tems.mance entailed in such experiments with altered bats, we

• Analyze the performance of the model.made mathematical models of individual humans. Then we
coupled these models to the equations of physics and pre- • Reevaluate and improve the model.
dicted the ideal bat weight for each individual (2,3). This mod- • Suggest new experiments for the physical system.
eling process is shown in the center box of Fig. 1. However,

Modeling is not a serial process; some steps can be done in
parallel and it is very iterative. This prescription for describ-
ing processes was developed by Bahill and Gissing (6).

DESCRIBE THE SYSTEM TO BE MODELED

The control of movement has long been an enigma for scien-
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tists as well as for parents who marvel at the miracle of
seeing their children take their first steps. The control of mus-Figure 1. Relationship of systems and models. [Reprinted with per-
cles that we often take for granted is so complex that it ismission from W. L. Chapman, A. T. Bahill, and A. W. Wymore, Engi-
difficult to comprehend the intricacies involved. To develop anneering Modeling and Design, Boca Raton, FL: Copyright CRC Press,

1992, p. 45 (Ref. 1).] understanding of such complex movement control systems, we

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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started with a study of a simple neuromuscular system, devel-
oped physiologically realistic models, and then refined these
models.

The eye movement system is a good starting point because
of its simplicity, relative to other neuromuscular systems.
This system has primarily two degrees of freedom, namely,
horizontal and vertical; and only two muscles are involved in
horizontal eye movements, as compared with six or more de-
grees of freedom and about 30 major muscles for each leg in-
volved in locomotion. The study of the eye movement system
is also aided by the ease with which the movements can be
measured. Any knowledge gained in the control of eye move-
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ments will contribute not only to the understanding of the
oculomotor system but also to the understanding of larger, Figure 2. Typical beginning (top) and ending (bottom) of sinusoidal

tracking. When the target (dashed line) started there was a 150 msmore complex neuromuscular systems.
delay before the eye velocity increased; when the target stopped thereThe purpose of the eye movement system is to keep the
was a 120 ms delay before the eye velocity began to decrease. Targetfovea, the region of the retina with the greatest visual acuity
movements were �5� from primary position. The time axis is labeledin daylight, on the object of interest. To accomplish this task,
in seconds, and upward deflections represent rightward movements.the following four types of eye movements work in harmony:
[Reprinted from A. T. Bahill and J. D. McDonald, Smooth pursuit eyesaccadic eye movements, which are used in reading text or
movements in response to predictable target motions, Vision Res., 23:

scanning a roomful of people; vestibulo-ocular eye movements, 1573–1583, 1983, with permission from Elsevier Science. (Ref. 8).]
used to maintain fixation during head movements; vergence
eye movements, used when looking between near and far ob-
jects; and smooth-pursuit eye movements, used when tracking
a moving object. These four types of eye movements have four The Sinusoidal Target Waveform
independent control systems, involving different areas of the

The sinusoid is the most common smooth-pursuit targetbrain. Their dynamic properties, such as latency, speed, and
waveform because it is easy to generate and easy to track.bandwidth, are different, and they are affected differently by
Our sinusoidal target waveform is given by r(t) � A sin �t.fatigue, drugs, and disease.
Our normal amplitude, A, was 5� (i.e., �5� from primary po-The specific actions of these four systems can be illustrated
sition).by the example of a duck hunter sitting in a rowboat on a

Figure 2 (top) shows tracking of the beginning of sinusoi-lake. He scans the sky using saccadic eye movements, jerking
dal movement. Smooth pursuit began 150 ms after the targethis eyes quickly from one fixation point to the next. When he
started to move. It was followed by a corrective saccade atsees a duck, he tracks it using smooth-pursuit eye move-
200 ms and then by zero-latency, unity-gain tracking. Figurements. If the duck lands in the water right next to his boat,
2 also shows a termination of sinusoidal smooth-pursuithe moves his eyes toward each other with vergence eye move-
tracking. The smooth-pursuit velocity started declining 120ments. Throughout all this, he uses vestibulo-ocular eye
ms after the target velocity dropped. It reached zero velocitymovements to compensate for the movement of his head
at 220 ms, when a corrective saccade occurred to end the sub-caused by the rocking of the boat. Thus, all four systems are
ject’s tracking. Thus, the beginning and ending transientscontinually used to move the eyes.
show the effects of the time delay, whereas steady-stateThis section is primarily about developing and validating
tracking does not.a model for the human smooth-pursuit eye movement system.

Other systems are only included when they interact with the
The Cubic Target Waveformsmooth-pursuit system.

Humans can overcome a large internal time delay and track
sinusoidal target waveforms with unity gain and no time de-

GATHER EXPERIMENTAL DATA THAT DESCRIBE THE lay. Moreover, they learn to do this very quickly. To help de-
BEHAVIOR OF THE SYSTEM TO BE MODELED termine if humans can easily track every predictable wave-

form, we created a cubic waveform. The cubic waveform is
Experiments with transient movement target waveforms re- simple, but we could not imagine a naturally occurring cubic
veal a 150 millisecond (ms) time delay in the human smooth- visual target.
pursuit eye movement system (7). The effects of this time de- We used the cubical target waveform (shown in Fig. 3) be-
lay are apparent during starting and stopping transients, as cause no naturally occurring visual targets move with a peri-
shown in Fig. 2 (8). However, when a human (or a monkey) odic cubical waveform; thus, our results were not influenced
tracks a target that is moving sinusoidally, the subject by previous learning; yet, the cubical waveform resembles a
quickly locks onto the target and tracks with neither latency sinusoid so it should be possible to track. The cubical target
nor phase lag. It is as if the subject creates an internal model waveform was formed with the following third-order polyno-
of the target movement and uses this model to help track the mial:
target. This internal model has been called a predictor (9–11),
a long-term learning process (12), a percept tracker (13–16),
a neural motor pattern generator (17), and a target-selective
adaptive controller (8,18–20).
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Figure 3. Binocular eye movements for good tracking of
the cubical target waveform. [From D. E. McHugh and A. T.
Bahill, Learning to track predictable target waveforms with-
out a time delay, Invest. Ophthalmol. Vis. Sci., 26: 933, 1985.
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(Ref. 21).]

where T represents target period and A is the amplitude. Pre- sition. The human fovea (specifically the inner foveal pit) has
a radius of 0.5� (17,22). Therefore, a target consistently on thevious studies have shown that humans track well when the

target has an amplitude of 5� and a frequency of about 0.32 outer edge of the fovea produces an MSE of 0.25�2.
Single and double exponential curves were fit to the MSEHz, so these values were used in our experiments. The target

always started with zero phase and zero offset. No warning data. The best fit was usually an exponential of the form
MSE � Ae�Bt � C. The solid lines of Fig. 4 show the exponen-was given before the target started. Another benefit of the

cubic waveform is that it looks like a sinusoid but the velocity tial curves fit to the data of our four best-tracking college stu-
is strikingly different. Therefore, by analyzing the eye velocity
records we could tell if the subject had really learned the cubi-
cal waveform or if he had merely approximated it with a si-
nusoid.

Figure 3 shows excellent tracking of the cubical target
waveform. Using only smooth-pursuit eye movements, the
subject was able to keep the fovea on the target for over 8 s.
Saccades were not removed or filtered out of the eye position
traces; indeed small conjugate saccades can be seen at the 8.5
s mark.

Learning to Track the Cubical Waveform

Figure 3 shows that a human can track the cubic target wave-
form very well. But this capability is not inherent. It must be
learned. Our standard learning protocol began with a 6 s
square-wave calibration target waveform, followed by 9 s of
the cubical target waveform, 3 s of the square-wave target
waveform, another 9 s of the cubical waveform, and finally
another 6 s of the square-wave calibration target waveform.
The subjects were allowed to rest for 5 min and then the se-
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quence was repeated. This process continued for about 2 h.
Figure 4. Time course of learning for seven subjects. Solid lines are

Because the purpose of the eye movement control system the exponential curves fit to the data of our four best-tracking college
is to keep the fovea on the target, we felt that the error be- students. Circles, asterisks, and squares are data points for three pro-
tween the eye and the target was the most appropriate mea- fessional baseball players. [From D. E. McHugh and A. T. Bahill,
sure of the quality of tracking. Our primary metric was the Learning to track predictable target waveforms without a time delay,

Invest. Ophthalmol. Vis. Sci., 26: 935, 1985. (Ref. 21).]mean-square error (MSE) between eye position and target po-
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dents. We were trying to quantify the ultimate capabilities
of the human smooth-pursuit system, so we only report the
performance of our best subjects. In this figure, we only show
data of four of 20 college students. The other students did not
demonstrate such low-error tracking.

To narrow in on this exquisite tracking performance we
decided to study optimal humans performing optimally. Who
is an optimal human? For eye tracking capability, we thought
professional athletes would fit the bill. So we invited some
professional baseball players to participate in our experi-
ments. The MSEs for three members of the Pittsburgh Pi-
rates Baseball Club are represented by circles, asterisks, and
squares in Fig. 4. In viewing the target for the first time, pro-
fessional baseball players 1 and 2 had much smaller MSEs
(0.05 and 0.08) than our other subjects. They had never seen
a cubical waveform before, yet they started out with low
MSEs. Baseball players 1 and 2 played in the major leagues
for over 10 years. Player number 3 never got out of the class
A Farm System. These data seem to indicate that the ability
to track the cubical waveform is correlated with the ability to
hit a baseball.
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Figure 5. (a) A closed-loop feedback control system, (b) an equivalent
DEVELOPING THE MODEL representation, and (c) the closed-loop system with its loop opened.

Many analysis techniques require the study of the open-looped sys-
Most physiological systems are closed-loop negative-feedback tem of (c). [From A. T. Bahill, Bioengineering: Biomedical, Medical

and Clinical Engineering, 1981, p. 215. Reprinted with permission ofcontrol systems. For example, consider someone trying to
Prentice-Hall, Upper Saddle River, NJ. (Ref. 5).]touch his or her nose with a finger. He or she would command

a new reference position and let the arm start to move. But
before long, sensory information from the visual and kines-

tracted from the input to yield the error signal, E. In many
thetic systems would signal the actual finger position. This

systems (such as the oculomotor systems), the element in the
sensory feedback signal would be compared to the reference

feedback loop, H, is unity; therefore the output is compared
or command signal to create the error signal that drives the

directly with the input, which explains the reason for calling
arm to the commanded output position.

the resultant the error. This error signal is the input for the
In the analysis of such systems, it is difficult to see which

main part of the system represented by G. This is called a
effects in the output are due to elements in the forward path

closed-loop system because of the closed loop formed by G, H,
and which are due to sensory feedback. In order to under-

and the summer. This system can be redrawn as shown in
stand the contribution of each element, it is necessary to open

Fig. 5(b). Although the transfer function of this equivalent
the loop on the system—that is, to remove the effects of feed-

system describes the input–output relationship of the system,
back. For some systems it is easy to open the feedback loop,

it is not very useful for modeling physiological systems be-
while for others it is exceedingly difficult since some systems

cause it hides specific behavior by lumping everything into
have multiple or even unknown feedback loops. It is easy to

one box. On the other hand, important information about the
open the loop on the human eye movement system.

system’s performance can be gained by techniques that exam-
Many investigators have studied the human smooth-pur-

ine components within the loop. One such technique for
suit eye movement system under open-loop conditions; these

studying a system is to ‘‘open the loop,’’ as shown in Fig. 5(c),
studies have helped us understand this system. However,

and then study the response of this open-looped system. The
some investigators reported varied and inconsistent re-

open-loop transfer function is defined as the total effect en-
sponses; they found open-loop responses idiosyncratic. It is

countered by a signal as it travels once around the loop. That
suggested that the reason for these difficulties is that physio-

is, the open-loop transfer function is Gol � GH.
logical systems, unlike man-made feedback control systems,

Note that this is not the input–output transfer function of
are capable of changing their control strategy when the con-

the system with its loop opened (which would be G), nor is
trol loop is opened. Several specific changes in eye movement

this the transfer function of the equivalent redrawn closed-
control strategy are shown in this section. Although the spe-

loop system shown in Fig. 5(b). When we open the loop on a
cific system studied was the eye movement system, the tech-

closed-loop system, bizarre behavior often results. In response
nique presented should generalize to other physiological

to a step disturbance, a closed-loop system with its loop
systems.

opened will usually vary its output until it is driven out of its
normal operating range. For instance, if R in Fig. 5(c) is a

Opening the Loop on a System
step and G is a pure integrator, the error will be constant
and the output will increase until the system reaches its limitA linear system can be schematically represented as a closed-

loop system, as shown in Fig. 5(a). In this figure, R represents of linearity.
Often the success of a systems analysis depends on beingthe reference input, and Y is the output. The output is mea-

sured with a transducer, H, and the resulting signal is subs- able to open the loop on a system. If it is an electrical circuit,
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one might merely cut a wire. However, if it is a human physi- blue sky on a sunny day and try to track your floaters
(sloughed collagen fibers in the vitreous humor). These hair-ological system, such an approach is not feasible, and other

techniques must be developed. Such techniques usually in- like images move when the eye moves; therefore your initial
saccades will not succeed in getting them on the fovea. How-volve manipulating the variable normally controlled by the

system, so that the feedback is ineffective in changing the ever, with a little practice, one can learn to manipulate these
images, because they are not fixed on the retina and a humanerror signal. For example, in the physiological sciences, some

of the earliest examples of opening the loop are the voltage can rapidly learn to manipulate the system. This latter point
often confounds attempts to open the loop on a physiologicalclamp technique developed by Marmount (23) and Cole (24),

wherein they measured the voltage and injected current to system. When the experimenter attempts to open the loop,
the human quickly changes control strategy, thereby alteringkeep the voltage constant, and the light modulation technique

used by Stark to study the human pupil (25). In the voltage the system under study.
The most common experimental technique for opening theclamp technique the experimenters fixed the voltage across a

neuronal membrane, the parameter that is normally con- loop on the eye movement system, pioneered by Young and
Stark (27), employs electronic feedback as shown in Fig. 6. Introlled by the neuron: Although it struggled to open and close

the ionic channels, the neuron could not regulate the mem- operation, the target is given a small step displacement, say
2 degrees to the right. After about 200 ms, the eyes saccadebrane voltage, and therefore the loop was opened. In the case

of the pupil of the eye, the experimenters controlled the 2� to the right. During this movement, the target is moved 2�
farther to the right, so that at the end of the saccade the tar-amount of light falling on the retina: Although it struggled to

open and close the pupil, the pupillary system could not con- get is still 2� to the right. After another 200 ms delay, the
eyes saccade another 2� to the right, and the target is movedtrol the amount of light falling on the retina, and thus the

loop was opened. Similarly, the use of force and length servos another 2�, thereby maintaining the 2� retinal error. The sac-
cadic eye movements are not effective in changing the retinalin research on motor systems provides a means of examining

components within feedback loops, although setting up these error; therefore, the loop has been opened. In this open-loop
experiment, the subject produces a staircase of 2� saccadesstudies is complicated by the multiplicity of feedback loops in

these systems (see, for example, Ref. 26). about 200 ms apart, until the measuring system becomes non-
linear. Such a staircase of saccades is shown in the beginningWe think these open-loop techniques can be used in a

broad range of physiological systems. Of course, nothing is of Fig. 7.
Electronic feedback has also been used to open the loop oneasy and some problems must be overcome. In many systems,

the difficulties lie in trying to isolate one system so that oth- the smooth-pursuit system. In these experiments, the target
was moved sinusoidally. When the eye moved attempting toers do not interfere, as in the previously mentioned pupillary

and motor control systems. In other cases, the difficulty lies track the target, the measured eye position signal was added
to the sinusoidally moved target position (as shown in Fig. 6).in opening the loop on the system. For example, if the output

of the respiratory system is defined to be the ventilation rate, Thus the eye movements became ineffective in correcting the
retinal error and the feedback loop was, in essence, opened. Inthen one could study the open-loop behavior of the system by

controlling the concentration of the gases being breathed contrast to open-loop saccadic experiments, open-loop smooth-
pursuit experiments do not stabilize the image on the retina,while monitoring the ventilation rate. However, when model-

ing a different aspect of this system, such that a different but rather the target is moved across the retina in a con-
trolled manner by the experimenter. This is done because thequantity is defined as the output, opening the loop would be-

come difficult: For example, controlling the venous concentra-
tion of CO2 would be difficult.

Physiological systems often have several parallel feedback
loops (e.g., hormonal and neural) acting simultaneously. One
of the greatest challenges in studying a physiological control
system is that one may not even be aware of all the feed-
back pathways.

Opening the Loop on the Eye Movement Control System

TPS +

–

Eye
movement

system

H = 1

Target
angle

Eye
angle

Tθ Eθ

E =     –      + Tθ Eθ Eθ′+

+

Electronics
H′ = 1

An easy way to open the loop on the eye movement system is Figure 6. Electronic technique for opening the loop on the human
to stabilize an object on the retina. This can be done, for ex- eye movement system. The position of the eye, �E, is continuously
ample, by looking a few degrees to the side of a camera when measured and is summated with the input target signal, �T. For the
someone triggers a flash. There will be an afterimage a few eye movement system H � 1, because if the eye moves 10�, the image

on the retina also moves 10�. If the eye movement monitor and associ-degrees off your fovea. Try to look at the afterimage: You will
ated electronics are carefully designed so that H� � 1, then anymake a saccade of a few degrees, but the image (being fixed
change in actual eye position, �E, is exactly canceled by the change inon the retina) will also move a few degrees. You will then
measured eye position, ��E. Thus the error signal, E, is equal to themake another saccade, and the image will move again. Thus,
target signal. This is the same effect as if the feedback loop had beenno matter how you move your eye, you cannot eliminate the
cut, as in Fig. 5(c). The target position in space (TPS) is the sum of

error and put the image on your fovea. This is the same effect the input signal and the measured eye position; care must be taken
as if someone opened the loop on an electronic system by cut- to keep this position within the linear range of the eye movement
ting a wire [as in Fig. 5(c)]. Therefore, this is a way of opening monitor. [From A. T. Bahill and D. R. Harvey, Open-loop experiments
the loop on the eye movement system. There is also another for modeling the human eye movement system, IEEE Trans. Syst.

Man Cybern., SMC-15: 241,  1986 IEEE (Ref. 30).]simple way to study open-loop saccadic behavior. Gaze at the
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Several factors can be indentified that possibly contribute
to the differences between individual subjects and between
different experiments. One such factor is the predictability of
the target waveform used in testing. While Wyatt and Pola
(28) used predictable sinusoidal waveforms and obtained con-
sistent results, Collewijn and Tamminga (31) used a pseudo-
random mixture of sinusoids and found great variability be-
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tween subjects. However, sinusoids were also used by Harvey
Figure 7. Position of the target and eye as functions of time for typi- (30) with inconsistent results between subjects. Another fac-
cal human open-loop tracking. After the feedback loop was opened, tor may be the influence of prior experience on subject perfor-
and the 1-sec mark, the subject made a series of saccades trying to mance. Examining the results from several studies (28,30,31)catch the target. When this strategy did not work, he seemed to turn

reveals that open-loop gains are larger in subjects with moreoff the saccadic system and produce only smooth-pursuit eye move-
experience in laboratory tracking tasks.ments. This subject was experienced in oculomotor experiments. The

The one common element shared by these studies is in-large open-loop gain appears to be a characteristic of such experi-
tersubject variability, although the magnitude of this vari-enced subjects. [From A. T. Bahill and D. R. Harvey, Open-loop exper-

iments for modeling the human eye movement system, IEEE Trans. ability differed considerably. It is noteworthy that such vari-
Syst. Man Cybern., SMC-15: 248,  1986 IEEE (Ref. 30).] ability is found not only between subjects, but also in the

performance of individual subjects in single trials. Such varia-
tion has been observed by Harvey (30) and also by Leigh et
al. (32), in a subject in which open-loop behavior was observedsaccadic system is a position tracking system and retinal posi-
by presenting a visual target to a patient’s paralyzed eyetion must be controlled, whereas the smooth-pursuit system
while monitoring the motion of the normal, but covered, eye.is a velocity tracking system and retinal velocity must be con-
Each subject’s performance also depends on the instructionstrolled.
given to the subject (33). These findings show that the vari-
ability inherent in open-loop studies is attributable not onlyResults of Open-Loop Experiments on the
to differences between subjects but also to time-varying per-Smooth-Pursuit System
formance of individual subjects.

Open-loop experiments should provide results that not only
describe the characteristics of elements within the feedback

Comparing Open-Loop Experiments with Simulations
loop, but also provide a description of the system’s perfor-
mance under closed-loop conditions. Consequently, similarity Insight into the behavior of the smooth-pursuit system under

open-loop conditions was sought by Harvey (30) through aof actual closed-loop behavior with that predicted from open-
loop data is indication of the success of the investigation. comparison of experimental results with those from simula-

tions. The simulations were performed using the target-selec-Such agreement has been found by Wyatt and Pola (28,29) in
experiments in which subjects tracked sinusoidal waveforms. tive adaptive control (TSAC) model (19) shown in Fig. 8. This

model has three branches. The top branch, the saccadicAlthough idiosyncratic differences were found between their
subjects, agreement was found between actual and predicted branch, generates a saccade after a short delay whenever the

disparity between target and eye position is too great. Theclosed-loop behavior for individual subjects. However, subse-
quent investigators were not able to replicate their results middle branch, the smooth-pursuit branch, produces smooth

tracking of moving targets. The input to the smooth-pursuit(16). And in other studies (30,31), individualistic behavior
was varied enough to obviate any meaningful description of branch is velocity, so the first box (labeled smooth-pursuit

processing) contains a differentiator and a limiter. The boxthe system using such data.

Figure 8. The general form of the TSAC
model. [From A. T. Bahill and T. M. Hamm,
Using open-loop experiments to study physio-
logical systems with examples from the human
eye movement systems, News Physiol. Sci., 4:
107, 1989 (Ref. 56).]
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labeled smooth-pursuit controller and dynamics contains a
first-order lag (called a leaky integrator), a gain element, a
time delay, a saturation element, and an integrator to change
the velocity signals into the position signals used by the ex-
traocular motor system. The bottom branch contains the tar- 1 2 3 4 10 11 12 13 1475 6 8 9

5°

get-selective adaptive controller that identifies and evaluates
Figure 9. Position of the target (dashed) and model (solid) as func-target motion and synthesizes an adaptive signal, Rc, that is
tions of time under a variety of conditions. At the first arrow, the loopfed to the smooth-pursuit branch. This signal permits zero-
was opened, at the second arrow the saccadic system was turned off,latency tracking of predictable visual targets, which the hu-
and at the third arrow the adaptive controller was turned off.man subject can do, despite the time delays present in the
Tracking patterns similar to each of these are common in human re-oculomotor system. The adaptive controller must be able to
cords. [From A. T. Bahill and D. R. Harvey, Open-loop experimentspredict future target velocity, and it must know and compen- for modeling the human eye movement system, IEEE Trans. Syst.

sate for the dynamics of the rest of the system. The adaptive Man Cybern., SMC-15: 249,  1986 IEEE (Ref. 30).]
controller is separate from the smooth-pursuit system in the
model and also in the brain (11). The adaptive controller
sends signals to the smooth-pursuit system and also other
movement systems (34). All of these branches send their sig- changes in strategy that are apparent in the human data of
nals to the extraocular motor system, consisting of motoneu- Fig. 7, the model characteristics were changed at intervals.
rons, muscles, the globe, ligaments, and orbital tissues. And From 2 to 4.25 s there is normal closed-loop tracking. At 4.25
of course, the final component of the model is a unity gain s the loop was opened, the adaptive controller was turned off,
feedback loop that subtracts eye position from target position and the smooth-pursuit gain was reduced to 0.7, thus produc-
to provide the error signals that drive the system. The solid ing a staircase of saccades similar to those shown in Fig. 7.
lines in this figure are signal pathways, while the dashed At 7.25 s the saccadic system was turned off, the adaptive
lines are control pathways. For instance, the dashed line be- controller was turned back on, and the gain of the smooth-
tween the saccadic controller and the smooth-pursuit control- pursuit system was returned to its normal value; the model
ler carries the command to turn off integration of retinal error tracked with an offset similar to that of Fig. 7. This type of
velocity during a saccade. position offset was often noticed in human subjects during

In the experiments, many different target waveforms are open-loop tracking. Finally, at 10.5 s the adaptive controller
used. The step target was presented to the subject to verify was turned off and the model tracked without an offset but
that the technique of opening the loop using electronic feed- with a time delay as was seen in some subjects.
back was working. Because the step target introduced a posi- These simulations help explain some confusing data in the
tion error rather than a velocity error, this experiment opened literature by allowing us to suggest that when the loop on the
the loop on the saccadic system rather than the pursuit sys- human smooth-pursuit system is opened, subjects alter their
tem. A position error with the feedback loop opened should tracking strategy to cope with altered target behavior. Some
have elicited a staircase of saccades. If this expected open- subjects continue to track with all systems (producing a stair-
loop response to the step target was seen, then the electronic case of saccades), some turn off the saccadic system (produc-
feedback was opening the loop correctly, as between 1.5 s and ing smooth tracking with an offset), some also turn off the
2.5 s of Fig. 7. adaptive controller (producing smooth tracking without an

There was difficulty in getting consistent results for sinu- offset), and some change the gain on the smooth-pursuit sys-
soids with the loop opened. The most consistent results ob- tem. Thus, each subject appears to adapt to the novel tracking
tained for such presentations came from the first few seconds

task created by opening the loop by selecting subcomponents
after the loop has been opened. This finding suggests that the

of the smooth-pursuit system and/or changing parametersdifficulties with open-loop sinusoids were probably due to the
within those subsystems. All these strategy changes areinvolvement of high-level processes such as adaptation. Once
within the possibilities provided by the model.the loop was opened, the behavior of the target changed. Of-

Multifaceted control is also common in other physiologicalten the subjects would appear to respond to this change in
systems (see, for example, Refs. 36 and 37). Thus, the poten-target behavior by changing their tracking strategies. Figure
tial exists in other physiological control systems for changes7 shows a presumed example of such a change in human
in strategy—that is, a change in the balance of control sub-tracking strategy. Between 1.5 s and 2.5 s of this record the
systems in different physiological states whether these statessubject behaved as one would expect for a subject tracking an
occur ‘‘naturally’’ or are imposed by an investigator. Suchopen-loop target; there is a saccade every 200 ms (approxi-
changes may occur in different behavioral states as observed,mately the time delay before the saccadic system responds to
for example, for respiratory control in the newborn (38). Con-a position error). However, in the middle of the record, the
sequently, it should not be surprising that when an investiga-saccades cease; it seems that the subject turned off the sac-
tor attempts to open the loop on a control system the controlcadic system. Such saccade free tracking was common in
strategy changes. This section demonstrates this principle forthese experiments and in other open-loop experiments
the eye movement system.(16,28,29,32,33,35). The records are strikingly devoid of sac-

The technique of opening the loop on a physiological sys-cades in spite of the large position errors, a finding that,
tem in order to better understand its behavior is very power-oddly, received little comment by previous investigators (ex-
ful as long as care is taken to acknowledge that the human iscept for Ref. 33), although it is often seen in the data.
a complex organism and is likely to change its behavior whenBy way of comparison, the model is shown tracking a si-

nusoid under open-loop conditions in Fig. 9. To simulate the the input changes its behavior.
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MAKE THE MODEL given in this section are only typical values, and the standard
deviations are large—for example, and LaRitz (41) showed
smooth-pursuit velocities of 130�/s for a baseball player.] TheThe human can overcome a time delay and track visual tar-
leaky integrator K/(�s � 1) is suggested from (a) experimentalgets with zero latency. This is nicely demonstrated by the
results showing that humans can track ramps with zerosmooth-pursuit eye movement system. We found that if our
steady-state error (7) and (b) open-loop experiments thatmodel was to emulate the human, it had to predict target
showed a slope of �20 dB per decade for the pursuit branch’svelocity and compensate for system dynamics. The model ac-
frequency response (30). The gain, K, for the pursuit branchcomplished this using a prediction algorithm. To help validate
must be greater than unity, since the closed-loop gain is al-the model, a sensitivity analysis and a parameter estimation
most unity. Currently used values for the gain are between 2study were performed.
and 4 (30,42). The e�sT term represents the time delay, or la-Figure 10 shows our model for the human eye movement
tency, between the start of the target movement and the be-systems. Like the human, this model can overcome the time
ginning of pursuit movement by the subject. A time delay ofdelay and track a target without latency. To do this, the
150 ms is currently accepted (30,33). The saturation elementmodel must be able to predict future target velocity and com-
prevents the output of any velocities greater than 60�/s, thepensate for system dynamics. In this section, a least-mean-
maximum velocity produced by most human smooth-pursuitsquare technique for predicting target velocity is described.
systems.After incorporating this prediction algorithm into the model,

The model must be able to overcome the 150 ms time delaythe model was studied to learn more about the model, and
and track with zero latency. Because the smooth-pursuit sys-hopefully about the human. In particular, we performed a
tem is a closed-loop system, the model’s time delay appearssensitivity and analysis of the predictor and then investigated
in the numerator and the denominator of the closed-loophow parameter variations affected the MSE between the pre-
transfer function,dicted output and the actual target waveform.

The TSAC Model
θ̇E

θ̇T

= Ke−sT

τs + 1 + Ke−sT

This section primarily examines the smooth-pursuit eye
An adaptive predictor using adaptive filters was designed tomovement system. The earliest model for the smooth-pursuit
overcome the time delay in the numerator. Compensation forsystem is the sampled data model developed by Young and
the model’s dynamics overcomes the time delay in the denom-Stark (27). Because of later evidence presented by Robinson
inator.(39) and Brodkey and Stark (40), the pursuit branch is no

We used several different techniques for predicting targetlonger viewed as a sampled data system, but rather as a con-
velocity. There are many more to choose from (see the ‘‘ADAP-tinuous one.
TIVE FILTERS’’ and ‘‘FILTERING THEORY’’ sections of this encyclo-There is one physically realizable model capable of over-
pedia). Now we will make a detailed presentation of one ofcoming the time delay in the smooth-pursuit branch, the
these prediction techniques. The nonmathematical readerTSAC model developed by McDonald (18,19). This model with
may skip this section (all the way to ‘‘VALIDATE THEthe saccadic and smooth-pursuit branches and their interac-
MODEL’’) without loss of continuity.tions is shown in Fig. 10.

Referring to Fig. 10, the input to the smooth-pursuit
The Least-Mean-Square Adaptive Filterbranch is retinal error, which is converted to velocity by the

differentiator. The limiter prevents any velocities greater The least-mean-square (LMS) adaptive filter, popularized by
Widrow (43–45), is a self-designing filter composed of athan 70�/s from going through this branch. [The numbers
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tive predictor.
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tapped delay line, variable weights, a summing junction to
add the weighted signals, and machinery to adjust the
weights. Two processes occur in the adaptive filter: the adap-
tation process and the operation process.

The adaptation process handles weight adjustment. The
values of the weights are determined by estimating the statis-
tical characteristics of the input and output signals. The heart
of the adaptation process is the weight adjustment algorithm.
As each new input sample is received, the weights are up-
dated by the algorithm,

+

+
Z –1

X (j) W (j + 1)

W (j + 1) = W (j)+ 2ks E (j)X (j)

W (j)

E (j)

Weight setting

Σ

2ks

X

Figure 11. Implementation of the weight adjustment algorithm.WWW ( j + 1) = WWW ( j) − kx∇[E2( j)]
[From D. R. Harvey and A. T. Bahill, Development and sensitivity
analysis of adaptive predictor for human eye movement model,where
Transaction of the Society for Computer Simulation, December 1985.
 1985 by Simulation Councils, Inc., San Diego, CA. Reprinted byW( j � 1) � the weight vector after adaptation
permission. (Ref. 20).]W( j) � the weight vector before adaptation

ks � the proportionality constant controlling stability
and the rate of convergence

form the output signal. The difference between the desiredE( j) � the difference between the desired response and
output signal and the actual output of the filter is the errorthe filter’s output, the error
that is fed back to the weight adjustment algorithm.X( j) � the vector of input signals

The speed and accuracy of the filter while converging to	[E2( j)] � the gradient of the error squared with re-
the optimal solution depends on several factors. Becausespect to W( j)
noise is introduced into the weight vector from the gradient
estimates, it follows that if the filter is allowed to convergeIn order to find the best possible weights, we computed the
slowly, less noise will be introduced during each adaptationgradient (with respect to W) of the squared error, set this
cycle and the convergence will be smoother. Regardless of theequal to zero, and solved for the optimum weights. The result
speed with which the filter converges, some noise will be in-is the Weiner–Hopf equation:
troduced. This noise prevents the filter from converging to the
minimum MSE. The ratio of the excess MSE to the minimumWWWLMS = φ−1(x, x)φ(x, d)

MSE gives a measure of the misadjustment of the filter com-
pared to the optimum system. The misadjustment depends onwhere
the time constant of the filter’s weights, where the time con-
stant is defined as the time it takes for the weights to fallWLMS � the vector of weights that would give the LMS
within 2% of their converged value. A good approximate for-error
mula for the misadjustment, M, is
(x, x) � autocorrelation matrix of the input signals


(x, d) � covariance matrix between the input signal and
the desired output signal

To solve the Wiener–Hopf equation it is necessary to compute
the correlation matrices. However, this would require a lot of
computer time; furthermore, these matrices cannot be com-
puted in advance, because this would require a priori knowl-
edge of the statistics of the input signal.

Because it is difficult to compute the true gradient, we use
an estimate of the gradient, which is equal to �2E( j)X( j). Our
algorithm is a form of the method of steepest descent using
estimated gradients instead of measured gradients. Using
this estimated gradient, the adjustment algorithm can be
written as

WWW ( j + 1) = WWW ( j) + 2ksE( j)XXX ( j)

Figure 11 illustrates the implementation of this weight ad-
justment algorithm. If the input signals are uncorrelated,
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then the expected value of the estimated gradient converges
Figure 12. The LMS adaptive filter. The boxes labeled ‘‘Weight ad-

to the true gradient without any knowledge of the input sig- justment’’ contain systems like Fig. 11. [From D. R. Harvey and A. T.
nal’s statistics. Bahill, Development and sensitivity analysis of adaptive predictor for

During the operation process of the LMS filter, illustrated human eye movement model, Transaction of the Society for Computer
in Fig. 12, the tapped delay-line input signals are weighted, Simulation, December 1985.  1985 by Simulation Councils, Inc.,

San Diego, CA. Reprinted by permission. (Ref. 20).]using the gains from the adaptation process and summed to
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tive filter determines the appropriate weights. It does this by
predicting the value of the input signal 150 ms into the fu-
ture, D̂( j � T). To accomplish this, the input signal, D( j), is
delayed by an amount of time equal to the time to be pre-
dicted, in this case 150 ms. This delayed signal, X( j), then
serves as the input to the adaptive filter. The filter’s weights
converge to values that give an output signal, Y( j) or D̂( j),
which ideally matches the undelayed input signal.

The slave filter is responsible for predicting. The input to
the slave filter is the undelayed signal, D( j). The slave filter
is organized like the adaptive filter except there is no auto-
matic adaptation process—that is, no weight adjustment. The
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weights from the adaptive filter are copied into the slave filter
Figure 13. The adaptive predictor. The boxes labeled ‘‘Adaptive fil- after each adaptation cycle. The output of the slave filter,
ter’’ and ‘‘Slave filter’’ contain systems similar to those in Fig. 12. D̂( j � T), is the predicted value of the input signal at the
[From D. R. Harvey and A. T. Bahill, Development and sensitivity

desired future time.analysis of adaptive predictor for human eye movement model,
For the TSAC model, the velocity of the target must beTransaction of the Society for Computer Simulation, December 1985.

predicted 150 ms into the future to overcome the smooth pur- 1985 by Simulation Councils, Inc., San Diego, CA. Reprinted by
suit system’s time delay. Therefore, the target’s velocity, thepermission. (Ref. 20).]
input signal to the predictor, was delayed by 150 ms and used
as the adaptive filter’s input. Our adaptive filter used be-
tween 15 and 150 weights and a proportionality constant ofM = n

4τMSE
(1)

0.00001. Figures 14 and 15 show the behavior of the predictor
with 150 weights. Figure 14 shows the output of the pre-This algorithm shows that M is proportional to the number of
dictor, D̂( j � T), for various target waveforms superimposedweights, n, and inversely proportional to the time constant,
on the signal to be predicted. The filter’s transients die out�MSE. The time constant �MSE can be measured experimentally
within 2.5 s of each abrupt change in velocity.for each simulation. However, we would prefer to find an ana-

Figure 15 shows the predictor’s MSE, �E( j)�2, plottedlytical way to estimate it. We can do that as follows.
against the number of iterations of the filter; an iteration wasTo ensure convergence the proportionality constant, ks, in

the weight adjustment algorithm must be within the follow-
ing bounds:

0 < ks <
1∑n

j=1 E[X 2
j ]

where E[X2
j ] is the expected value of the square of the jth in-

put. For slow and precise convergence, ks should be within the
following more restrictive bounds:

0 < ks � 1∑n
j=1 E[X 2

n ]

According to Widrow (43,44), for a filter using tapped delay-
line input signals, the time constant is related to the propor-
tionality constant by

τMSE = 1
4ksE[x2]

(2)

In summary, an adaptive filter is made up of a tapped delay
line, variable weights, a summing junction, and the weight
adjustment algorithm. The filter adjusts its own internal set-
tings to converge to the optimal solution. Due to noise from
the gradient estimate, the accuracy and speed of convergence
depends on the number of weights and the proportionality
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constant, ks.
Figure 14. The predictor’s output superimposed on the signal it is
predicting for four different target velocity waveforms, which are,The Adaptive Predictor
from top to bottom: parabolic, triangular, sinusoidal, and square.

The adaptive predictor is an application of the LMS adaptive [From D. R. Harvey and A. T. Bahill, Development and sensitivity
filter. We used this predictor to overcome the 150 msec time analysis of adaptive predictor for human eye movement model,
delay in the smooth-pursuit model. Transaction of the Society for Computer Simulation, December 1985.

Figure 13 shows the design of the adaptive predictor. Two  1985 by Simulation Councils, Inc., San Diego, CA. Reprinted by
permission. (Ref. 20).]filters are used: an adaptive filter and a slave filter. The adap-
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when added to the target position Rs, produces a system in-
put Ri that will produce zero-latency tracking. This method is
discussed in detail by McDonald (18,19). We will now briefly
show how we used it.

For the human eye movement system the order of the sys-
tem, the control vector and the output vector are one, so that
the following values are appropriate:

A = −1
τ

b = 1
τ

h = 1

k = 1

The system’s input, ri(t), is the sum of the target reference
500400300200
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signal, rs(t), and the adaptive signal, ra(t), that must be com-
Figure 15. The learning curve for the adaptive predictor. [From puted. To obtain zero-latency tracking, y(t) must equal rs(t).
D. R. Harvey and A. T. Bahill, Development and sensitivity analysis Putting all of this information into Eq. (3) gives
of adaptive predictor for human eye movement model, Transaction
of the Society for Computer Simulation, December 1985.  1985 by
Simulation Councils, Inc., San Diego, CA. Reprinted by permission. rs = (s + 1/τ )−1(1/τ )Ke−sT

1 + (s + 1/τ )−1(1/τ )Ke−sT
(rs + ra)

(Ref. 20).]

Solving for ra gives

completed every 5 ms. After 450 iterations the MSE was effec-
tively zero, which corresponds to 2.25 s. This agrees with the ra = e+sT

K
(τs + 1)rs (4)

predictor’s output in Fig. 14. The settling time of the filter,
450 iterations, is approximately 4�MSE, where �MSE is the aver- The e�sT term shows that predictions must be made. However,
age time constant for the weights. This gives a �MSE of 112.5 the smooth-pursuit system is a velocity tracking system, not
iterations. Using Eq. (5), M � n/4�MSE, the predictor has a a position tracking system, so the controller must be able to
misadjustment of approximately 33.3%. predict future values of target velocity. For example, if

The predicted target velocity from the adaptive predictor ṙsY(t) is the present target velocity, it must be able to produce
compensates for the effects of the time delay in the numerator ṙsY(t � T), where T is the time delay of the smooth-pursuit
of the transfer function of Eq. (1). To overcome the effects of system. And the controller must modify this prediction to
the time delay in the denominator, compensation for the mod- compensate for the dynamics of the system in accordance with
el’s dynamics must be done. This means that the brain must Eq. (4). Therefore the compensation signal, Rc, of Fig. 10 be-
have a model for itself and the rest of the physiological sys- comes
tem, and that it uses this model to generate the required com-
pensation signal.

rc(t) = 1
K

[
d
dt

τ ṙsY (t + T ) + ṙsY (t + T )

]
(5)

Compensating for Plant Dynamics

This compensation signal allows the smooth-pursuit systemWhen linear state-variable feedback notation is used for a
to overcome the time delay. To synthesize this signal thesystem, its closed-loop transfer function is
adaptive controller must be able to both predict future values
of the target velocity and compute first derivatives. These are
reasonable computations for the neurons of the human brain.

Y (s)
Ri(s)

= hhh′(sIII − AAA)−1bbbKe−sT

1 + kkk′(sIII − AAA)−1bbbKe−sT
(3)

Therefore, Eq. (5) is the algorithm that is in the box of Fig.
10 labeled ‘‘Target-selective adaptive controller.’’where

The Sensitivity of the Predictor to Parameter ChangesY � system output, � in Fig. 10
Ri � system input To determine which parameters have the greatest effect on
T � time delay the model and when they exert their influence, we computed
A � system matrix the semirelative sensitivity function, S̃y

�, for each parameter
b � input coefficient vector (5,46,47):
� � vector transpose operation

k� � transposed control vector
h� � transposed output coefficient vector

S̃y
β

= β0
∂y
∂β

K � the gain
where y is the output of the system and � is the parameter
that is varied. For this study, we used a fixed perturbationThe general method of compensating for model dynamics is

complex. It involves computing an adaptive signal Ra, which, size of �5%. While tracking slowly moving targets the model
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is linear and therefore only one perturbation step size was
needed (5).

The smooth-pursuit model developed in this study is not
independent of other systems. The saccadic system and the
adaptive predictor interact with the smooth-pursuit branch.
Therefore, we performed the sensitivity analysis twice: once
with the saccadic system and the predictor turned on, and
again with the saccadic system and the predictor turned off.
Eliminating the saccadic system and predictor allowed us to
isolate the pursuit branch and study it independently.

The sensitivity of the predictor was studied for three pa-
rameters: ks, the proportionality constant; the number of
weights; and the time to be predicted. For ks and the number
of weights, the target waveforms were also changed to deter-
mine if the predictor was sensitive to different input signals.

The effect of ks was found to be the greatest after points of
acceleration discontinuities. We performed a sensitivity anal-
ysis for many target waveforms, including the four shown in
Fig. 14. The influence of ks is most apparent for the analyses
done with the cubic position waveforms. In Fig. 16, we show
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the results for the cubical target position waveform, which
Figure 17. Semirelative sensitivity function of the predictor forhas the parabolic velocity waveform shown in this figure. S̃ks changes in the number of weights for a cubic waveform. [Frompeaks at the turnaround points and then begins to taper off
D. R. Harvey and A. T. Bahill, Development and sensitivity analysisto a steady-state value. of adaptive predictor for human eye movement model, Transaction

Similar results were found for the sensitivity analyses of the Society for Computer Simulation, December 1985.  1985 by
when the number of weights was changed for each target Simulation Councils, Inc., San Diego, CA. Reprinted by permission.
waveform. Figure 17 shows the results of the sensitivity oc- (Ref. 20).]
curs a little later for the weights. S̃n is similar for the two
parameters, but the time of greatest sensitivity occurs a little
later for the weights. This similarity of the two sensitivity adaptive filter from Eqs. (1) and (2) is recalled:
functions is reasonable if the misadjustment algorithm of the

M = n
4τmse

= nksE[x2]

This equation shows that a 5% change in either the propor-
tionality constant, ks, or the number of weights, n, will change
the misadjustment of the predictor in a similar manner.

The other parameter changed for the predictor was the
prediction time, the desired time to be estimated. The S̃ curve
for this case also had the same shape as the curve for the
number of weights and the proportionality constant, but its
magnitude was smaller.

From these curves, the effect of the predictor can be deter-
mined. Changing each parameter by 5% showed that all of
them exert their greatest influence right after acceleration
discontinuities. Therefore, the predictor’s influence will be the
greatest at those points.

The Effect of Parameter Changes on the Mean-Square Error

Our semirelative sensitivity analysis gives a measure of how
changing a parameter affects the model, and it shows when
the parameter exerts its greatest influence. For our second
sensitivity analysis, we considered the effect on the model’s
performance of changing each parameter over a range of val-
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ues. Each parameter was given values above and below the
Figure 16. Semirelative sensitivity function of the predictor for nominal values; the velocity MSE between the model’s output
changes in the proportionality constant, ks, for a cubic waveform.

and the target was computed for each change. For the pre-[From D. R. Harvey and A. T. Bahill, Development and sensitivity
dictor, the filter’s mean-square error (MSE) was computed be-analysis of adaptive predictor for human eye movement model,
tween the velocity of the target 150 ms in the future and theTransaction of the Society for Computer Simulation, December 1985.
velocity predicted by the adaptive predictor. The MSE were 1985 by Simulation Councils, Inc., San Diego, CA. Reprinted by

permission. (Ref. 20).] then plotted against the parameter values.
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with smaller error. Therefore, in the figure, the large MSE for
a small ks results because the filter takes longer to converge
to the optimal solution. With the larger ks values, the filter is
converging rapidly and appears to have a smaller error. If ks

were increased even more, the error would also begin to in-
crease. When we made the filter’s task easier, by eliminating
the start-up transient and only studying the steady-state be-
havior, we found that the filter’s MSE increased with ks as ex-
pected.

Our detailed analysis also showed a larger MSE for the
cubic waveform compared to the sinusoidal waveform. This
result is not unexpected since the cubic is a waveform that is
of higher order than the sine wave and because the misad-
justment is proportional to the expected value of the input
signal.

Referring to Fig. 19, the MSE of the predictor is shown
as function of the number of weights in the adaptive filter.
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According to the misadjustment algorithm, as the number of
Figure 18. The MSE of the predictor as a function of changes in weights increases, so does the misadjustment of the filter. The
the proportionality constant. [From D. R. Harvey and A. T. Bahill, curves here show the filter’s error decreasing until 15 weights
Development and sensitivity analysis of adaptive predictor for human and then rising slightly before falling off after 40 weights.
eye movement model, Transaction of the Society for Computer Simula- Because the adaptive filters use a tapped delay-line input sig-
tion, December 1985.  1985 by Simulation Councils, Inc., San Diego,

nal, as the number of weights is increased, the input signalsCA. Reprinted by permission. (Ref. 20).]
for the adaptive and slave filters begin to overlap. This im-
proves the predictor’s performance because the statistics of

The Predictor’s Sensitivity to Changes in Parameters the two input signals are the same since the input signals are
the same.The effect of changes in the proportionality constant on the

The increase in error between 15 and 40 weights showspredictor was studied first. As the proportionality constant
the rise in error predicted by the misadjustment algorithm.in Fig. 18 became larger, the filter’s MSE became smaller.
However, after 40 weights the statistics of the input signalsAccording to the misadjustment algorithm, the larger the
for the two filters begin to get close enough that the errorvalue of ks, the larger the misadjustment. This appears to dis-
drops off. The input signals for the two filters begin overlap-agree with this figure. However, the MSE for the figure was
ping after 30 weights, which is approximately where thetaken during the first 12 s of the simulation; therefore, the
curves peak.start-up transients are influencing the error. The larger the

The effect of changing the prediction time and the signal’svalue of ks, the faster the filter adapts; for smaller ks the filter
takes longer to converge, but does not converge to a solution frequency were also studied. Figure 20 shows the predictor’s
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Figure 19. The MSE of the predictor as a function of changes in the
Figure 20. The change in the MSE of the predictor as the predictionnumber of weights for a cubic waveform. [From D. R. Harvey and
time is changed. [From D. R. Harvey and A. T. Bahill, DevelopmentA. T. Bahill, Development and sensitivity analysis of adaptive pre-
and sensitivity analysis of adaptive predictor for human eye move-dictor for human eye movement model, Transaction of the Society for
ment model, Transaction of the Society for Computer Simulation, De-Computer Simulation, December 1985.  1985 by Simulation Coun-
cember 1985.  1985 by Simulation Councils, Inc., San Diego, CA.cils, Inc., San Diego, CA. Reprinted by permission. (Ref. 20).]
Reprinted by permission. (Ref. 20).]
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error as a function of prediction time. The error appears to be
a linear function of the prediction time. The further into the
future that is to be predicted, the worse the predictor does.
We also computed that for changes in frequency, the faster
the target moves the poorer the predictor does.

Summarizing, the predictor’s performance is poorer as the
proportionality constant is increased, although the error is a
function of the time when the measurements were taken. For
instance, in this study the start-up transients have not died
down so the reverse statement appears true. For the weights,
as the number of weights increased, the error also increased.
The exception, seen in this work, occurs when a tapped delay-
line input signal is used and the statistics of the input signals
to the adaptive and slave filters are similar. The error of the
predictor increases as the prediction time increases and as
the input signal’s frequency increases.
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Figure 21. Position as a function of time for the TSAC model
Discussion of Model and Least-Mean-Square Predictor tracking a target with only the smooth-pursuit branch (top), smooth-

pursuit and saccadic branches (middle), and all three branches
To create a model, we first determine the form and then de- turned on (bottom). Only the bottom trace resembles tracking of a
rive parameter values. When possible we use physiological normal human. Target movement was �5�; time is in seconds. [From
data to derive these values. A sensitivity analysis shows A. T. Bahill and J. D. McDonald, Model emulates human smooth pur-
which parameters are the most and the least important so we suit system producing zero-latency target tracking, Biol. Cybern., 48:

218, 1983 (Ref. 19).]can focus our efforts appropriately. In one of our final model-
ing stages we run a function minimization routine to adjust
parameter values so that we get the least-squared error be-
tween the human and the model outputs. dictor. Only the bottom trace matches the tracking of normal

Our model shown in Fig. 10 approximates the human humans.
smooth-pursuit system. Similarly, our simulation is only an
approximation of the model in Fig. 10. For example, the Overcoming a Time Delay
model of Fig. 10 should be stable for any gain up to 2.3. But

To overcome a time delay and produce zero-latency tracking,our simulation started to oscillate at 1.8. We found that we
you must (a) predict future target positions and (b) compen-were getting 5� to 10� of artificial phase shift from the differ-
sate for system dynamics, shown in Fig. 10. The latter meansentiators, the integrators, and even the summers. A smaller
that you must have a model of the system that is updatedsimulation step size would have obviously solved the problem;
when the system is changed by exercise, fatigue, or tempera-however, just being aware of the problem was also sufficient.
ture variations.Our LMS predictor worked well except when discontinu-

ities in the target waveform were present. For any desired
accuracy, trade-offs could be made between the predicted gain INVESTIGATE ALTERNATIVE MODELS
and the number of weights. When this predictor was incorpo-
rated into our full eye movement model, the model was able We have just shown the development of the LMS adaptive
to overcome its 150 ms delay and track targets with no la- predictor. It worked well, but we also compared it to alterna-
tency, just like the human. tive predictors. In our models we used the following pre-

For optimal performance, 150 weights were used. Because dictors: (a) difference equations, for example, r(n � 1) �
the model gets a new target position every 5 ms, this means Ar(n) � Br(n � 1), (b) menu selection, (c) LMS adaptive fil-
it uses the previous 750 ms of data for each calculation. We ters, (d) recursive least-square (RLS) filters, (e) Kalman fil-
are not sure that the human uses this large a data window. ters, (f) adaptive lattice filters, and (g) a recursive least-
Therefore, we also ran the model with only 15 weights. Even square filter in conjunction with menu selection.
with this reduced number of weights, the model still per- Difference equations were the simplest and least accurate.
formed as well as the human. In the menu selection technique, the system has a menu of

waveforms to choose from. In our simple models, we allowed
sinusoidal, parabolic, cubic, and pseudorandom waveforms.
The model then tracked the target and tried to identify theVALIDATE THE MODEL
frequency, amplitude, and target waveform. It then used an
equation for that waveform to help predict target motion. TheThe model tracks targets just as humans do. But in addition,

we can do things with the model that we cannot do with hu- seventh technique used a RLS filter to identify the waveform
and then used equations off the menu to track the target. Themans. In Fig. 21 the top trace shows the model tracking with

only the smooth-pursuit branch turned on, that is the sac- other four techniques are typical filters described in digital
signal processing literature.cadic branch and the adaptive predictor were turned off. The

middle trace shows the model tracking with smooth pursuit When we first searched for literature on prediction we
found very little. Then we realized that any digital filter couldand saccades only. Finally, the bottom trace shows the model

tracking with smooth-pursuit saccades and the adaptive pre- also be used for prediction. In fact, if you can either model a
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system, identify a system, filter a signal, or predict a signal,
then you can do the other three operations with no additional
effort. All of our predictors allowed zero-latency tracking, just
like the human. But, as will be discussed later, some matched
other aspects of human behavior better than others.

The principle of Ockham’s razor (48) states that if two
models are equal in all respects except complexity, then
the simpler model is the better one (see also http://
pespmcl.vub.ac.be/OccamRaz.html). This is one reason why
we like the menu selection predictors. They are simpler than
the digital filters, which require complex matrix manipula-
tion. Such calculations are fine for serial processing digital
computers, but are not likely to be used by parallel processing
analog computers such as the brain. This is one of the reasons
that artificial neural networks are becoming so popular
among physiological systems modelers (11).

USE THE MODEL FOR SOMETHING THAT IT WAS NOT
DESIGNED FOR

A powerful technique for validating a model is to use it to
simulate something that was unknown when the model was
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developed. Figure 22 shows some human tracking was that
was noted to be unusual when the data were collected. The Figure 23. TSAC model with menu selection predictor tracking a
target position was a sinusoidal waveform, but the eye veloc- sinusoidal target with an incorrect (parabolic) adaptive signal. The

top trace shows target position (dashed) and model eye positionity waveform looks like that of a parabola. This behavior had
(solid), the middle trace shows target velocity, and the bottom tracenot been seen before, and no explanation was apparent. But
shows model eye velocity. [From A. T. Bahill and J. D. McDonald,then we ran the menu selection model forcing it to choose
Model emulates human smooth pursuit system producing zero-la-the wrong waveform. Figure 23 shows the model tracking a
tency target tracking, Biol. Cybern., 48: 219, 1983 (Ref. 19).]

sinusoidal waveform using a wrong guess of the parabolic
waveform. These waveforms look very much like the human
tracking of Fig. 22. This is another reason that we favor the

The Science of Baseballmenu selection predictors.

To help validate the model, we used it to simulate something
that was not used in the design of the model. Ted Williams,
arguably the best hitter in the history of baseball, has de-
scribed hitting a baseball as the most difficult single act in all
of sports (49). The speed of the ball approaches 100 mph (45
m/s) (baseball is a game of inches, so the SI units come second
in this section), producing angular velocities greater than
500�/s as the ball passes the batter. Humans cannot track
targets moving faster than 70�/s (50) or perhaps 100�/s (51);
yet, professional batters manage to hit the ball with force con-
sistently and are able to ‘‘get a piece of the ball’’ on an average
of more than 80% of their batting attempts. In this section
we investigate how they do this by examining a professional
baseball player tracking a ‘‘pitched ball,’’ and we demonstrate
the superiority of his eye movements and head–eye coordina-
tion to those of our other subjects.

Why did we want to study a batter tracking a baseball?
We wanted to learn more about how the brain controls move-
ment, and we therefore were searching for a situation in
which a human was performing optimally. This condition is
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fulfilled by a professional baseball player tracking a pitched
Figure 22. Human tracking of a sinusoidal target waveform. The top baseball.
trace shows target position (dashed) and eye position (solid), the mid-

In addition to the four basic eye movement systems, thedle trace shows target velocity, and the bottom trace shows eye veloc-
batter can also use the head-movement system. Does he? Ear-ity. The eye velocity waveform does not match the target velocity
lier studies by Bahill and LaRitz (41) have suggested severalwaveform. [From A. T. Bahill and J. D. McDonald, Model emulates
strategies for tracking a baseball: Track the ball with headhuman smooth pursuit system producing zero-latency target

tracking, Biol. Cybern., 48: 220, 1983 (Ref. 19).] movements and smooth-pursuit eye movements and fall be-
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hind in the last 5 ft (1.5 m) of flight; track with eyes only, or
with head only, and fall behind in the last 5 ft (1.5 m); track
the ball over the first part of its trajectory with smooth-pur-
suit eye movements, make a saccadic eye movement to a pre-
dicted point ahead of the ball, continue to follow it with pe-
ripheral vision, and finally, at the end of the ball’s flight,
resume smooth-pursuit tracking with the ball’s image on the
fovea, the small area in the center of the retina that has fine
acuity. We will examine each of these strategies.

The Simulated Fastball. To discover how well a batter
tracked the ball, we had to be able to determine the position
of the ball at all times, and thus we could not use a real
pitcher or a throwing machine. Instead, we simulated the tra-
jectory of a pitched baseball. We threaded a fishing line
through a white plastic ball and stretched this line between
two supports, which were set 80 ft (24 m) apart in order to
accommodate the 60.5 ft (18 m) between pitcher and batter; a
string was attached to the ball and wrapped around a pulley
attached to a motor, so that when the motor was turned on,
the string pulled the ball down the line at speeds between 60
mph (27 m/s) and 100 mph (45 m/s). The ball crossed the
plate 2.5 ft (0.8 m) away from the subject’s shoulders, simu-
lating a high-and-outside fastball thrown by a left-handed
pitcher to a right-handed batter. This, like all our constraints,
was designed to give our subjects the best possible chance of
keeping their eyes on the ball. A low curve ball thrown by a
right-handed pitcher would have been much harder to track.

By controlling the speed of the motor and counting the ro-
tations of the shaft, we could compute the position of the ball
at every instant of time, and thus compare the position of the
ball to the position of the batter’s gaze. We define both posi-
tions in terms of the horizontal angle of the ball: the angle
between the line of sight pointing at the ball and a line per-
pendicular to the subject’s body (see Fig. 24). This angle is
slightly more than 0� when the pitcher releases the ball, and
it increases to 90� when the ball crosses the plate.

Tracking of a Professional Baseball Player. Figure 25 shows
the tracking of a professional ballplayer Brian Harper, then
a member of the Pittsburgh Pirates. He tracked the ball using

80°

40°

0°

Pitcher
releases

ball

Head

Head translation

Eye

Eye velocity

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (sec)

Start
of

swing

Ball
crosses

plate

30°

20°

10°

0°

30°

20°

10°

0°

30°

20°

10°

0°
30

20

10

0

H
or

iz
on

ta
l a

ng
le

V
el

oc
ity

 (
de

g/
s)

Gaze
Ball

head and eye movements, keeping his eye on the ball longer
Figure 25. The success of a professional baseball player in trackingthan our other subjects did. Our best-tracking student fell be-
a simulated 60-mph (27 m/sec) pitch is shown in these graphs. Thehind when the ball was 9 ft (2.7 m) in front of the plate. This
thin line in the top graph represents the horizontal angle of the ball,professional baseball player was able to keep his position er-
�, as it would be seen by a right-handed batter facing a left-handedror below 2� until the ball was 5.5 ft (1.7 m) from the plate.
pitcher; the thick line represents the actual horizontal angle of gaze
of the subject trying to track this ball. This gaze angle curve is gener-
ated by combining the horizontal head angle, the horizontal eye
angle, and the head-translation angle, which represents the eye
movement necessary to compensate for side-to-side and front-to-back
movement of the head. Movements to the right appear as upward
deflections. [From A. T. Bahill and T. LaRitz, Why can’t batters keep
their eyes on the ball, Am. Sci., 72: 251, 1984 (Ref. 41).]

The peak velocity of his smooth-pursuit tracking was 120�/s;
at this point, his head velocity was 30�/s, thus producing a

Release point for
left-handed pitcher

Path of ball Ball
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Home
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eye

Centerline of playing fieldPitcher’s
rubber

gaze velocity of 150�/s. In three simulated pitches to the pro-Figure 24. The horizontal angle of the ball, �, as defined in this
fessional baseball player, at speeds of 60 mph (27 m/s), 67study, ranges from near 0 degrees when the pitcher releases the ball
mph (30 m/s), and 70 mph (31 m/s) the overall tracking pat-to 90 degrees when the ball crosses the plate. [From A. T. Bahill and
terns were the same; his maximum smooth-pursuit eye veloci-T. LaRitz, Why can’t batters keep their eyes on the ball, Am. Sci., 72:

250, 1984 (Ref. 41).] ties were 120, 130, 120�/s (52).
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The gaze graph also takes into account the side-to-side and plate—how to be a better hitter in the future. The anticipa-
tory saccade must be made before the end of the trajectory,front-to-back movements of the head; such translations of the

head can produce changes in the gaze angle (53). The data because saccadic suppression prevents us from seeing during
saccades (54,55). This suppression of vision extends about 20show that the contribution of the translation angle was slight

until the ball was almost over the plate. msec after the saccade. So if you want to see the ball hit the
bat, you must make your anticipatory saccade early in theThe professional baseball player had faster smooth-pursuit

eye movements than our other subjects. In fact, he had faster trajectory.
smooth-pursuit eye movements than any reported in the liter-
ature. He also had better head–eye coordination, tracking the Head Movements and the Vestibulo-Ocular System. The ves-

tibulo-ocular system is little used when tracking a baseball.ball with equal-sized head and eye movements, whereas our
other subjects usually had disproportionately large head or However, in monitoring the eyes of our professional ball

player, we did detect a small vestibulo-ocular movement toeye movements.
the left during the early part of the ball’s trajectory, as the

Keep Your Eye on the Ball. Although the professional base- head was moving to the right; this appears as the slight dip
ball player was better than the college students at tracking between 0.5 s and 0.7 s in the eye position trace in Fig. 25.
the simulated fastball, it is clear from our simulations that At this point, the head position was changing faster than the
batters, even professional batters, cannot keep their eyes on angular position of the ball, and the vestibulo-ocular eye
the ball. Our professional baseball player was able to track movement compensated for the premature head movement.
the ball until it was 5.5 ft (1.7 m) in front of the plate. This Why would the batter want to start his head movement early?
could hardly be improved on; we hypothesize that the best The answer is that the head is heavier than the eye and con-
imaginable athlete could not track the ball closer than 5 ft sequently takes longer to get moving; therefore, in the begin-
(1.5 m) from the plate, at which point it would be moving ning of the movement, as the head starts turning to the right
three times faster than the fastest human could track. This ahead of the ball, the vestibular system in the inner ear sig-
finding runs contrary to one of the most often repeated nals the ocular system to make a compensating eye move-
axioms of batting instructors—‘‘Keep your eye on the ball’’— ment, thus giving his head a head start.
and makes it difficult to account for the widely reported claim However, this vestibulo-ocular compensation must soon
that Ted Williams could sometimes see the ball hit his bat. stop. In the end, the eye and head must both be moving to

If Ted Williams were indeed able to do this, it could only the right, and the batter must therefore suppress his vestib-
be possible if he made an anticipatory saccade that put his ulo-ocular reflex so that the tracking head movement does not
eye ahead of the ball and then let the ball catch up to his eye. produce compensating eye movements that would take his
This was the strategy employed by the subject of Fig. 26; this eye off the ball. The professional baseball player was very
batter observed the ball over the first half of its trajectory, good at suppressing his vestibulo-ocular reflex. Some of our
predicted where it would be when it crossed the plate, and student subjects did not make head movements until after
then made an anticipatory saccade that put his eye ahead of the ball crossed the plate; others moved their heads very lit-
the ball. Using this strategy, the batter could see the ball hit tle. Perhaps they did this because they could not suppress the
the bat. vestibulo-ocular reflex very well.

But why would a batter want to see the ball hit the bat? The fact that our professional baseball player used his
Because of his slow reaction time, he could not use the infor- head to help track the ball seems to violate another often re-
mation gained in the last portion of the ball’s flight to alter peated batting axiom, ‘‘Don’t move your head.’’ The profes-
the course of the bat. We suggest that he uses the information sional made small tracking head movements in the range of
to discover the ball’s actual trajectory; that is, he uses it to 10� to 20�. He was able to suppress the vestibulo-ocular reflex
learn how to predict the ball’s location when it crosses the for these movements, which were probably small enough to

go unnoticed by a coach. However, body movements could pro-
duce head movements of 90� or more; it may be difficult to
suppress the vestibulo-ocular reflex for these large body-in-
duced movements, which along with correlated poor perfor-
mance would be noticed by a coach. Therefore, we think the
axiom should be protracted: ‘‘Don’t let your body move your
head, but it’s okay to move your head a little in order to track
the ball.’’

Batters do not use vergence eye movements. This is rea-
sonable, since vergence eye movements are not needed to
track the ball between 60 ft (18 m) and 6 ft (1.8 m) from the
plate, and since there is not suficient time to make such
movements between 6 ft (1.8 m) and the point of contact; in-
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deed, our data contained no vergence eye movements. So any
Figure 26. In order to see the ball hit his bat, this subject made an claim that a batter actually saw the ball hit the bat must
anticipatory saccade, indicated by the jump in the gaze angle (thick

be based on monocular vision; only the dominant eye tracksline) that put his eye ahead of the ball (thin line); as a result, the ball
the ball.was on the fovea at the point of contact. The subject did not move his

head until after the ball crossed the plate. [From A. T. Bahill and T.
Strategies. Sometimes our subjects used the strategy ofLaRitz, Why can’t batters keep their eyes on the ball, Am. Sci., 72:

251, 1984 (Ref. 41).] tracking with head and eyes and falling behind in the last 5
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Figure 27. The model trying to track a baseball with the
predictor turned off. The top trace is the angular position of
the ball (dotted) and gaze (solid) and the bottom trace is ve-
locity. The record is 1 s long. The model ‘‘kept its eye on the
ball’’ until the ball was 9 ft (2.7 m) in front of the plate. This
tracking resembles that of our best-tracking college stu-
dents.
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ft (1.5 m), and sometimes they used the strategy of tracking They have better coordination of head and eye movements.
They have faster smooth pursuit eye movements than any re-with head and eyes but also using an anticipatory saccade. It

has been speculated that baseball players might use the lat- ported in the oculomotor literature. And they have better sup-
pression of vestibulo-ocular eye movements. Because of theseter strategy when they are learning the trajectory of a new

pitch and use the former strategy when hitting home runs. superiorities, the professional baseball player of this study
was able to keep his eye on the ball until it was 5.5 feet inThe professional baseball player tracked our simulated

pitch better than any other subjects did. This superior front of the plate. At this point, its annular velocity was so
great that no one could track it farther. However, many peopletracking was due to (a) his use of both head and eye move-

ments, (b) real fast smooth-pursuit eye movements, and (c) have reported that they have seen the ball hit their bat. This
is possible using a different strategy: track the ball over thegiving his head a head start.
first half of its flight, then make a saccade that takes the eye
off of the ball and aims the eye at the future site of the bat-Modeling Baseball Players. The eye movements of baseball

players were not used in the development of the TSAC model. ball collision. With this strategy, you can see the ball hit the
bat.So if the model could simulate such eye movements, it would

be a strong validation of the model. First, the limiter in the The data presented in this section prompt the following
summary about modeling human eye movements. HumansTSAC model was increased from its nominal value of 70�/s to

the 130�/s that the professional baseball player exhibited. can overcome the time delays of the eye movement systems
and track predictable visual targets with no latency or phaseFigure 27 shows the model with the predictor turned off try-

ing to track a baseball. It fell behind when the ball was nine lag. To do the same, the TSAC model had to compensate for
system dynamics and predict target velocity. Therefore, wefeet from the plate. Figure 28 shows the model with the pre-

dictor turned on tracking a baseball. It was able to track the think humans must use mental models of their eye movement
systems to help compensate for system dynamics. These men-ball until the ball was 5.5 feet from the plate. The predictor

makes a big difference. With the predictor, the model does as tal models must be adaptive, so that they can change due to
muscular activity, fatigue, temperature, and so on. One goodwell as the professional baseball player whose data are shown

in Fig. 25. The ball and gaze traces of Fig. 25 look very much way to predict target velocity is menu selection. The baseball
player’s menu contains fastball, curveball, and slider.like those of Fig. 28.
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