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COMPUTER SIMULATION OF OVERSHOOT IN SACCADIC EYE MOVEMENTS
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The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These
are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movemients. The majority of
saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that
it places the image of the stimulus within the retinal region of maximum acuity within a2 minimum of time.

A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discovered
that dynamic overshoot cannot be attributed to biomechanical properties of the eye movement mechanism, but must in-
stead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar
to that required for a time optimal response of an inertial system.
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1. Introduction

Saccadic eye movements have overshoot when the
eye movements takes the eye beyond its final position,
so that the eye must then return in the opposite direc-
tion. The term overshoot describes both the initial
motion beyond the target and the subsequent return
to the final position. The return phase of this overshoot
yields the most information about the underlying
neural mechanisms, and therefore the types of over-
shoot are named by the type of return phase that they
exhibit. There are three types of saccadic overshoot:
dynamic overshoot, glissadic overshoot, and static
overshoot (fig. 1). The first type is produced by moto-
neuronal control signal reversals and is the primary
topic of this paper. Investigation of dynamic overshoot
allows inferences to be made about the firing patterns
of neurons associated with saccadic eye movements
and about the control strategies used by the Central
Nervous System (CNS) to control movement.
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Oculomotor neurons
Time optimal control

2. Methods

Eye movements were measured by aiming a pair
of photodiodes at the iris-scleral border, converting
the resulting photocurrents into voltages and differ-
entially amplifying the resultant voltages. The com-
plete electronic system had a bandwidth extending
from DC to 1000 Hz. Bandwidths smaller than 80 Hz
prevented the measurement of most dynamic over-
shoots. These methods have been discussed extensive-
ty by Bahill et al. [2]. The target configuration seems
to have no effect on the dynamic overshoot. Dozens
of different stimulus conditions have been used, and
all yield similar dynamic overshoot statistics [2].

We have used linear control system theory, as -
well as a non-linear model to investigate dynamic
overshoot. Our model (fig. 2) incorporates a variant
of the Clark—Cook—Stark model {2, 3,6, 8] for the
extraocular plant. It is a sixth order non-linear sys-
temn. We simulated the model on a META 4 digital
computer coupled to an IBM 2250 interactive graphics
unit using SNAP, a variant of the CSMP language.
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Fig. 1. Eye position and eye velocity as functions of time for
three saccadic eye movements executed in a two minute
time span that demonstrate dynamic overshoot (A), glissadic
overshoot (B), and both dynamic and static overshoot (C).
The calibrations represent 18.2 degrees, 750 degrees/sec, and
80 msec.

3. Results
3.1. Experimental results

The existence of dynamic overshoot is quite capri-
cious. On one day most of a subject’s saccades will
have dynamic overshoot, while on another day very
few will. Fig. 3 shows a sequence of ten degree sac-
cades illustrating this variability. Some of these sac-
cades have dynamic overshoot, and some do not. We
have recordedboth microsaccades (fig. 4) and 50 de-
gree saccades [2] both with and without dynamic
overshoot. Care was taken to insure that the recording
devices were not saturated by the eye movements, for
if any part of the recording system saturates, no over-
shoot will be seen. it may not be obvious that the de-
vice has saturated, however, because it may be a soft
saturation, which will still permit the records to look
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Fig. 2. Model of the extraocular plant. Fa represents the
active state tension of the agonist muscle. The nonlinear force
velocity relationship (NL F-¥) is governed by the Hill equa-
tion for the agonist and by Katz’ active lengthening function
for the antagonist. XA and K AT represent the series elastic-
ities of the two muscles, and X'p represents the parallel elastic-
ities of the muscles as well as globe orbit elasticity. Bp repre-
sents the globe viscosity. VoG and VAT represent the moto-
neuronal activities. J represents the inertia of the eyeball.

smooth and normal.

About 70% of horizontal saccadic eye movements
have dynamic overshoot. Iis average size is about 0.25
degrees for saccades 10 degrees and less in magnitude:
the overshoot size increases with saccadic size [2].
Vertical saccades can also have dynamic overshoot
(fig. 5), although it is less frequent. Purely vertical
saccadic eye movements had dynamic overshoot for
36% of the upward and 15% of the downward move-
ments.

The existence of dynamic overshoot is not limited
to certain initial conditions or direction of travel, for
saccades have been shown [2] with dynamic overshoot
for temporal and nasally directed saccades both at
primary position and with the eye abducted 35 degrees
from primary position. .
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Fig. 3. A sequence of consecutive saccades illustrating the
variable dynamic responses of saccadic eye movements. The
calibration represents one second. The eye movements were
in response to a sequence of predictable ten degree target
jumps.

3.2. Theoretical results

When the response of a system has overshoot, a
common assumption is that it is an underdamped sys-
tem. The term underdamped is derived from the
study of linear second-order systems with step inputs.
These linear second-order systems are often analyzed
in terms of this differential equation.

‘29 + 2w, T w2 =5 (’) ')
For rotation of a mechanical system
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8 is the angle of rotation, J is the inertia, B is the vis-
cous co-efficient, K is the coefficient of elasticity,
F(¢) is the applied force, zeta () is the damping ra-
tion, and W, is the undamped natural frequency.

When zeta ({) is greater than one, the system is
overdamped, and the roots lie on the real axis of the
s plane. If zeta equals one, then the system is eritical-
ly dampled, and the roots are also on the real axis. If
zeta is less than one, then the system is underdamped,
and the roots are a complex conjugate pair in the s
plane. By Murphy’s law [10], the UNDERdamped
system has OVERshoot, the OVERdamped system has
UNDERshoot, and the critically damped system has
no shoot. The step response for these three systems is
shown in fig. 6.

Special criteria are often used to describe specific
systems. One special case of an underdamped system
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Fig. 4. A microsaccade with dynamic overshoot. The caiibra-
tions represented 1.5 min of arc and 20 msec.saccadic peak
velocity is 5 degrees per second. The noise is of biological

origin.
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Fig. 5. Oblique saccadic eye movements with dynamic over-
shoot in both the horizontal and the vertical components. In
the left column, from top to bottom, are shown: vertical eye
position, vertical eye velocity, horizontal eye position, and
horizontal eye velocity, all as functions of time. The right
column shows (top) the eye position in space, or the X-Y
trajectory, and (bottom) the horizontal eye position record
rotated 90 degrees and aligned with the X—Y trajectory above
it. The calibrations represent four degrees, 150 degrees/sec,
and 100 msec. In the left column, rightward (temporal) and
upward eye movements are represented by upward deflections.

e

that is often utilized in engineering systems has roots
on lines at 45 degree inclinations to the real axis, and
zeta equal to 0.7. This is the system with minimum
settling time; meaning that it is the damping ratio,
zeta, that allows the system to get to and stay within
5% of the final position in the least possible time.
What is magical about 5%? Nothing. It is perfectly ar-
bitrary. The saccadic eye movement system uses a dif-
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Fig. 6. Temporal response of a linear second order system ex-
cited by a step input for (from top to bottom) an underdamped
(¢ = 0.4), a critically damped (¢ = 1.0), and an overdamped

¢ = 2.0) system.

ferent optimality criterion. Dynamic overshoots of
saccades usually have magnitudes of one fourth de-
gree or less. The radius of the fixational fovea, that
part of the retina with the best acuity, is also one
fourth of a degree. Therefore, allowing overshoot of
one fourth of a degree enables the saccadic system to
get the fovea to and keep it on the target in the least
possible time..

In the literature the terminology of linear second
order systems has been applied to the saccadic system.
Most saccades have dynamic overshoot. Some investi-
gators saw this overshoot and said the system was
underdamped [14, 15, 17]. Westheimer [15] and
Zuber et al. [17] went on to estimate the damping ra-
tio, zeta, to be about 0.7 for the particular saccades
shown in their reports. However, the existence of over-
shoot implies an underdamped system only if the re-
sponse overshoots when the system in driven by a step
input. The input to the extraocular plant is not a step,
but is a pulse step of motoneuronal activity.

Dynamic overshoot in the saccadic system cannot
be explained as being the response of an underdamped,
linear, second order plant for many reasons: first, our
model shows that the experimental data of saccadic
eye movements is {it best by a non-linear sixth order
plant model (fig. 2): second, the magnitude of dynamic
overshoot is not a constant percentage of the step size,
third, the extraocular plant by itself is overdamped
[8,11] as can be seen in the simulated response of
fig. 7; fourth, the input to the extraocular plant is not
a step function; and fifth, there is tremendous variabil-
ity in eye movement responses — all saccades do not

Fig. 7. Simulated eye position and velocity for a ten degree
saccade with a glissade appended to the end. The glissade was
created by mismatching the pulse and step components of the
motoneunronal controller signal. Each record is 500 msec in
duration.

have dynamic overshoot (fig. 3). The model is based
on physiological data of human eye muscles [6]; and
the viscosities and elasticities are assumed to be rela-
tively invariant from saccade to saccade. Therefore,
the damping ratio will not vary, so the variations in
output response must be due to variations in the input
signal, the motoneural control signal.

3.3. Model results -

The controller signal is in the form of a pulse step
(similar to figs. 9E and F), and represents the firing
frequency of the agonist and antogonist oculomoto-
neurons [4, 8]. The pulse, or high-frequency burst of
firing in the agonist motoneuron pool and pause in
the antagonist pool, causes the rapid change in eye
position; then, the step holds the eye in its new posi-
tion. ’

To investigate the possibility that dynamic over-
shoot is produced by a mismatch of the pulse and step
components of the motoneural control signal, a con-
troller signal in which the pulse portion was larger
than the step portion was applied to the model. The
modelled eye went beyond its final position and slow-
ly drifted back to the final position as shown in fig. 7.
Real eye movements sometimes exhibit similar slow
drifts, or glissades [3]. The velocities of actual glis-
sadic eye movements are shown with open circles on
the Main Sequence [4] diagrams of fig. 8. The glissadic
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Fig. 8. A Main Sequence diagram showing, as functions of
saccadic magnitude, the velocity of: saccades (®), the return
phase of dynamiic overshoot (&), glissades (c), and vergence
eye movements (—).

velocities are smaller than saccadic velocities and are
about the same as vergence velocities. This is reason-
able, because glissades are the response of the plant

to differences in tonic levels of innervation of the
agonist and antagonist muscles. Vergence eye move-
ments, being the response of the plant to approxi-
mately a step input (see Krishnan, this issue), have
similar dynamics. However, these glissades are definite-
ly not the explanation for dynamic overshoot, for
they are much too slow.

The return velocities for dynamic overshoot are
indicated with triangles in the Main Sequence diagram
of fig. 8. These return velocities are equal to saccadic
velocities for saccades of the same size, and therefore,
have similar control signals. This yields an important
clue to unraveling the origin of dynamic overshoot.

If the return phase of dynamic overshoot has saccadic
like dynamics, then it must have a saccadic like pulse
. step controller signal (fig. 9).

To further investigate the cause of dynamic over-
shoot, the model may be conceptually run in reverse.
First, create the desired eye position (fig. 9A) and
eye velocity (fig. 9B) as functions of time. Then, de-
rive the active state tensions * of the agonist (fig. 9C)
and antagonist (fig. 9D) muscles that are required in

* Active state tension differs from the force of a muscle exert-
ed at the tendon [9]. It generally has faster dynamics and
sharper corners, as shown in figs. 9C and 9D.

T i

234

:

pu

Fig. 9. Model responses for a ten degree saccade with dynamic
overshoot, (from top to bottom) as functions of time, eye
position, eye velocity, active state tension of the agonist
muscle, active state tension of the antagonist muscle, agonist
motoneuronal activity and antagonist motoneuronal activity.

order to produce the desired eye position and velocity
records. Next, deduce the motoneuronal firing fre-
quencies for the agonist (fig. 9E) and antagonist

(fig. 9F) motoneuronal pools that are necessary in
order to generate the muscle forces required to realize
saccades with dynamic overshoot. This shows that in
order to produce dynamic overshoot, the motoneuro-
nal control signals must have reversals near the end of
the saccade. That is, the primary saccade agonist must
be inhibited, and the primary saccade antagonist must
have a high-frequency burst of activity near the end
of the saccade. This new pulse-step will develop the
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small saccade, or return phase of dynamic overshoot,
at the end of the main saccade.

4. Discussion

This model for the extraocular plant and saccadic
controller suggests that dynamic overshoot must be
caused by neural control signal reversals. These con-
trol signal reversals cannot be due to random noise,
however, because often as many as a dozen consecu-
tive saccades will have identical overshoot. The rever-
sal at the end of this controller signal is similar to the
signal required for time optimal control of an inertial
object 13, p. 631], and also the signal used in opti-
mal responses when the forearm moves a load [12].

However, the Central Nervous System (CNS) does
not always use this second order time optimal control-
ler for arm movements [12]. We have demonstrated
here that about 70% of the time thg CNS uses a sec-
ond order controller for saccadic eye movements.
When time optimal control theory was applied to our
model, and the Hamiltonian functional was evaluated
[71, it was found that this second order controlier
signal should be used for time optimal control of sac-
cadic eye movements. This controller signal stratagem
enables the eye to arrive and stay within one foveal
radius (0.25 degrees) of the target in the least possible
time.

We might expect the controller signal to be com-
posed of two third order controller signals, because
the plant model (fig. 2) is a sixth order system. (One
third order controller signal is for the agonist and one
third order controller signal is for the antagonist.)

Fig. 10 shows experimental evidence that implies that
the CNS may use a third order controller signal. For
the saccade in this record, the eye is first driven to the
left (down in fig. 10), then to the right, as in a nor-
mal return phase of dynamic overshoot, and then
back to the left. A third order time optimal controller
signal would drive the eye in a similar manner.-About
1% of our saccadic eye movements exhibited this be-
havior characteristic of a third order controller signal.

These higher order controller signals require precise
synchronization of the individual motoneurons. For
instance, thousands of motoneurons in the agonist pool
must all pause during the 5—10 msec return phase of
the dynamic overshoot. Similarly, there must be a

Fig. 10. Eye position and eye velocity for a saccade, presum-
ably driven by a third order time optimal controller signal.
The calibrations are as in fig. 5.

synchronized bursting in the antagonist pool during
this same interval. Records of the firing of oculomoto-
neurons often show pauses and bursts near the end

of the saccades. We believe these to be responsible for
the control signal reversals that produce dynamic over-
shoot.

The return phase of dynamic overshoot has a sac-
cade-like controller signal. It is feasible that the re-
turn phase of dynamic overshoot is actually a second
small saccade in the opposite direction from the
primordial saccade. This close spacing of saccades is
not contradictory to the sampled-data model [16] for
the saccadic tracking system, because the sampled-
data model was formulated strictly for tracking ran-
domly moving targets. Closely spaced saccades are
common and can be produced in response to a variety
of stimuli [1, 5]. Dynamic overshoot may represent
just one more example of closely spaced saccades.

5. Summary

Most saccadic eye movements have dynamic over-
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shoot, but this cannot be explained by classical con-
trol system theory for linear second order systems. In
the computer stimulation, dynamic overshoot is pro- -
duced by a second order time optimal controller sig-
nal applied to the input of the model of the extra-
ocular plant. The motoneuronal control signals have
role reversals immediately before the end of the sac-

cade: the agonist for the main saccade has a brief pause,

and the antagonist for the main saccade has a short
burst of firing.
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