;login:

Cogito, An Expert System to Give Installation Advice for UNIX 4.2BSD

A. Terry Bahill
and .
Pat Harris

Systems and Industrial Engineering
University of Arizona
Tucson, AZ 85721

When you try to use a computer, your first effort inevitably fails. You then recall the sage
advice, “If all else fails, read the instructions.” So you decide to do this. But where do you
start? For the tasks described in this paper the instructions were hundreds of pages long
spread over a several manuals. So we wrote an expert system to help the human use this data.

In this paper we will discuss Cogito, an expert system that gives installation advice for
bringing up the UNIX 4.2BSD operating system on a VAX computer [1]. A detailed reference
manual is currently used for installation instructions. Task complexity limits this method. Cogito
filtters the information and presents only relevant advice about the user’s computer system.
Cogito remembers data the user has previously entered and uses this to customize its response.
Cogito, written in M.1 and running on a personal computer, uses if-then production rules to
encode the knowledge. Cogito’s knowledge base has two componenis: classification
knowledge and process knowledge. Classification knowledge transforms one kind of knowledge
into another. Production rules are appropriate for Cogito’s classification knowledge. Process
knowledge directs the flow of information and the explanation for that knowledge. Cogito’s
process knowledge is difficult to encode with production rules because in describing the
installation process the expert does not think in terms of rules.

Problem Statement

Installing a computer system is an evolutionary process consisting of a series of operations that transform
a computer into a complex system capable of supporting many users and functions. There are two basic types
of system installation: system building and device integration. System building is required when the computer
hardware is delivered and involves installation of the operating system. Device integration is required when a
new device is obtained and must be integrated with the rest of the system. This paper will only discuss system
building.

The knowledge needed to do system installation is fact-intensive because hardware and software
designers have already made many decisions regarding the system structure. Consequently, system installation
dictates a long, interconnected series of steps to get the hardware and software to interact correctly. This
process is especially complex with the UNIX operating system since it is designed to be as portable as possible,
supporting many different types of computers and devices. For example, 4.2BSD UNIX supporis three VAX
models, three communication buses, 21 disk drive types, 11 tape drive types and 22 device types. Simple
combinatorics yields the number of 45,000 minimal systems (one VAX cpu, one communication bus, one disk
drive, one tape drive and one console terminal). Almost no one has a minimal system. However, our Systems
and Industrial Engineering Depariment’s VAX-UNIX system is close to minimal: it has one VAX cpu, two
communication buses, one disk drive, one tape drive and two other devices. For this system there are
approximately a half a million combinations.

"Present address Bell Communications Research, New Jersey.

4 September/October 1986 Volume 11, Number 5

e

;login:

Established Method

Information regarding system installation of UNIX 4.2BSD is contained in the UNIX Systems Manager’s
Manual [2), and the UNIX Programmer’s Manual Reference Guide [3]. The UNIX 4.2BSD Systems Manager’s
Manual is an extensive reference document that explains in detail the making and installing of UNIX 4.2BSD.
The Programmer’s Manual Reference Guide provides detailed information about specific devices that may be
attached to the computer. Unfortunately, these reference manuals are also forced to serve as the only tutorials
available for making and installing the UNIX system. They are not well suited for this task for several reasons.

First, the manuals’ structures do not provide a model of the problem for system installers to base their
learning on. Additionally, the information is often written at a higher level than inexperienced system installers
can understand and explanations are sometimes pages distant from the first example. Finally, the wide variety
of possible VAX computers, disks, tape drives, controllers, printers, terminals and other hardware makes it
impossible for a linear explanation, such as in a book, to distinguish all the relevant information for a particular
user. Consequently, to install the operating system with this method, a system installer must painstakingly seek
to understand and extract the information needed for his or her system from the vast amount of details for all
possible combinations provided by the manuals.

Example Rules

We transformed this vast amount of information into if-then production rules for our expert system. The
following shows examples of these rules.

This rule sets up the correspondence between the DEC disk name and the DEC-bus that it is attached to.
di-hp-a: if disk = 'RM03’

or disk = 'RM05’
or disk = '"RM80’
or disk = 'RP06’
or disk = 'RPO7’

then disk-bus = "MASSBUS’.

This rule establishes the first level correspondence between DEC disk names and their UNIX counterparts.
di-hp-b: if disk = 'RMO3’

or disk = 'RM05’
or disk = 'RM80’
or disk = 'RP06’
or disk = 'RPO7’

then standalone-disk-name = hp.

These rules establish the UNIX-to-UNIX relationship between the standalone disk names and their controller
designations. This demonstrates the nonobvious relationships that occur in UNIX-land that are very similar to the
English language tradition of irregular verb forms; some forms fit the pattern, while most do not.

dtc-1: if standalone-disk-name = hk
then controller = hk.

dtc-2: if standalone-disk-name = ra
then controller = uda.

dtc-3: if standalone-disk-name = rx
then controller = fx.

dtc-4: if standalone-disk-hname = up
then controller = sc.

These two rules show that non-DEC disks can be attached to either the UNIBUS or the MASSBUS, but the UNIX
disk types are decidely different.

Volume 11, Number 5 September/October 1986 5

slogin:

di-26: if disk = 'AMPEX 330M’
and disk-bus = 'UNIBUS’
then disk-type = capricorn.

dt-34: if disk = 'AMPEX 300M’
and disk-bus = 'MASSBUS’
then disk-type = 9300.

User Satisfaction

Cogito is a better method for system installation than using the UNIX Systems Manager’s Manual, in
terms of overall user satisfaction, because the amount and relevancy of the information presented is significantly
increased. For example, in the disk definition state the file /etc/fstab must be created. Assume that the boot
disk is a ‘AMPEX 300M’ connected to uba0 at drive 1. This implies that the disk address is 1. Also assume the
user's name is ‘Pat’ and that he is ready to install fstzab. The instructions given in the manual are generic and
therefore the human must relate the general instructions to the specific application. Figure 1 is a copy of a the
relevant section of the manual.

4.4.1. Initializing /etc/fstab

Change into the directory /etc and copy the appropriate file from:
fstab.rm03
fstab.rm05
fstab.rm80
fstab.ra60
fstab.ra80
fstab.ra81
fstab.rp06
fstab.rp07
fstab.rkQ7
fstab.up160m (160Mb up drives)
fstab.up300m (300Mb up drives)
fstab.hp400m (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)
to the file /etc/fstab, i.e.
cd /etc
cp fstab.xxx fstab

This will set up the initial information about the usage of disk partitions, which we see how to update more below.
Figure 1: Installation of fstab from [2].

Cogito’s instructions to complete the same task are:

cd fetc

cp fstab.up300m junk

vi junk

(Edit the file, Pat.)
a. Add the line ‘/dev/upOb::sw::’.
b. Give the global substitute command ‘:g/up0/s//upi/.
c. Save the new contents and quit the editor.)

cat junk >> fstab

Cogito has remembered that half an hour ago the user said his name was Pat and his disk was an AMPEX
300M and has used this information to make its instructions specific. Cogito’s instructions are personalized,
relevant to the user’s task, clear and complete!

6 September/October 1986 Volume 11, Number 5

;login:

This example illustrates that the manual’s instructions are incomplete, and rely on previous knowledge and
implicit knowledge: they are incomplete because the swap partition /dev/up0b, must be added to the file; they
rely on previous knowledge because the user must recall that the UNIX standalone disk name for a ‘AMPEX
300M' is ‘up’; and they rely on implicit knowledge because the user must somehow know that the disk address
of the partitions needs to be changed from ‘0’ to ‘1°.

To address the issue of whether Cogito is the best system for advising on UNIX system installation,
qualifications must be made. As originally designed, Cogito has two user classes: a system builder and a
system integrator. It’s interesting to note that although the knowledge base is the same for both kinds of users,
Cogito is inadequate for the system integrator user. All the appropriate information is given to the user but the
instrument on which it is displayed is wrong. Transmission of the advice via a personal computer seems
inconvenient when the VAX computer is running. Ideally, Cogito should have the capability to run on the VAX
computer once it is up and running. This includes the ability to transfer information “‘learned” by Cogito in the
system building stage into a database where it can be retrieved when configuring a new device. Unfortunately,
this cannot be done because M.1 only runs on a personal computer.

information Flow

Information flow is concerned with the data transfer from the user into Cogito and the corresponding
transfer of advice from Cogito to the user. The information flow depends on the knowledge base structure.
Since Cogito is based on the backward chaining inference engine M.1, both direction flows (into and out of
Cogito) depend on a goal-oriented knowledge base structure. Ideally the knowledge base is a true reflection of
how the expert thinks about the problem. In Cogito, the knowledge base was originally constructed without
reference to a particular inference engine. For instance, an original rule near the end of the configuration state
was:

if config done then
config NAME
cd ..[NAME
make depend
make vmunix

As implemented in Cogito the conirol method of the inference engine imposed a backward chaining thought
process to occur. Hence, using M.1, the implemented version of the same rule is:

if display(" # config NAME °)
and display(* # cd ../NAME’)
and display(' # make depend °)
and display(* # make vmunix ’)
then config is done.

Looking at Cogito from the end user’s viewpoint, the questions asked and the advice presented appear to be
given in a logical, relevant and concise manner. However, the implemented knowledge base structure of Cogito
suffers from an unnatural viewpoint, forced by the control method used in the inference engine.

Choice of Expert System Shell

We had two conveniently available expert systems shells to choose from: M.1, primarily a back chainer,
and OPS5, primarily a forward chainer. Although the problem domain seems to be data driven, which would
suggest a forward chainer, we found that either shell worked. The knowledge base was just a little longer using
the back chainer. The decision to use M.1 was primarily based on the differences in rule implementations.
Cogito’s rules are English-like phrases, whereas, with OPS5, the rules are reminiscent of LISP code, the
implementation language. Experts not familiar with LISP have trouble reading and understanding the content of
the rules. It is important that the knowledge engineer be able to verify with the expert that the intent of the rule
is the same as the coded rule. This is especially crucial if the expert system is giving incorrect advice.

Volume 11, Number 5 September/October 1986 7

slogin:

Testing

Testing this expert system was difficult. It was impossible to present it with every possible combination of
inputs and evaluate its outputs. The best test we devised was to let the intended users use it in many
hypothetical circumstances. If the knowledge base was incomplete, then, in some situations the advice given to
the users should be incorrect. Cogito was tested by the Systems Administrator of the Department of Systems
and Industrial Engineering, a Professor of Systems and Industrial Engineering, and the Systems Administrator for
the Department of Computer Science. They all found Cogito’s advice to be complete and correct.

One of our colleagues suggested that the system be tested by 12 random graduate students and that the
results be subjected to statistical analysis. We felt this would be unfair, because the system was designed to be
used by people with a good knowledge of computer hardware and UNIX software and we only knew of four
such people on the University of Arizona campus (the builder of the system and the three testers).

In an effort to bolster our testing we asked several non-expert computer users to try the system. Their
evaluations tended to emphasize the difficulties they had using it or making sense of its queries or output, and
the extent to which they could ‘“fool”” the system with plausible (but nonsensical) inputs. They did not fool this
system. So, we did our best to test Cogito, but we were not able to prove that it would always give the correct
advice. Testing seems to be a problem with most expert systems.

The best way to test this system would have been to use it to bring up a a brand new system.
Unfortunately no such system was available. The next best test would have been to shut down an existing
system, and rebuild it using Cogito. Unfortunately no one wants to let you shut down their operational system.
Recently, however, due to inadequate giue on the heads of our RA81 disk, we had to rebuild our system from
the distribution tapes. Cogito helped us. We found a few omissions in Cogito’s advice, but no mistakes. It was
a big help. We completed the task in about 12 hours.

This experience has reinforced our belief that all expert systems are inadequately tested. There are no
quantitative procedures for testing expert systems. Most tests merely involve running a few case studies; they
do not exhaust all possibilities. For example, we are confident that Cogito works well for a small VAX 750
system but we cannot be sure that it will work as well for a 730 or a 780.

Appropriateness of Expert System Technology

How can one identify a task that is appropriate for an expert system? First, there must be a human expert
who performs that task better than most other people. Second, the task must be one to which the human
expert can explain the solution in words, not one that requires the expert to draw a picture to explain what to
do. Third, can the problem be solved routinely in a 20 minute, or even a one hour, telephone conversation with
the expert? If so, the problem is a good candidate for a personal computer based expert system. If a human
would take two days to solve the problem, it is far too complicated for an expert system; if the human gives the
answer in two seconds, it is too simple.

Given these criteria, giving advice for bringing up UNIX on a VAX computer was inappropriate for a personal
computer based expert system. Bringing up UNIX cannot be done in a one hour conversation with an expert.
We think it would take an expert one to two days to do the task. (It took us three months to do it the first
time!) The 700 rules of this expert system filled up two floppy disks. We succeeded in making an expert
system that worked, but it was hard work. We think a more powerful tool (such as KEE, S.1, ART, or Knowledge
Craft) would have been more appropriate.

For further information about Cogito, phone Professor Bahill at (602) 621-6561.
Acknowledgement

We thank Phil Kaslo and Bill Ganoe for testing our expert system.
References

[1] P. N. Harris, COGITO: An expert system that gives advice for making and installing UNIX 4.2BSD on VAX-
11 series computers. University of Arizona: master’s thesis, 1986.

[2] UNIX Systems Manager’s Manual. El Cerrito: USENIX Association, 1985.
[3]1 UNIX Programmer’s Manual Reference Guide. El Cerrito: USENIX Association, 1985.

8 September/October 1986 Volume 11, Number 5

