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I. INTRODUCTION

A, Why the Ocular Motor Systems?
The ocular motor systems are ideal for studying the control of human movement.

Eye movements are easy to measure, and the control of saccadic eye movements is
simpler than the control of other neuromuscular systems. It is simpler because the load
presented by the eyeball and extraocular tissues is small and constant. Horizontal eye
movements offer a further simplification because they primarily involve only two mus-
cles of each eye. By scrutinizing the trajectories of saccadic eye movements, we can
infer the motoneuronal activity, deduce the central nervous system's control strategy,
and observe changes in this control strategy caused by fatigue, alcohol, drugs, or pa-
thology. These eye movement control principles should generalize to other neuromus-
cular systems.

There are two additional reasons for choosing the eye movement control systems as
a model for neuromuscular control. First, we can present the development of a model
by 11 authors over a span of more than 25 years (see Table 1). Second, an in-depth
evaluation of this final model can be presented. The study of eye movement control
models was chosen not because eye movements are thought to be so important, but
rather because the physiological system is simple and typical and the models are well
studied.1

B. Four Eye-Movement Systems
There are four types of eye movements: saccadic eye movements which are used for

reading or scanning a scene, vestibulo-ocular movements which are used to maintain
fixation during head movements, vergence eye movements which are used when look-
ing between near and distant objects, and smooth pursuit eye movements which are
employed when tracking moving objects, such as a high-flying bird.

These four types of eye movement are produced by four independent control sys-
tems. Their dynamic properties, such as latency, speed, and high-frequency cutoff val-
ues, are different. They are produced by different areas of the brain, and they are
affected differently by fatigue, drugs, and disease.

* This work was partially supported by National Science Foundation under Grant ENG 7722418. 1 thank
Jack McDonald for a critique of the manuscript.
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The specific action of each system can be illustrated by considering a duck hunter
sitting in a row boat on a lake. He scans the sky using saccadic eye movements. When
he spots a duck he tracks it using smooth pursuit eye movements. When the duck
comes closer to him, his eyes must move toward each other using vergence eye move-
ments. While he is doing all of this, the boat is rocking which requires compensatory
vestibulo-ocular eye movements. Thus all four control systems are continually used to
move the eyes.

The model will work for all four types of eye movements, given the correct controller
signals, but the saccadic system being the fastest presents the most stringent test of the
model. Only controller signals for saccadic eye movements will be developed.

Saccade is a French word meaning fast jerk, as of a horse's reins. It was first applied
to eye movements by Javal in 1879,2 when he used the term to describe the rapid eye
movements used during reading. The purpose of these saccadic eye movements is to
place the high-resolution fovea, the central '/a ° of the retina, on the important features
of the scene by using information from the periphery of the retina to direct the move-
ment. However, we would not want our eyes to be continuously producing saccadic
eye movements because we do not see well during saccades. For example, if you move
your eyes between two points in the front of the room, you do not see the world
rushing past, although the image on your retina is this moving scene. We have a process
that suppresses our visual acuity during saccadic eye movements. This process, called
saccadic suppression, is specific for saccadic size and direction.3'4 Its effect can also
be easily demonstrated by a simple experiment with a mirror. Look at the image of
one of your eyes, then look at the image of the other eye. The rapid movement of the
image during the saccade and the movements of the eyes were not seen because vision
was partially suppressed during the saccade. Saccadic suppression is specific to the
saccadic eye movement system.

II, THE MODELS

A. Descartes
An initial step in understanding this movement control system is the development

of an appropriate descriptive model. One of the first eye movement models was devel-
oped by Descartes in 1630s to illustrate his discovery of the principle of reciprocal
innervation. He thought that muscles behaved like balloons; when inflated they would
be short and fat, when drained of fluid they would be long and skinny. The pipes in
Figure 1 were used to pump fluid reciprocally in and out of the muscles.

B, Quantitative Eye Movement Models
1 . Linear Second-Order System

The first control system model for the human saccadic eye movement system was
proposed by Westheimer in 1954.6 He recorded 20°-saccades and suggested that they
looked like the step response of a linear second-order system. He suggested the follow-
ing equation as his model

a 0 + b0 + c9 = T(t)

where a, b and c are constants and 0, 9, and 9 represent, respectively, the angular eye
position, eye velocity, and eye acceleration. The force applied to the globe by the ex-
traocular muscles is represented by T(t), the tension in the muscle. This equation can
be expressed as

T(s)
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FIGURE 1. Two reciprocal innervation models for the
human eye movement system. The top figure shows
Descartes' basic concept of reciprocal action of muscles.
Descartes thought that muscles were like balloons: when
inflated they would be short and fat; when drained of
fluid they would be long and skinny. The pipes were
used to pump fluid reciprocally in and out of the mus-
cles. Shortening of the agonist, together with lengthen-
ing of the antagonist, produces eye movements. The
bottom figure shows the ideal mechanical elements used
for modeling the plant. The globe and surrounding tis-
sues were modeled by the inertia (Jp), a viscous element
(Bp), and a passive elasticity. Each muscle was modeled
by an active-state tension generator (F^c and FANT), a
nonlinear dashpot (NL-FV) representing the nonlinear
force-velocity relationship, a series elasticity (K,,), and
a parallel elasticity which was combined with the passive
elasticity of the globe to form (Kp). The active-state ten-
sion generator converts motoneuronal firing into force
through a first-order activation-deactivation process.
The controller signals (CSAC and CS^WT) represent the
aggregate activity of all of the motoneurons in the ago-
nist and antagonist motoneural pools. (From Bahill, A.
T,, Hsu, F. K., and Stark, L., Arch. Neural, (Chicago),
35, 138, 1978. Copyright 1978, American Medical As-
sociation. With permission.)

Westheimer suggested that the values of zeta and omega were £ = 0.7 and con = 120.
The constant K would be the spring constant for a simple spring, mass dashpot

system. Without loss of generality we can let K = 1°/N. The two major reservations
that Westheimer had about his model were (1) that the real system was not linear
because the peak velocity vs. magnitude plot was nonlinear (see Figure 2) and (2) that
the force input was probably an exponential, not a step.
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FIGURE 2. Main sequence diagrams showing peak velocity (top) and du-
ration (bottom) as functions of saccadic magnitude for normal human sac-
cades (dots) and for the model (crosses). Human data were derived from eye
position records with a 500-Hz bandwidth and eye velocity records with a
55-Hz bandwidth. (From Hsu, F. K., Bahill, A. T., and Stark, L., Comput.
Programs Biomed., 6, 108, 1976. With permission.)

After a model of a system has been developed, it is usually worthwhile to perform
experiments on it. The model should be run in a variety of new modes. If any of these
new situations yields interesting results, then similar experiments should be designed
and performed on the physiological system. If the results of the model simulation and
the physiological experiments are similar, then the validity of the model has been en-
hanced. As an example of this technique let us rederive and simulate Westheimer's
model. The response of this linear second-order system to a step input is

6>(t) = A 0 1 - sin (1)



December 1980 315

where A 0 is the size of the saccadic step, and

What are the implications of this result? For the values that Westheimer used for
his model, the time to peak becomes

120V1 - (0.7)2

= 37 msec

The time to peak is a reasonable definition for the duration of a saccade. It is inde-
pendent of the size of the input step; this is not in concert with the experimental data.
Figure 2 shows the duration as a function of magnitude for normal human saccadic
eye movements. The duration increases with saccade size; therefore, the model fails
to fit these data. The theoretical values of £ and con chosen by Westheimer yielded
duration values that were only appropriate for a 10° saccade.

A comparison can also be made between the peak velocities of the model and the
human data. To do this, we can twice differentiate Equation 1, set the result equal to
zero, and solve for t. The time of maximum velocity becomes

T =

setting n = 0 and substituting into the velocity equation yields

max [ — ] = A e —==• sin* '

For £ = 0.707, $ = 45 deg and Bmax = 55 A 0.
The second derivative test shows that this is indeed a maximum. This value of the

peak velocity is directly proportional to the size of the input step. The human saccadic
peak velocity data can be fit with a linear approximation only for saccades 15° and
smaller. There is a soft saturation for larger magnitudes as shown in Figure 2. There-
fore, the model does not match the physiological data. Westheimer noted this defi-
ciency in his original model.

In summary, the step response of a linear second-order system has the same duration
for all input magnitudes, and the peak velocity is directly proportional to the size of
the input step. Because the human eye movement system has neither of these proper-
ties, we can conclude that this is a valid model for saccadic eye movements of only
one size. In spite of its deficiencies, this model continued to be used (see, for example,
Young and Stark)7 until Robinson's model supplanted it in 1964.8

2. The Pulse-Step Input
Westheimer assumed that there was a step input to the extraocular muscles. In 1964,

Robinson8 performed an experiment to investigate this assumption. He applied a suc-
tion contact lens to the eye and then held the lens so that the eye could not move. He
then measured the force required to hold this eye stationary while the other eye exe-
cuted a saccade. Because the same innervation is sent to both eyes, he could infer the
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FIGURE 3. Eye position as a
function of time (top) and eye
velocity as a function of time
(middle) for a typical saccade.
Calibrations represent 4°, 20
msec, and 150°/sec. The pulse-
step motoneuronal controller
signals that are used to generate
saccades represent the average
motoneural activity of agonist
(AG) and antagonist (ANT) as
functions of time. The pulse is
the high-frequency burst of
neuronal firing that drives the
eye rapidly between points. The
step is the steady-state firing
level that holds the eye in its
new position. No time delay is
shown between the start of the
controller signal and the begin-
ning of the saccade because this
delay depends upon where the
controller signal is measured.

muscle force responsible for the eye movement. This muscle force was a pulse-step
similar to that shown for the agonist in Figure 3. At the motoneuronal level, the pulse
corresponds to the high-frequency burst of motoneuronal firing that moves the eye
rapidly from one position to the next, and the step corresponds to the steady state
firing rate that holds the eye in its new position.

Robinson also increased the complexity of the model to that of a fourth-order sys-
tem. His model then consisted of a pulse-step input signal and the following transfer
function:

'eye 0.667 (0.02s + 1)
(0.3s + 1) (0.06s + 1) (1.03 X 10"V + 0.004S+ 1)
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FIGURE 4. Position and velocity curves from Robinson's model. The
position curve is similar to human records, but the velocity profile has
an abnormal knee near the end. (From Cook, G. and Stark, L., Com-
mun, Behav. Biol Part A, I , 197, 1968. With permission.)

The numerical values were estimated from experimental data obtained from cats and
were then adjusted by trial and error to match the human eye movement data.

This model could simulate saccades over a range of magnitudes between 5 and 40°
by changing the size of the pulse and step. The input to this model was a force that
was hypothetically proportional to the difference of the forces generated by the agonist
and antagonist muscles. The position vs. time traces from Robinson's model matched
his data fairly well. However, the velocity vs. time records had abrupt inflection points
(see Figure 4) that did not occur in the physiological data.

3. The Homeomorphic Model
The reciprocal innervation model developed by Cook and Stark in 19689 and im-

proved by Clark and Stark,10 Bahill et al.,11 and Hsu et al.12 differed from Robinson's
in two major ways. First, the duration of their pulse was not as long as the duration
of the saccade. Second, they modeled the antagonist muscle as a separate independent
entity, implementing Descartes' principle of reciprocal innervation. The big improve-
ment in their model was its capability of producing realistic records of velocity as a
function of time. The following development of the linear homeomorphic model is
similar to Cook and Stark's, but it explicitly includes the effects of the length-tension
diagram, and it incorporates the results of more recent physiological experiments on
the muscle force-velocity relationship.

This marks the advent of the homeomorphic models where there is a one-for-one
correspondence between the elements of the mode and elements, or effects, in the
physiological system. So now, rather than discuss the evolution of whole models, let
us investigate the development of individual elements of the model. The physiology
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and experiments underlying the development of these elements are treated in greater
detail by Bahill.13

a. The Passive Elasticity
Resting muscle is elastic. It can only be stretched by applying a force. The greater

the force, the greater the extension (see curve labeled PM in Figure 5). Human phys-
iological data are available for estimating this parameter for human eye move-
ments.14-16 Passive muscle is nonlinear, but for simplicity, the passive elasticity was
modeled with an ideal linear spring. The coefficient KPE was chosen so that the linear
approximation yielded a reasonable fit to the data in the region of interest for the
model.

b. Stimulus Response Relationship
A muscle produces a force when it is stimulated. A typical striated muscle responds

to a single adequate stimulus with a twitch, a brief period of contraction followed by
relaxation. The size and time course of the twitch depends upon the temperature, the
particular type of muscle, and the strength of the stimulus. With very weak stimuli,
nothing happens. When the stimuli exceeds threshold, a small response results. When
the stimuli increases further, the response increases until it reaches a saturation limit.
A reasonable explanation for this behavior is that the weak shock stimulates only a
few muscle fibers close to the electrodes where the current density is highest, while the
supramaximal shock stimulates all of them. 17

If a second shock is given to the muscle before the response to the first has com-
pletely died away, summation occurs. If the stimuli are repeated regularly at a suffi-
ciently high frequency, called tetanic stimulation, then a smooth tetanus results with
tension maintained at a high level for as long as the stimulus train continues or until
the onset of fatigue.17

An ideal force generator is used in the model to simulate this force-generating ca-
pability.

c. The Series Elasticity
The next element to be added to the model is the series elasticity. The effects of this

element were demonstrated by the quick release experiments of Levin and Wyman in
1927:18

1. A weight was hung from a muscle.
2. The muscle was stimulated tetanically.
3. The weight was quickly released.
4. The muscle length and force were recorded as functions of time.

When the weight was released, the force abruptly decreased (because there was less
of a load to support), and the muscle quickly shortened. There is an ideal mechanical
element which will change its length instantaneously in response to an instantaneous
change of force: a spring. For the model, this spring must be in series with the force
generator; therefore, it is called the series elasticity. In the body, most of this elasticity
is located in the tendon and in the actin and myosin cross bridges of the muscle.19 The
spring should be nonlinear,20-21 but for small movements it can be approximated as a
linear spring. Numerical data from human subjects show that KSE is approximately
125 N/m (2.5 g tension per degree).15

It now becomes important to define precisely where the force is being measured.
The force exerted by the tendon on the mass will be called the muscle force or muscle



30° T

I50T

MUSCLE FORCE
(gm tension)

Slope =

-8 -6 -4 -2
T -40 -30 -20 -10 20 30 4O N

25C

Change in muscle length (mm or deg)

+ 30° +20° +10° 0 -10° -20° -30°

EYE POSITION

45° N

FIGURE 5. Length-tension curves for human extraocular muscle (a and c). The data were collected during strabismus surgery. The muscles were detached
and then reattached to the eyeball in a different position. Before the muscles were reattached the patient was instructed to look at certain targets with his
unoperated eye while the horizontal muscle of the operated eye was stretched to each of the indicated positions. The resulting force was then recorded. For
example, in (a) when the operated eye was held in a position 10° nasal of primary position and the subject was asked to look at a target 15° temporal of
primary position, a force of 50 g was developed by the lateral rectus muscle of the operated eye. The curve labeled PM is for passive muscle. When its
effects are subtracted away, the forces of the active-state tension generator result (dashed lines). Part a from Robinson, D. A., O'Meara, D. M., Scott, A.
B., and Collins, C. C., J. AppL PhysioL, 26, 548, 1969. With permission. (Part c from Collins, C. C., O'Meara, D., and Scott, A. B., J. Physiol., 245,
351, 1975. With permission.) (b) The linearized approximation which was used to derive the model parameters. The area below the curves is not entered by
normal humans.37
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FIGURE 6. Muscle model with elements representing the
effects of the length-tension diagram, Kir, the series elastic-
ity, Kss, and the active state tension generator, F. The total
force exerted by the muscle is T. The muscle length is L.37

tension and will be given the symbol T. The force from the ideal force generator will
be called the active state tension and will be given the symbol F, as shown in Figure 6.
The physiological literature is not so unambiguous,

d. The Antagonist Muscle
So far our discussions have been limited to muscles which shorten when stimulated.

However, for every muscle that is shortened there is, roughly speaking, an antagonist
muscle which is being lengthened. This antagonist muscle has a great effect on the
dynamics of the resulting movement. In the model, the inhibition of the antagonist
has just as great an effect on the velocity and duration of a saccade as the high-fre-
quency burst of activity for the agonist, Scott22 described human saccadic eye move-
ments with almost normal velocities which resulted from the action of only the antag-
onist (the agonist was paralyzed and could contribute no force). From now on, effects
of both an agonist and an antagonist muscle will be considered,

e. Length-Tension Diagram
The maximum contractile force a muscle can generate depends, in part, on its length.

Muscle force generated by a contracted muscle is smaller than the maximum possible
force. The isometric experiments performed to investigate this effect produce data of
muscle force as a function of muscle length, as shown in Figure 5, The linearity, con-
stant slope, and parallel lines of these length-tension diagrams can be explained by the
sliding-filament model for muscle.17-23

The normal operating length of many muscles is near the region of maximum muscle
force. The muscle length that produces maximum muscle force is called L0. While
walking, most of the locomotory muscles in the cat hind limb operate within ±5% of
L0.24 For such muscles the length-tension diagram can be approximated with a straight
line of zero slope. Previous versions of the reciprocal innervation model9"12 assumed
that extraocular muscles also operated near L0. So these models produced the same
muscle force for any length, which made it appear that the length tension diagram had
been ignored.

Physiological data (Figure 5) have shown that human extraocular muscles operate
well to the left of the point of maximum force, at lengths less than L0. In their normal
operating range, length-tension diagrams for these muscles can be modeled as straight
lines of slope K'. A different line is used for each different value of innervation.

The length-tension diagram can be simulated with the model of Figure 6. The force
generator, F, is called the active state tension generator. The distance L' is a hypothet-
ical reference length and L is muscle length, T is the tension in the muscle which is
also the force exerted on the eye by the muscle. The static equations for equilibrium
are
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T = F + KLT L' (2)

T = KSE (L - L') (3)

We can solve for L' in Equation 3, substitute this into Equation 2 and rearrange to
get

T =
T T Ivor? L -Kc'C' F

LT SE + - ̂  -
KLT + KSE KLT + KSE

The above equation for length-tension will produce the straight lines of Figure 5. The
slope of these curves, K', is given in the length-tension Equation 4 as

K' =
KLT KSE

KSE

Since KSE is approximately 125 N/m (2.5 g tension per degree,15 and K' can be esti-
mated from the graph of Figures 5a and 5c as 40 N/m (0.8g tension per degree), KLT

can be calculated.

KSE K

L T ~ K S E - K '

KLT = 60 N/m = 1.2 g tension per degree (5)

The straight lines labeled Tioc in Figure 5b depict the fixation forces for the station-
ary eye. This is the tension, T, required to hold the eye at various angles of gaze. It is
the total force of the agonist necessary to counterbalance the antagonist and orbital

"forces. The location of the agonist fixation forces are given by

TLOC = 14 4- 0.8 A 9

The muscle tension axis intercept (0 = 0), T1NT, is found by

TINT = TLOC + K 'A61 = TLOC + 0.8 A 0 = 14 + 1.6 A0 (6)

Another equation for T,NT can be obtained by setting L = 0 in Equation 4 to yield

INT £ T^
KLT + KSE

The force F is that produced by the active-state tension generator. For the steady-state
behavior of the agonist muscle, this force is the same as the neural activity, N^c-^ep.
(The definition of N^G-^P is illustrated in Figure 12.) Now Equations 6 and 7 can be
combined to yield
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K
14 + 1.6 A e =

SE
Ar QTT7PA(j — o 1 r.r

N

(14 + 1.6 A 0 ) (KLT + KSE)

AG-STEP
^SE

NAG—STEP = (20.6 -I- 2.35 A 0) g tension (8)

The same steps can be performed for the antagonist.

TLOC = 14 + 0.3 A 0

TINT = TLOC - 0.8 A e - 14 - 0.5 A e

KSE14 - 0.5 A e = -——— NANT_STEP
XVI <~T T" -CvO17JU1 OIL

^ANT—STEP = (20-6 - 0.74 A 0) g tension (9)

/, The Force Velocity Relationship
The nonlinear force-velocity relationship is revealed by isotonic experiments. In

these experiments, performed by Fenn and Marsh25 in 1935, the muscle length is ad-
justed to be near rest length, then it is stimulated (usually to 100% activation). The
load is then applied and the muscle is allowed to shorten. In this way, records similar
to Figure 7c are obtained. It can be seen that the greater the load, the smaller the total
shortening. In fact, force and final length follow the left-hand part of the length-ten-
sion curve for active muscle which was shown in Figure 5. Because the experiments
are done isotonically, the length of the series elasticity will remain constant and the
changes in the force will be due to modifications of the active-state tension. The nu-
merical values for the force-velocity elements in the model match human data15 but
they were not derived directly from human experiments. If they were, then either these
experiments would have had to be done with small changes in length or else the length-
tension effects would have had to be calculated and subtracted off, in order to com-
pensate for the effects of the length-tension elasticity. For this discussion, the most
important effect of the force-velocity relationship is that as the load gets larger, the
maximum speed of shortening gets smaller; that is, the maximum slope of the curve
gets smaller. If force or load is plotted against slope, then a graph similar to the 100%
activation curve of Figure 7a is obtained. Each curve in Figure 7c yields one data point
for the 100% activation curve in Figure 7a.

Many different equations can be fit to the force-velocity data. The most interesting
one is Hills equation26 which fits part of a hyperbola to the curve.

(F0-T)b
V =

(T + a)

where Vis the velocity, Tis the muscle force, F0 is the isometric force, and a and bare
constants for any given percentage of activation. Hill's experimental data suggested
values of a = !4 F0 and b = !4 Vmaj. The term VmaJ is a measurable parameter, the
maximum muscle velocity for any particular percentage of activation. The symbol F0

is used to represent the muscle force measured at zero velocity. For these isotonic
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FIGURE 7, Records of shortening as a function of time from a muscle lifting various loads
(c). Tetanic stimulation started at time zero. These three experiments would provide three
points for the 100% activation curve for the force-velocity relationship (a).17-20 There is a
family of curves for different activation states. The force-velocity relationship for muscles is
hyperbolic, but the curves can be approximated with straight lines (b). The curves in the first
quadrant are for the agonist muscle, and the curves in the second quadrant are for the antag-
onist muscle. Agonist activation is typically between 50 and 100% activation. Antagonist ac-
tivity is typically less than 5% activation. The antagonist curve for 5% activation is best fit
with only one straight line. The thick lines indicate the normal operating regions during sac-
cades.41

experiments, F0 is the active-state tension. This parameter depends upon the degree of
activation of the muscle; that is, F0 for 100% activation is larger than F0 for 50%
activation. Although in the experiments described, muscle force (or load) is the inde-
pendent variable, the curves are usually plotted with muscle force on the ordinate.
Hills equation can be rearranged as

T = F,
b + V

and therefore

T = F0 - BV

Where
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The force-velocity relationship shows that muscles produce larger forces at lower
velocities. It is as if there were an internal dashpot absorbing some of the force avail-
able from the active state tension generator. This is just how this relationship is mod-
sled, in Figure 8. The muscle force available at the tendon is decreased by a velocity-
dependent term, an apparent viscosity.

The force-velocity relationship of a muscle which is being lengthened is quite differ-
ent from that of a muscle which is allowed to shorten.27"33 The antagonist muscle is
usually activated only slightly, yet it offers a large resistance to being stretched. It is
possible to use the same function, a hyperbola, to model the antagonist force-velocity
relationship as shown in Figure 9. Hsu et al.12 used these curves; replaced F0 with the
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FIGURE 9. Force-velocity relationships for both the agonist
and the antagonist muscles can be represented by hyperbolas
of similar form. These curves are appropriate for a 10° sac-
cade. (From Hsu, K. H., Bahill, A. T., and Stark, L,, Comput.
Programs Biomed,, 6, 108,1976. With permission.)

active state tensions, FAG and FANT', replaced a with AGa and ANT0, respectively, for
the agonist and antagonist muscles; replaced b with AG6 and ANTfr, respectively, for
the agonist and antagonist muscles; replaced the linear velocity, V, with angular veloc-
ity 0; and derived the following functions for the agonist and antagonist dashpots

HAG AG.
3AG
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and

FANT ~ ANTa

03 - ANTb

Numerical values for the force and velocity axes intercepts are unique for each mus-
cle. The velocity axis intercept, vm« = 4b, is the maximum isotonic contraction velocity
for the muscle under study. The previous models9"12 derived this constant from cat
experiments. They used 3600°/sec for the velocity axis intercept, vmaj. This value is
four times larger than the maximum recorded human extraocular eye muscle velocity
and is more than twice as large as the maximum velocity of 92 in the model. The
sensitivity analysis12 showed that this parameter was the third most important param-
eter in the model. Accordingly, this parameter was reformulated in subsequent models.

Nonlinearities of the models were due to this nonlinear force-velocity relationship
which was modeled as a nonlinear dashpot. Clark and Kamat (in Reference 34) tried
to linearize the model by using a Taylor series expansion on the model (excluding
second and higher order terms). The linear pertubation equations were not trivial to
solve, and the implementation of a known nominal solution was cumbersome. The
oversimplification of neglecting the activation and deactivation time constants was the
most likely reason that their linear model did not match physiological data. In another
effort to linearize the model, Latimer et al.35 plotted numerical values for the dashpots
representing the apparent viscosities of the muscles. Straight-line approximations of
these time functions closely fit the actual values of the dashpots for a 10° saccade.
The nonlinear problem was thereby transformed into a time variant problem, which
was still cumbersome.

The most obvious method of linearizing is to approximate the force-velocity curves
with straight lines. Stark,35 in formulating the BIOSIM simulation language, approxi-
mated these curves with straight lines through a single point labeled Vmax3 in Figure
7b. This linearized the force-velocity relationship but did not linearize the model be-
cause the dashpot parameters became functions of the model states.35 Additional phys-
iological data29'33 have shown that Vmax is not constant, but depends upon the percent-
age of activation, as shown in Figure 7, By incorporating this additional data, Latimer
et al.35 were able to linearize both the force-velocity relationship and the homeo-
morphic sixth-order model. This linearization scheme was subsequently used in later
models.37-38

g. Parameter Estimation
In developing a model of a system, the parameters of the mode must be assigned

numerical values. Sometimes this assignment can be made based upon knowledge of
the physical system. For example, the mass of an object being controlled is often
known. However, some physical parameters, such as the viscosities in the reciprocal
innervation model, can only be estimated. Choosing parameter values can be done
manually or under computer control.

So far in this paper all parameter fitting has been done by eye. For example, the
experimental passive length-tension diagram of Figure 5 was approximated with a
hand-drawn straight line. This approximation was then used in the construction of the
model. Other parameters, such as the agonist activation time constant, were adjusted
after the model was constructed. The model was run and the output was visually com-
pared to human eye movements. Then the time constant was changed and the model
was run again. After many iterations, a satisfactory value of the parameter was ob-
tained.
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FIGURE 10. To find the optimal model parameters both the model and the physical
system are excited with the same input, u (t). The two outputs, 9 (t) and x (t), are compared
and the difference between the two, the error e (t), is used to form the criterion function,
h(t). The adjustment algorithm iteratively changes the parameter values, |J (t), until the
criterion function is minimized. Appropriate steps may be taken to account for measure-
ment noise, w(t).'"

A digital computer can perform this parameter estimation more efficiently. Figure
10 shows the estimation scheme. The criterion function is the mean squared error be-
tween the model and plant outputs. It is a function of the parameter values, |3.

h(j8) = - / (x - 0)T G (x - 0) dt
T n

The superscript T represents the matrix transpose operation and G is a weighting ma-
trix. For the simple example presented in the next section G = 1, and only one variable,
the model output, is studied. The criterion function becomes

h(/J) = - /
T n

The purpose of the algorithm is to adjust the parameters so as to minimize this func-
tion. Many function minimization programs can be used for this purpose.39-40 The
Davidson-Fletcher-Powell method is perhaps the most powerful, but it is also difficult
to use. Latimer and Bahill41 discussed several classical techniques and developed a
modified steepest descent technique for function minimization. This technique allowed
several parameters to be varied simultaneously and also allowed several outputs to be
compared.

This technique was used to determine the values of the agonist and antagonist dash-
pots and of the time constants that would yield the least mean squared error between
the model output and eye position during a human saccade. The method was very
powerful. Almost all changes in the saccadic trajectories that were not produced by
input signal variations could be matched by small parameter changes. The parameter
estimation routine was used to find optimal values for agonist and antagonist dashpots
in the model.

h. Derivation of Numerical Values for the Force-Velocity Relationship
Previous models have been nonlinear because the force-velocity data were fit with a

family of hyperbolas through a fixed point on the velocity axis (vmax). However, phys-
iological data have shown that Vma* varies with the percentage of activation.29'33 Thus,
a better linearization would be a family of piecewise linear curves with equal constant
slopes, as shown in Figure 7b.
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When a muscle is stimulated and quickly stretched, it offers a high resistance to the
external force. This antagonist force-velocity relationship can be modeled by a two-
piece linear approximation as shown in the left side of Figure 7b. The intersection of
these two lines is a linear force-dependent function. During normal saccadic move-
ments the antagonist muscle force is reduced, corresponding to less than 2% of maxi-
mum innervation. The parameter estimation algorithm41 was used in an attempt to
find the intersection and slopes of the piece wise linear approximations of the force-
velocity curves using a 10° saccade. The results showed that the best fit to the data
was obtained by using only one line for the force-velocity approximation of the 2%
innervation curve for the antagonist muscle.41 This unexpected result greatly simplified
the linearization of the force-velocity relationship.

The parameter estimation routine produced the following constant slopes for the
force-velocity relationship

BAG = 2.36N-s/m = 0.046 g tension-sec/0

BANT = l-12N-s/m = 0.022 g tension-sec/0 (10)

In a previous section, Equation 4 was derived. It represented the force available at
the tendon after the active-state tension was modified by the effects of the length-
tension diagram. To make this equation appropriate for rotations, a new variable 0i
is defined in Figure 8. Its value will be zero when the eye is in primary position (looking
straight ahead). For variations about this operating point 0i = -L. Thus Equation 4
becomes

KSEF KLTKSE0i

" KLT + KSE KLT + KSE

We must now decrement this available force to account for the effects of the force-
velocity relationship. The muscle force available at the tendon becomes

Ti =
LT + SE LT + SE

i. The Passive Tissues and the Eyeball
The rotational inertia of the eyeball is represented by J in Figure 1 1 . The eyeball

has been modeled as a solid sphere of ice with a radius of 11 mm. A much more
complicated model using several concentric spheres connected by visco-elastic elements
could have been used, but sensitivity analyses of the models showed that this was un-
necessary.12-42

The optic nerve, the other extraocular muscles, orbital fat, check and suspensory
ligaments, and other tissues contribute to the visco-elasticity which limits the move-
ment of the eyeball. Human physiological data are available for evaluating these pa-
rameters.14'16 They are modeled by a spring and a dashpot, K'P and BP. Although some
modelers have used two groups of springs and dashpots in series for such elements,
the sensitivity analyses 12-42 proved this added complication unnecessary.

The new model is shown in Figure 11. The spring KP represents the total passive
elasticity of the orbit and surrounding tissues and of the agonist and antagonist mus-
cles, This model is said to be a homeomorphic model because there is a one-to-one
relationship between the elements of the model and the elements of the physiological
system. Such a similarity of form makes evaluation of a model easier.
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FIGURE 11. Linear homeomorphic model of the extraocular plant. 0, is the distance of
the eye from primary position (0°). 02 is the distance of the agonist node from primary
position. It is separated from 0, by the agonit series elasticity. 03 is the distance of the
antagonist node from primary position. This model differs from that shown in Figure 1 in
that the model is linear, and it includes the effects of the muscle length tension diagram.
(From Bahill, A. T., Latimer, J. R., and Troost, B. T., IEEE Trans. Biomed. Eng., BME-
27, November 1980. With permission.)

j. Activation and Deactivation Time Constants
As shown in Figure 12, muscle force does not rise to its maximum value instanta-

neously: even the active state tension does not rise to its maximum value instanta-
neously. However, the ideal pulse-step controller signal used to produce saccadic eye
movements does rise instaneously. In the reciprocal innervation model, the idealized
pulse-steps were modified by first-order lag circuits (low-pass filtering) in order to
produce the active state tensions of the muscles.

AG

rANT ~

These tensions were then modified by the nonlinear force-velocity relationships, by the
effects of the length-tension diagrams, and by the series elasticities to produce muscle
forces (see Figure 12),

In the physiological system, there is both a delay and a low-pass filtering in the
transition between the pulse-step and the active-state tensions. The model does not
include the delay between the onset of the pulse and the start of the saccade, because
this delay is not fixed: it depends upon where the pulse-step is measured. The model
does include the filtering. Physiologically, this filtering is due to both spreading in
time and rate-limiting factors. The spreading is due to variations between cells in syn-
chronization, synaptic transmission delays, motoneuronal firing frequency accelera-
tion, neuronal conduction velocity, depolarization, spread of activity in the sarco-
plasmic reticular formation, and acceleration of the moysin cross bridges. The rate-
limiting processes include the synaptic transmissions, the release and reuptake of the
Ca++, and its modification of the actin-myosin fibers. For simplicity, we have ac-
counted for all of these with simple first-order time constants defined in Figure 12,

Most of this low-pass filtering is probably due to the Ca++ activation process. A clue
for a physiological value of this time constant can be taken from studies43 of the frog
with a Ca++-sensitive bioluminescent protein which emitted light in the presence of
calcium ions. The muscle was electrically stimulated, and the light flux vs. time was
plotted. From these data, a 10% to 90% rise time of 7 to 20 msec was calculated (for
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FIGURE 12. Signals involved in the transforma-
tion of input commands into eye movements. The
pulse-step controller signals have abrupt transitions
which are filtered out by the activation and deacti-
vation time constants to produce the active state ten-
sions. These are in turn filtered by the series elastic-
ity, the length-tension elasticity, and the force-
velocity relationship to produce the forces that are
applied to the globe. These forces produce the eye
movements.13

frog muscle at 15°C). Adjusting this value for 25°C (division by 2,2) yields 3 to 9
msec. Changing this into time constants (division by 2.2) yields 2 to 4 msec. These
values were fine tuned by using them in the model and by comparing model data to
human physiological data. The time constants that were finally used ranged between
0.2 and 12msec.

At least one of these time constants, T^G-^C, is a function of motoneuronal firing
frequency. This hypothesis is supported by two separate arguments. The first is that
the rate of muscular tension development increases with higher motoneuronal firing
frequencies. This has been offered as an explanation for oculomotoneurons firing at
frequencies that were higher than the muscle tentanus frequency. Although maximum
tension will not continue to rise with increasing frequency, the rate of tension rise will
increase. This proportionality between rate of tension development and motoneuronal
firing frequency has been demonstrated for lateral rectus muscles,44 for fast units of
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the inferior oblique muscles,45 and for slow units of the soleus muscle.46 Larger move-
ments are produced by, among other things, higher motoneuronal firing frequencies.
Therefore, larger movements should have a faster rate of tension rise. This phenome-
non is probably related to the facilitation of the second of a pair of closely spaced
neuronal spikes and is similar to the catch property of certain invertebrate muscles.47

The way this relates to the time constant is that in large saccades the motoneurons fire
at higher frequencies and yield faster rates of tension rise. This is modeled with a
smaller time constant.

The second reason for time constant variability is that muscle fibers have different
properties. Some are fast and some are slow. The slow fibers contract slowly, but resist
fatigue. They are the tonic fibers. Each fiber is small and contributes a small amount
to the total muscle force. The fast fibers contract rapidly and fatigue quickly. They
are the phasic fibers. Each fast fiber is larger and contributes much more force than a
slow fiber. Some muscles are composed predominately of fast fibers, some predomi-
nately of slow fibers, and some of an intermediate mixture.

Large saccadic eye movements will recruit the large, fast, fast-fatiguing, global fibers
(those nearest the globe), whereas small saccades will only recruit the smaller and
slower orbital fibers (those nearest the orbit).15 Therefore, because the larger saccades
recruit the faster motoneurons, the rate of rise of muscle force should be greater for
larger saccades.

Lacking physiological evidence to the contrary, the agonist deactivation time con-
stant and both of the antagonist time constants were fixed for all size saccades. Only
the agonist activation time constant was made a function of saccadic size.

Initial starting values for these parameters were chosen from the reciprocal innerva-
tion model of Hsu et al.12 Then the parameter estimation program was run with the
four time constants free to vary. The values that gave the least mean squared error
between the model and human outputs were used for the final model.

k. Antagonist Circumscription
The antagonist activity circumscribes the agonist activity (see Figures 3 and 12).

Electromygraphic (EMG) studies have shown that, the antagonist resumes its activity
after the agonist ceases its burst of activity,15 It has been reported that the pause of
the antagonist motoneuronal pool starts before the agonist motonuronal pool begins
its high-frequency burst of firing in the lateral and medial rectus muscles of humans,48

the abducens motoneurons,49-50 the trochlear motoneurons, 51 the pausing and bursting
units within the reticular formation that are associated with saccades,52 and in arm
muscles.53 In the model the antagonist activity ceases 3 msec before and resumes 3
msec after the agonist activity.

1, The Plant and System Equations
The linear homeomorphic model can now be derived with reference to Figure 11.

Two muscles are pulling in opposite directions on the globe, J. Their forces are

TAG = K S E (0 2 -0 , ) (12)

TANT = KSE^i -M (13)

From Equation 1 1 ,

= _ _ _
AG

_ .
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and

KSE FANT KL

SE KLT + KSE
(15)

Corresponding minus signs of Equation 14 are plus signs in Equation 15 because the
antagonist dashpot adds to the resistive force of the antagonist active-state tension and
also, as the muscle gets longer, the length-tension diagram perscribes more muscle
force which increases the resistive force.

Now Equations 12 and 14 can be combined to yield

K TT V TT A
SE ^AG ^-LT^SE0!

KLT + KSE KLT + KSE

and Equations 13 and 15 can be combined to yield

K ir v v aQT? -T A XTT **•! T A^QT? " ioJl AIN 1 L, I o£, i »— — V (a a ^ (1 7\ ^t?TTV"l ~ °3) \ i l )

KLT + KSE KLT + KSE

The two muscle forces acting on the globe (Equations 12 and 13) can be combined
with the other forces acting on the globe to yield

Equations 16, 17, and 18 describe the movements of the model. However, the model
is a sixth-order system, so it takes six differential equations to completely describe the
system. For these state equations we will use the three positions, 0i, 92, and 03, the eye
velocity 0i, and the two active-state tensions, F^c and ¥ANT> We identify these state
variables with the symbols X j to x6.

x, = 0i = position of eye
x2 = 02 = position of agonist node, shown in Figure 11
x3 = 03 = position of antagonist node, shown in Figure 11
x4 = 0, = eye velocity
x5 = F^G = agonist active-state tension
x6 = FANT = antagonist active-state tension

The inputs to the model are the neural control signals NAC and NANT- These signals are
transformed into the active-state tensions by first-order activation and deactivation
processes as shown in Figure 12.

The three simultaneous equations (Equations 16, 17, and 18) can be solved for each
of the variables and three auxiliary equations can be formed to yield the following six
state equations:

_ -^SE ^SE
Xo — "~ ~ ~ X, _ X2 T

(KLT + KSF)BAG BAG (KLT + KS£) BAG
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3 Al —
(KLT + KSE)BANT B

~2KSE~Kp
x, +

ANT

cNAG~xs

TAG

TANT

where c is a conversion factor with a value of 0.004 N-s per spike.
The initial conditions are

x,(0) = x4(0) = 0

xa(0) = -x3(0) = 1.1 mm = 5.6°

xs (0) = x6 (0) = 0.2 N = 20.6 g tension

These state equations completely describe the behavior of the model. It is sometimes
more convenient to write these equations using matrix notation.

\ = Ax + Bu

In this equation x, x, and u are vectors, B may be a vector or a matrix, and A is a
square matrix. Using this notation our six state equations become

X,

X,

4

0 0 0 1 0 0

is 2 -is -tf
SE ~^-SE n A ^-SE

(KLT + KSE)BAG BAG (KLT + KSF)BAG

SE o SE o o SE
(KLT + KgE)BANT BANT (KLT + KSF^BANT

~2KSE~KP KSE KSE ~BP

J J J J

0 0 0 0 ~ 0
TAG

0 0 0 0 0 -1

TANT

x, 0

r\AG

TAG

cNANT

TANT

m. Parameter Values
The following parameter values are given to complete the description of this model.

Equations 5, 8, 9, and 10 appear directly. The neural signals, NAC and MUVT, are given
units of motoneuronal spikes per second for a typical motoneuron.

Initial values for pulse width, pulse height, and the four time constants were based
upon the values used for 10° saccades in the old model. The parameter estimation
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program was then run and these six parameters were adjusted to yield the least mean
squared error between the model and human responses. These values were then fixed
for 10° saccades. The parameter estimation routine was run again on a different size
saccade adjusting pulse width, pulse height, and TAG-AC to minimize the error between
model and human saccades. This procedure was repeated for saccades between 1 and
40°. Straight line approximations were then fit to these data points to yield the follow-
ing equations:

Kgj,- = 125 N/meter = 2.5 g tension/0

KLT = 60N/m = 1.2g/°

Kp = 25 N/m = 0.5 g/°

Bp = 3.1 N-s/m = 0.06 g-sec/°

BAG = 2.36 N-s/m = 0.046 g-sec/°

BANT = 1-12 N-s/m = 0.022 g-sec/°

J = 2.2(10-3) N-s/m = 4.3(10-5)g-sec2/°

NAG-PULSE = pH = (135 + 27 A 0) spikes/sec for A B < 11°

= (392 + 5 A 0) spikes/sec for A 6 > 11°

NANT-PULSE = L2 spikes/ sec

PWAG

PWANT = PWAG + 6msec

(Antagonist pulse starts 3 msec before and ends 3 msec after agonist pulse)

NAG-STEP = (5CU + 5.5 A 9) spikes/sec

N ANT-STEP = (5CU ~ °'2 A 9^ SP*68/860

TAG-AC = (1L7 ~ 0.2 A 9) msec

TAG-DE = 0.2msec

TANT-AC = 2.4msec

TANT-DE = 1-9 msec

c = 0.0004 N-s/ spike

This then, is a complete description of the linear homeomorphic model for human
eye movements and its evolutionary development. This development is traced in Table
1 . Table 1 is not meant to be a summary of all good eye movement models. There are
many more.38' 54~60 However, these other models did not play a direct role in the
evolution of the final model, so they are not included in the table.

HI. TECHNIQUES FOR VALIDATING MODELS

Although everyone makes models, few people validate their models. One question
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Table 1
EVOLUTION OF THE LINEAR HOMEOMORPHIC MODEL

FOR HUMAN EYE MOVEMENTS

Author Innovation

Descartes (1630)5 Concept of reciprocal
innervation

Westheimer (1954)6 Linear, second-order
model

Robinson (1964)8 Pulse-step input
Cook and Stark Implementation of re-
(1968)' ciprocal innervation

Clark and Stark Fine tuning of parame-
(1974)10 ters

Collins (1975)15 Human physiological
data

Bahill et al. "-61 Effects of controller
signal, signal varia-
tions

Hsu et al. ia Sensitivity analysis
Bahill37-42 Parameter estimation

by function minimiza-
tion, inclusion of
length-tension dia-
gram, sensitivity anal-
ysis

Achievement

First explicit model

Fit 10° saccades

Fit various size saccades
Model velocity matches human

Model acceleration matches hu-
man

Clinical usage of a model

Simulated eye movements not used
in design of model, e.g., glissades
and dynamic overshoot

Method of validating model
Linearized the model

which can be used to assess the validity of a model is, "Is the development of the
model logical and scientific? First of all, the individual subsystems of the model must
be valid. For example, the model of an agonist muscle must match data from physio-
logical experiments on agonist muscles. A logical model development may produce
valid subsystems. Each element of the newly developed linear homeomorphic eye
movement model was based on a physiological experiment. Every experiment was ex-
plained and the sources of the data were presented. Most bioengineering models will
pass this test for logical development.

Bahill et al.62 used four other methods to validate their nonlinear reciprocal inner-
vation model for human eye movements. First, they showed that position and velocity
records of the model qualitatively matched those of humans. Second, they showed that
the peak-velocity-magnitude-duration (main sequence) parameters of the model and
humans matched over a range of 0.1 to 50° (Figure 2). Third, they used the model to
simulate two novel eye movements that were not used in developing the model. They
then made specific predictions about the neural signals responsible for these move-
ments. Subsequent neurophysiological research confirmed these predictions for the
phenomenon called dynamic overshoot. Their fourth validation technique was to per-
form a sensitivity analysis on the model parameters. Each parameter was varied and
the effect on the peak velocity and magnitude was measured. In effect, the relative
sensitivity function was evaluated once in the middle of the saccade and once near the
end. The 18 parameters were then rank ordered.

Similarly, these four validation techniques were applied to this new linear model.
There is a qualitative match between human and model outputs, as shown in Figure
13. Quantitatively, the mean squared error for a 10° saccade between human and
model outputs is small. A type of eye movement that was not used in the construction
of the model was simulated. When there is a mistake in constructing the pulse portion
of the input controller signals, the eye will overshoot or undershoot the final eye posi-
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FIGURE 13. Model (bottom) and human (top) 10° saccadic eye
movements with small differences between the simultaneous saccades
of the right and left eyes. The left column (the left eye) and the right
column (the right eye) show from top to bottom eye position, eye
velocity and eye acceleration all as functions of time. The human rec-
ords are 340 msec in duration. Differences between right and left eyes
show up best in the acceleration traces. To match the right-eye left-
eye differences in the human records, pulse width and pulse height
were made to differ by 5% or less in the two model simulations.85

tion and then slowly drift to the final position. These drifts are called glissades. Simu-
lations have led to the prediction that these glissadic overshoots and glissadic under-
shoots are due to pulse-width errors and not to pulse-height errors or a combination
of pulse-height and pulse-width errors,37 The sensitivity analysis42 explained why pulse-
width and not pulse-height errors are responsible for glissades. Furthermore, it helped
to validate this linear model, by showing which parameters were most important and
when they had their maximum effect on the output.
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A. Minimization of Mean Squared Error
One of the reasons that the main sequence diagrams (Figure 2 and Reference 1) had

so little scatter is that the eye position records were differentiated in a digital computer
to yield eye velocity records. Then these eye velocity records were used to measure the
duration and peak velocity of the saccades. Defining the duration to be the time be-
tween zero velocity at the start of the saccade and zero velocity at the end of the saccade
gave a more accurate measure of duration than did any method using the eye position
records. This then showed the advantage of using eye velocity traces to aid in human
visual information processing.

Similarly, Cook and Stark9 used a velocity trace (Figure 4) to point out the superi-
ority of their model over Robinson's.8 If the trick works once, why not try it twice?
Hsu et al.12 differentiated the eye position trace twice to get acceleration as a function
of time. They spent many hours fine tuning their model to make the acceleration traces
match the human data. The acceleration traces pointed out differences that were not
visually apparent in the velocity or position traces (see Figure 13).

However, the acceleration and velocity records were derived from the position rec-
ords, so all of the information must be contained in the position records. It may not
be easy for a human to see the differences, but a computer certainly can. This
prompted Bahill et al.37 to do all of the matching and comparing with computer pro-
grams operating on the eye position records.

A numerical estimation of the difference between several models and a typical hu-
man saccadic eye movement was computed. The results are shown in Table 2. Each
model was run for 60 msec. The resulting record was then compared point by point to
the human saccadic eye movement, and the mean squared error was calculated. This
process was repeated 50 times as the model was shifted forward and backward in time.
The shift with the minimum mean squared error was chosen as the best possible fit
for that model. The linear homeomorphic model37 had the least mean squared error.

For the linear homeomorphic model the simulations match human eye movements
better than the two eyes match each other. Biological variations (noise) produce larger
differences in saccadic trajectories than those caused by small parameter adjustments.
This implies that the model parameters have been selected optimally. Therefore, this
is the best model for saccades in general. By using the parameter estimation routine
the mean squared error can be made to approach zero for any particular saccade. Thus
this model can be made exact for any particular saccade.

The time response of a linear second-order undamped system, such as Westheimers
model,6 to a step input of magnitude A 8 is

0(t) = k A 0

This model can be made to fit human data if con is allowed to be different for each
saccade, (keeping £ = 0.707). The time to the first peak of the linear, second-order
system is

This must be set equal to the duration of a saccade.

DUR = ( 1 . 7 A 0 + 20) msec
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Table 2
MEAN SQUARED ERROR, IN DEGREES SQUARED x 1Q-6,

BETWEEN VARIOUS MODELS AND THE HUMAN 10Q

SACCADIC EYE MOVEMENTS SHOWN IN FIGURE 13

Model

Linear second-order,
underdamped
wn = 120rad/sec, £ = 0.7,
step input

Unity, M(s) = 9cvc/input = 1
Linear second-order, overdamped

T, = 150msec, T2 = 12msec,
with integrator and pulse input

Sixth-order nonlinear model
without length-tension diagram

Sixth-order linear model
without length-tension element

Sixth-order nonlinear model
with length-tension element

Sixth-order linear model
with length-tension element

Left eye of Figure 13
Right eye of Figure 13

Error in Error in
matching matching
left eye right eye Ref.

146

3501
2384

126

188

45

49

0
106

194

3352
2640

63,83
56

135

256

75

66

12

41

85

37, Figure 1 1

106
0

Figure 13
Figure 13

Therefore
Try/a" X 103

1.7 A0 + 20

This model does give a reasonable fit to the physiological data as shown in Table 2,
The extreme simplicity of this model and the fact that it could be changed to match
saccades of all sizes prompted Zuber et al,60 to repropose this model in 1968.

Robinson's58 model has a pulse input 50-msec wide and 20 A 0 high, where A Q is
the desired size of the saccade. (Subsequent versions of this model54-55 have slightly
different pulses.) The pulse passes through an integrator and a gain element and finally
through a linear second-order overdamped plant. The transfer function for this sac-
cade system is

0.15 s + 1

s(0.15s + 1) (0.012s + 1)

The response of such a system for the pulse input is

0(t) = A 9 (20t + 0.24e~83t - 0.24

e(t) = A & (1 - 15e~83t)

for 0<t<0.05 sec

for 0.05< t

This model has a rather large mean squared error, 2500 degreeVsec for a 10° sac-
cade. The performance of the model could be improved by making the width of the
pulse depend upon the size of the saccade. For this model, the width of the pulse is
about 70% of the duration of the saccade. So the pulse width could be 1.2 A & + 14
msec. The pulse height could be 1000 A 9/(1.2 A 9 + 14). Making this adjustment in
pulse height and pulse width, this model had a mean squared error of 521 degreeVsec
for a 10° saccade.
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Another method used for evaluating a model is to use the model to simulate new
types of eye movements; that is, to make predictions about the system. The linear
homeomorphic model was used to make predictions about pathological patients and
normal humans.

B. Predictions of the Model
A counter example of a model being able to make predictions is Westheimer's pre-

viously mentioned model. It was designed to simulate 20° saccades, but it could not
simulate 30° saccades. It could not simulate novel movements not used in the construc-
tion of the model. Often the new phenomenon to be simulated is something that is
well known, but ignored in the development of the model. Sometimes the new phenom-
enon is the result of a new discovery.

An eye movement has overshoot when the eye travels beyond its final position and
then returns, finally coming to rest on the target. There are three distinct types of
overshoot of saccadic eye movements: dynamic, glissadic, and static.61 They are named
according to their most distinctive feature, the behavior of the eye immediately after
the primary saccade. Dynamic overshoot has a very fast saccadic return to the true
target position. For example, the return phase of a 1 ° dynamic overshoot lasts about
20 msec and has a peak velocity of about 60°/sec. Glissadic overshoot has a slow
gliding return phase which, for 1° of overshoot, lasts approximately 300 msec with a
peak velocity of 5°/sec. In static overshoot the eye remains steady in the incorrect
position for 150 to 200 msec until feedback instigates a corrective saccade, eliminating
the error. Dynamic overshoot was a new discovery that was used to test the model.
Glissadic overshoot was a previously known phenomenon that was ignored in the de-
velopment of the model. It was also used to test the model. Static overshoot, because
of its simplicity, could not be used to test the model.

1. Dynamic Overshoot
Dynamic overshoot (shown in Figure 14) is the most common type of saccadic

overshoot. Two thirds of human saccades have dynamic overshoot. However, this var-
ies greatly from subject to subject.11 Dynamic overshoots are seldom shown in pub-
lished eye-movement records because most published data have been low-pass filtered
in order to remove noise. This removes the evidence of the dynamic overshoot. There-
fore, the existence of dynamic overshoot was somewhat of a recent discovery.

Studies of the peak velocity-magnitude-duration relationships (main sequence dia-
grams) for normal saccades and for the return phases of dynamic overshoots suggested
that the return phases of dynamic overshoots were small saccades. The peak velocity
vs. magnitude main sequence diagram showed that the return phases of dynamic
overshoots were just as fast as normal saccades and that both of these were much
faster than vergence eye movements,11

Because the return phases of dynamic overshoots had saccadic dynamics, they were
expected to have saccadic motoneuronal controller signals. To investigate this possibil-
ity, saccades with dynamic overshoots were simulated on the reciprocal innervation
model. Dynamic overshoots were not used in the formulation of the model, so this
served as an important test for the model.

A simulated saccade with dynamic overshoot is illustrated in Figure 14. This figure
shows the eye position, eye velocity, active state tensions of the agonist and antagonist
muscles, the motoneuronal signals required for the agonist and antagonist in order to
produce dynamic overshoot, and finally the firing pattern of typical agonist and antag-
onist motoneurons. The reversal of motoneuronal activity at the end of the main pulse
requires a high degree of synchronization between the motonuclei. For instance, the
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F1GURE 14. Position, velocity ac-
tive-state tensions, controller signals,
and firing of typical motoneurons for
a saccade with dynamic overshoot.
The return phase of this eye movement
is a small saccade with pulse-step con-
troller signals. (From Bahill, A. T.
and Stark, L., The Trajectories of
Saccadic Eye Movements, Copyright
1979, Scientific American, Inc. All
rights reserved. With permission.)
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firing rate of the pool of motoneurons supplying the agonist muscle rises from the
original level to the high-frequency level, remains there until about the middle of the
saccade, drops to a very low value, and then rises again up to its new step level. The
pool of motoneurons innervating the antagonist muscle perform an analogous, but
opposite task. Because of this motoneuronal innervation, the active state tensions of
the muscles reverse. The active state tension of the agonist first becomes larger, then
smaller, and then equal to all of its opposing forces. Dynamic overshoots must be
caused by motoneuronal control signals reversals. However, these control signal re-
versals cannot be due to random noise because as many as a dozen consecutive saccades
can have identical overshoot.

The modeling results enabled a prediction to be made that there should be pauses
for the agonist motoneurons and bursts for the antagonist motoneurons in saccades
with dynamic overshoot. Such pausing and bursting behavior could not easily be found
in the neurophysiological literature. Once the prediction was made, investigators spe-
cifically looked for such behavior and found it in single-cell recordings of the brain
stem of monkeys64 and in human electromyographic recordings.65

Thus, the model was able to simulate a type of movement that as not known when
the model was designed. Furthermore, predictions were made based on the modeling
results, and these predictions were subsequently confirmed by neurophysiological ex-
periments.

2. Glissades
Glissades are the slow gliding eye movements that are often appended to the end of

normal human saccadic eye movements. Their frequency of occurrence is increased by
fatigue and pathology.

Several papers65'70 have suggested that the existence of glissades could be used to
diagnose internuclear ophthalmoplegia, a syndrome that is usually caused by multiple
sclerosis. In these patients there is a glissadic undershooting of the adducting eye and
a concommitant overshooting of the abducting eye. There may also be abduction nys-
tagmus.

The model was not built to simulate these glissadic eye movements; therefore, Bahill
et al.51 tried producing glissades in the model in order to test it and to try to understand
the CNS errors which produce glissades. It was found that glissades could be caused
by errors in either the pulse or the step components of the motoneuronal controller
signal. Bahill et al.71 continued these studies and only considered those glissades caused
by errors in the pulse component. If the pulse was too small for its accompanying step,
then the result was glissadic undershoot, as shown in Figure 15d and on the left in
Figure 16. If the pulse was too large for the accompanying step, then glissadic over-
shoot would result, as shown in Figure 15c and on the right in Figure 16. They71 further
limited their study by considering only glissadic overshoot.

There are two ways of making the pulse portion of the motoneuronal controller
signal too large, thereby mismatching the pulse and step components of the controller
signal. The pulse could be either too wide or too high. Both of these possibilities were
tried in the model. The resulting mismatched saccades had similar qualitative shapes,
but different quantitative main sequence parameters. The saccade with a glissade ap-
pended created by a pulse-height error had a larger than normal peak velocity. The
saccade with a glissade appended created by a pulse-width error had approximately
normal peak velocity. Therefore, based upon this model behavior, a prediction was
made. It was predicted that saccades with glissades appended to them would have
abnormally high or slightly low peak velocities.

After the modeling studies were completed, human physiological data were gathered
to test this prediction. It was found that human saccades with glissadic overshoot ac-
tually had slightly low peak velocities.71
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FIGURE 15. Three types of glissadic behavior. Eye position and eye velocity as
functions of time for saccadic eye movements with no glissade (a), glissadic over-
shoot (c), and glissadic undershoot (d). The hypothesized firing frequencies for the
agonist (top) and the antagonist (bottom) motoneuronal pools are shown in (b).
The calibrations represent 13° and 640°/sec (a), 14.6° and 600°/sec (c), and 10°
and 500°/sec (d). The time calibration in each represent. 100 msec. No time delay
is shown between onset of motoneuronal activity and the start of saccade because
this delay is not fixed. It depends upon where the motoneuronal activity is meas-
ured. (From Bahill, A. T., Clark, M. R., and Stark, L., Math. BioscL, 26, 303,
1978. Copyright Elsevier North-Holland, Inc. With permission.)

Bahill et al.37 applied the parameter estimation routine to the model to study glis-
sades. The glissadic undershoot, illustrated in the left colum of Figure 16, could be
matched with minimum mean squared error only if the pulse width were reduced by a
large amount. When the parameter estimation routine was allowed to vary pulse width
and pulse height the only two physiological parameters that are likely to change be-
tween saccades, to fit the data, the best fit was obtained by changing the pulse width
by 20% and the pulse height by 2%. Similarly, the overshoot in the right column of
Figure 16 could be matched with minimum mean squared error only if the pulse width
were increased by a large amount (25%),

This result confirms that glissadic overshoot in normal humans is caused by pulse-
width errors. Furthermore, it also showed that glissadic undershoots are caused by
pulse-width errors and not pulse-height errors. Using the parameter estimation routine
to make these conclusions was much simpler than the previous method.71 Furthermore,
it also ruled out a combination of pulse-width and pulse-height errors as the cause of
glissades. These results implied that CNS mechanisms can control the height of a mo-
toneuronal burst quite accurately, but it is more difficult to control the duration of a
motoneuronal burst.

This implies that in normal eye movements in which glissadic overshoot is the result
of a too-large pulse, the error is caused primarily by the brain's mistake in computing
the pulse width, not the pulse height. This, in turn, implies that normal human glis-
sades are not caused by peripheral disturbances, but are caused by the CNS networks
that produce the pulse width. It also implies that in controlling a neuronal burst, it is
easier for the CNS to regulate pulse height than pulse width. Perhaps this is because
pulse height control is hardwired (a Jathe Henneman size principle).

3. Other Predictions
When humans fatigue they often use two small saccades rather than one large sac-
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FIGURE 16. Model (bottom) and human (top) 10°
saccadic eye movements with large differences between
two sequential saccades of the left eye. Large differ-
ences such as these are caused by control signal varia-
tions. To produce similar model saccades, with minimal
mean squared error between model and human sac-
cades, the pulse width had to be decreased by 20% to
produce the glissadic undershoot in the left column, and
the pulse width had to be increased by 25% to produce
the overshoot in the right column. In both cases the
pulse height had to be held within 2°7o of the nominal
value. Plotting parameters are the same as in Figure
13.8S

cade to execute a change of fixation. 72 Often the velocity profiles of these saccades
overlap. The underlying motoneuronal control signal for these overlapping saccades
could not be described when they were first discovered. It was only with the aid of the
model that the controller signals could be demonstrated.

The model showed that the pulse width of the motoneuronal controller signal was
only about half the duration of the saccade.73 Therefore, two saccades could overlap
without having their control signals overlap.

How does the brain code or control the size of a saccade? For small saccades it
seems to be pulse-height control, for large saccades pulse-width control, and for me-
dium-sized saccades a combination of both.12 There are two lines of thought that led
to these conclusions.

First, the main sequence diagrams (Figure 2) can be divided into three regions judg-
ing from the slopes of the curves: the first region for saccades smaller than 1°, the
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second for saccades greater than 10°, and the third for saccades in between 1 and 10°.
The duration of a saccade is strongly correlated with the duration of the high-fre-
quency burst of oculomotoneuronal firing (PW). We see that large amplitude saccades
show a strong dependence on pulse width since the main sequence has the greatest
slope for large saccades. Small-magnitude saccades seem to be controlled only by pulse
height since the main sequence duration plot shows a scattergram rather than a tight
cluster of points. The region in between 1 and 10° saccades seems to be controlled by
both pulse width and pulse height.

The second collaborating fact comes from the model equations. The values of pulse
height (PH) that minimized the mean squared error between the human and model
data were best fit with two straight lines intersectins at 10°. Above 10° the slope was
very small, showing little control of saccadic magnitude by pulse height. Below 10°
the slope was large, showing pulse-height control of saccadic magnitude. The pulse-
width equation is

PWAG = (10 + A 6») msec

Variations of saccadic magnitude (A 0) will not produce large changes in pulse width
for saccades of 1° and less. Therefore pulse height would be the only controlling pa-
rameter for saccades 1 ° and smaller.

Thus, a prediction based on the model and on the main sequence diagrams is that
the brain uses pulse-width control for large saccades, pulse-height control for small
saccades, and a combination of pulse-height and pulse-width control for medium-sized
saccades.

C. Sensitivity Analysis
Sensitivity analyses are an important method of validating economic models,74 socie-

tal models,75 engineering models,76 and physiological models.12-42'38

A sensitivity analysis shows how a model's outputs change with variations in the
model parameters. The sensitivity analysis may be analytic or experimental. The results
of a sensitivity analysis can be used (1) to validate a model, (2) to warm of strange or
unrealistic model behavior, (3) to suggest new experiments or guide future data collec-
tion efforts, (4) to point out important assumptions of the model, (5) to guide the
formulation of the structure of the model, pointing out which unimportant elements
can be treated simply, and (6) to help select numerical values for the parameters. The
sensitivity analysis tells which parameters are the most important and most likely to
affect predictions of the model. Values of critical parameters can then be refined, while
parameters that have little effect can be simplified or ignored.

If the sensitivity functions are calculated as functions of time, then it can be seen
when each parameter has its greatest effect on the output function of interest. This
can be used to select numerical values for the parameters. The values of the parameters
will be chosen to match the physiological data at the times when they have the most
effect upon the output. Sensitivity analyses can also be used to suggest future experi-
ments to elucidate biological systems.

A traditional root-locus plot graphically displays the results of a sensitivity analysis:
it shows the movement of the systems closed-loop poles as a function of the system
gain. This technique can be generalized to show the movement of the systems closed-
loop poles as each parameter of the model is varied.35'38 There are canned computer
programs for this type of sensitivity analysis.77

A partial derivative is a sensitivity function. For example, in a system described by



December 1980 345

analytic functions, calculating partial derivatives constitutes a sensitivity analysis.
There are several common definitions for sensitivity functions. Three commonly used
functions are absolute sensitivity, relative sensitivity, and semirelative sensitivity.76

The absolute sensitivity of the function F (which is a function of alpha and time) to
variations in the parameter a, evaluated at the nominal parameter value a0, is given
by

dot

Absolute sensitivity functions are useful for calculating output errors due to parameter
variations and for assessing the times at which a parameter has its greatest or least
effect.75

The relative sensitivity of the function F to the parameter a evaluated at the nominal
value of that parameter is given by

SF =
9 In F

9 In a
9F/F
9 a /a

9 F

9 a F,.
o

Relative sensitivity functions are ideal for comparing parameters because they are di-
mensionless, normalized functions.

Both of these sensitivity functions are evaluated at the operating point where the
parameters take on their nominal values. Both of these sensitivity functions are func-
tions of time.

Because the old reciprocal innervation model was a sixth-order nonlinear model, the
analytic partial derivative technique for sensitivity analysis was not feasible. An empir-
ical sensitivity analysis was performed by Hsu et al.12 for a 10° saccade because this
was a normal physiological magnitude and data were both abundant and relatively
noise free. Each parameter was varied from 20 to 200% of the value used for producing
a good 10° saccade, while the other 19 parameters were held constant. Figure 17 shows
examples of trajectory variations produced when pulse width and pulse height were
varied. These simulations were the method used to numerically estimate the partial
derivatives of the eye position and the eye velocity with respect to each of the parame-
ters. The sensitivity of eye position with respect to each parameter was evaluated for
one instant of time near the end of the saccade; the sensitivity of eye velocity was
evaluated near the middle of the saccade. These were plotted as functions of each
parameter. The slopes of these sensitivity curves gave a measure of the relative impor-
tance of each parameter. The steeper the slope, the more eye movement behavior
changes were produced by variation of that parameter. For instance, when the pulse
width was 20 msec, the saccadic magnitude was 10°. When pulse width was doubled
to 40 msec, the saccadic magnitude became 17.3°, increasing by 73%. However, when
another parameter, the series elasticity of the agonist, was doubled (from 1.8 to 3.6 g
tension/0), the saccadic magnitude increased by only 7%. The slope of the magnitude
sensitivity curve for pulse width was 0.54 compared to 0.1 for series elasticity of the
agonist. This sensitivity analysis showed which parameters had the greatest effects on
the model. When the parameters did not describe the input controller signals, several
sources of good physiological data had to be found to justify the parameter values.

This nonlinear model was most sensitive to four parameters: pulse width, pulse
height, the agonist dashpot (B^G), and the parallel elasticity (KP). These parameters
are similar to those defined in Figure 1. Pulse width and pulse height described the
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FIGURE 17. Trajectories of position, velocity, acceleration, and active state
tensions as pulse width (PW) (a), and pulse height (PH) (b) were varied from 20
to 200% of the value used for producing a good 10° saccade. Varying pulse
width had a large effect on the magnitude of saccades but a small effect on peak
velocity. The shapes of the velocity and acceleration trajectories are drastically
changed nevertheless. Varying pulse height affects all trajectories as shown. Re-
cord length is 500 msec. (From Hsu, F. K., Bahill, A. T., and Stark, L., Corn-
put. Programs Biomed., 6, 108, 1976. With permission.)



December 1980 347

input control signals. Therefore, it was reasonable for the model to be sensitive to
their variations. Kp was a large, lumped parameter, and there was ample physiological
data for the calculation of its value. Therefore, it was neither surprising nor disturbing
that the model was so sensitive to its variations. However, the sensitivity of the model
to BAG, the agonist apparent viscosity, was disturbing. EAC is a constant in the Hill
equation for the force-velocity relationship of muscle. It is related to the maximum
muscle velocity (Vmai), which is different for different muscles. Data for this parameter
had been extrapolated from cat data. Because the model was so sensitive to B^c, ex-
periments were performed to investigate it in greater detail. The treatment of this ag-
onist dashpot was revised in subsequent models.

In contrast, the model behavior had very little dependence on many other parame-
ters. For instance, the sensitivity of the output to variations of the inertia, J, was
almost zero. This then was the justification for modeling the inertia of the eye ball as
a globe of ice rather than as a series of concentric shells connected with visco-elastic
elements. The sensitivity analysis provided direct information concerning the impor-
tance of each parameter, helped choose numerical values for the parameters, and sug-
gested new experiments for further understanding of the system and for updating the
model.

Sensitivity functions are usually functions of time. In the preceding analysis the sen-
sitivity functions were evaluated at only two points in time: near the middle and near
the end of the saccade. However, the analysis covered a broad range of parameter
pertubation sizes: from 20 to 200% of the nominal values. If one parameter pertuba-
tion size is sufficient, as is the case with a linear system, then it may be advantageous
to look at sensitivity as a function of time.

The absolute sensitivity function, S = d y / d p , where y is the output and /? is the
parameter of interest, is useful for computing parameter-induced output errors, but is
not useful for comparing effects of different parameters.78 For this comparison we
want a relative sensitivity function such as

s = 91ny
90 y,,

where /30 and y0 are the values of /3 and y at the nominal operating point. However,
for a 10° saccadic eye movement the nominal output value, y0, varies from 0 to 10°
and division by zero is frowned upon. Furthermore, the relative sensitivity function
emphasizes the beginning of the saccade where y0 is small. In contrast, the semirelative
sensitivity function

s - - = ,„
91nj3 9/3

weights the sensitivity evenly throughout the saccade. Therefore, the semirelative sen-
sitivity function was used by Bahill et al.42 The semirelative sensitivity function is the
best choice when the function of interest is a function of time, such as a step response
or an impulse response.

For a linear system with small parameter changes the semirelative sensitivity function
becomes

~ Ay
S = — 00

A j 8
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FIGURE 18. Nominal (solid line labeled 9_) and perturbed (dotted line labeled 9P) 10° sac-
cadic eye movements and the semirelative sensitivity functions for the parameters describing
the input controller signals. Record length is 490 msec. The pulse width (PW) and pulse height
(PH) primarily affect the dynamic saccade and the behavior immediately following. The
steady-state neural firing levels, NA0.,,,P and NANT.»,P, primarily affect the static behavior of
the eye. The effect of N^r-j*./.. is too small to be seen on this scale. Its sensitivity function
looks like noise on the abscissa. The perturbed saccade is that produced by increasing NAc-,,eP

by 5°7o, Eye position and the semirelative sensitivity functions have the same units, degrees,
and are plotted to the same scale. (From Bahill, A. T., Latimer, J. R., and Troost, B. T.,
IEEE Trans. Syst. Man Cybern., SMC-10, December 1980. With permission.)

To perform the sensitivity analysis, a 10° saccade was simulated (solid line labeled
dn in Figure 18)."2 Then one parameter was changed by a set amount, +5% for these
figures, and the model was run again producing the preturbed saccade (dotted line
labeled 9P in Figure 18). The difference between the nominal and preturbed saccades
(A y) was calculated for each millisecond and this difference was divided by the change
in the parameter value (A /?). This ratio was then multiplied by the nominal parameter
value (/3o). This process was repeated for each of the 18 parameters in the model. The
results are the sensitivity functions of Figures 18 and 19. The model was most sensitive
to the input control signals for the agonist muscle, N^G.step, PH and PW. The control
signals for the antagonist, ~NANT.step and NANT-^I,, were not as important.

Some of the parameters affected the dynamic properties of the saccade and some
parameters affected primarily the steady state or static behavior, the behavior after
the dynamic saccade was over. Five of the sensitivity functions of this study were mon-
otonic, like the sensitivity to NAc.step. Most sensitivity functions were monophasic. The
sensitivity for the inertia, J, was the only biphasic function. Sensitivity of KANT.SE was
the only function with a relative minimum as well as different absolute minimum.

Table 3 compares the maximum values of the 18 sensitivity functions. The first col-
umn is a rank ordering of the maximum values of the semirelative sensitivity functions
of all 18 parameters of the linear model. This table also compares the results of two
other sensitivity analyses of similar models.

The comparisons shown in Table 3 are not strictly parallel. The ranking of Bahill et
al.42 was based on the maximum value of the semirelative sensitivity function, whereas
the other rankings were based on the relative sensitivity function evaluated near the
middle of the saccade where the peak velocity occurred. Hsu et al.12 had two constants
for each dashpot, and the sensitivity ranking of both of these coefficients is listed in
this table. NA means the element was not included in the model or else the parameter
was not included in the sensitivity analysis. The elements with rank 12 and 14 in the
Hsu et al. sensitivity analysis were the amount of time by which the antagonist pre-
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FIGURE 19. Semirelative sensitivity functions for
the other 13 parameters of the model. The functions
for J, TANT.AC, TAG-DE, and IANT-DE overlap each other
and are not distinct on this scale. The curve for the
antagonist series elasticity is labeled KAf,T. (From
Bahill, A. T., Latimer, J. R., and Troost, B. T.,
IEEE Trans. Syst. Man Cybern., SMC-10, Decem-
ber 1980. With permission.)

ceded and succeeded the agonist pulse. Because the parameters had so little effect, they
were treated as fixed constants in the later models. Lehman and Stark38 used only one
parameter to describe the agonist and antagonist activation-time constants. In the table
they were treated as two constants. The deactivation time constants and the series
elasticities were treated similarly.

The following conclusions were derived from the Bahill et al.42 sensitivity analysis.

1. The series elasticity of the agonist, KAC.SE, is the only parameter that has an im-
portant effect on both static and dynamic properties.

2. The parameters N,,G.«W N^T.step, KiT, and Kp affect the steady state of 9(t) and
3. The sensitivity functions for the time constants are very small.
4. The sensitivity functions for three of the time constants and for the three dash-

pots had shapes that were similar to each other and that peaked near the end of
the saccade. This means that trade offs could be made between these six param-
eters without affecting the precision of the model.
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Table 3
RANK ORDERING OF SENSITIVITY FUNCTIONS

FOR VARIOUS RECIPROCAL INNERVATION
MODELS

Lehman and
Bahill et al.42 Hsu et al.1J Stark38

N«; „ 1 NA NA
P W 2 1 3
PH = NAC.PM(,P 3 2 1
K«.-.,.T 4 NA NA
Krfo.,, 5 10 6
BP 6 16 9
N^r.,,,,. 7 NA NA
VAC 8 3,8 2
T^.^r 9 7 4

KA N 7 .5, 10 17 7

KP 11 4 8

B^, 12 5,6 10

KANT.,.T 13 NA NA
tA»T.I» 14 1 1 11

J 15 15 13
•TAKT.AC 16 13 5

N^,,pu,,.. 17 18 NA
T^,.,» 18 9 32

5. Pulse height (PH) and pulse width (PW) primarily affect the output near the end
of the saccade and immediately following the saccade. Variations in both of these
parameters produce slow drifts after the saccades. These drifts are called glis-
sades. However, the shapes of these two sensitivity functions differ. The pulse-
height function rises gradually, starting at the beginning of the saccade, whereas
the pulse-width sensitivity function is zero until near the end of the saccade,
where it abruptly rises to its peak, as shown in Figure 18. This means that increas-
ing either parameter would produce a larger saccade with a glissade attached to
the end. However, increasing the pulse height would also increase the peak veloc-
ity of the saccade, whereas increasing the pulse width would not affect the peak
velocity, because the peak velocity occurs in the middle of the saccade while this
sensitivity function is still zero. Physiological data have shown that saccades with
this type of glissade appended have normal or even lower than normal peak ve-
locities.71 Therefore, the sensitivity analysis explains why glissades are caused by
pulse-width not pulse-height errors. Early studies of glissades78'61 suggested that
glissades could be caused by pulse-width or pulse-height errors. This sensitivity
analysis clearly showed that this is not so.

Because the sensitivity functions were functions of time, it was easy to see what part
of the movement should be studied in order to see the effects of any particular param-
eter. For example, the time constant IANT-DE has its greatest effect on the output early
in the saccade. Thus if you wish to study this parameter, you should study the begin-
ning of the saccade. If your study involves visual inspection of the waveforms, you
might use the models output to derive some other function that will highlight this
region, such as the acceleration as a function of time. Then to study the effects of IANT.
DE you would look at the peak positive acceleration. A similar study of derived param-
eters was performed by Lehman and Stark38 on their model.

Another reason for using relative or semirelative sensitivity functions rather than an
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absolute sensitivity function is that the former will not change their values depending
upon the units used to describe the parameters. For example, the maximum value of
the semirelative sensitivity of eye position with respect to pulse height is 7.1°, whereas
the maximum value of the absolute sensitivity of eye position with respect to pulse
height is 0,043°/g if the pulse height is given in units of grams-tension. It is 4.39°/N
if the pulse height is given with units of newtons.

For the most part, this rank ordering of the sensitivity functions was similar to the
results of Hsu et al.12 and Lehman and Stark38 (see Table 3). The only exception was
the sensitivity to B^G. In the analysis of Bahill et al.42 it ranked eighth. In the other
studies it ranked second or third. Because human physiological data are not available
for this parameter, Bahill et al.42 felt that it was good that the parameter did not play
an important role in their model.

This model is neither the simplest nor the most complicated possible model for a
sixth-order system. In general, a sixth-order system can be described with a gain pa-
rameter and a characteristic polynominal containing only six coefficients or with a six
by six A matrix with 36 coefficients. This linear model contains 18 parameters. Using
sparce matrix techniques, this model could be condensed to 12 A-matrix entries. How-
ever, the model should not be condensed, because each element of the model corre-
sponds to a real element or effect in the physiological system; the model is homeo-
morphic. Homeomorphism makes it possible to use the model to explain which human
parameters might have been changed by pathology, fatigue, or drugs to produce cer-
tain abnormal human eye movements.79

D. Validation Summary
Physiological data were used to build a linear homeomorphic reciprocal innervation

model for the eye movement system. The model was validated qualitatively by com-
paring shapes of human and model saccades, quantitatively by comparing main se-
quence relationships of human and model saccades, quantitatively by computing the
mean squared error between the model output and the human response, analytically
by performing a sensitivity analysis, and heuristically by simulating eye movements
that the model was not designed to simulate. Use of the model enabled the following
predictions to be made

1. Dynamic overshoots are caused by reversals in the neurological control signals
(based on the nonlinear model12).

2. When there are glissadic overshoots or undershoots, with the eye drifting (or
glissading) onto the final target position, there was an error made in computing
the pulse width and not the pulse height of the motoneuronal controller signal.37

The first prediction has been subsequently confirmed in physiological studies.
The validation of this model was presented as an example of model validation. There

were five major components of this validation scheme: logical development, qualitative
comparisons, quantitative comparisons, simulation of data not used in the model for-
mulation, and the sensitivity analysis. These techniques were all helpful in validating
the model.

IV. DENOUEMENT

The sixth-order, linear, homeomorphic model whose development and validation
has just been presented is but one small part of the overall closed-loop eye-position
control system. Figure 20, based on References 7, 63, and 80 to 84, shows a model
for the whole system. It includes two types of adaptive control.
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FIGURE 20. Ocular motor tracking system, including the saccadic branch, the smooth-pursuit branch,
and the adaptive control processes. An internal, adaptive model for the target movement is used for smooth-
pursuit tracking of predictable targets motions. The gain of the saccadic system is adaptively controlled by
the cerebellum. The feedback element, H, is normally unity.

The cerebellum is probably the adaptive controller for the saccadic eye movement
system. It receives inputs from the visual, vestibular, and proprioceptive sensory sys-
tems and sends outputs to the oculomotor system. It is hypothesized that the cerebel-
lum monitors the input signals from the sensory systems and also monitors the result-
ing output of the oculomotor system. If they differ, then the cerebellum exerts its
adaptive control capabilities and changes the gain of the saccadic controller.63

The smooth pursuit system also shows evidence of adaptive control. When humans
track periodic targets, they very quickly lock onto the target movement and are able
to track it with no latency. It is as if they create an internal (or CNS) model of the
target movement and then track the output of this model, rather than the actual visual
target. This internal model has variously been called a state estimator, an observer, a
long-term learning process, a percept tracker, a predictor, and an adaptive controller.84

This internal model is a part of the overall tracking system, but it is an additional
component that was eliminated in earlier studies.80 After the fundamental smooth pur-
suit system was adequately modeled, this internal model (or adaptive control function)
could be incorporated into the model of Figure 20.

The logical extension of the research summarized in this review paper is to apply
the validation techniques shown here to the overall, closed-loop control system model
for the human eye position system of Figure 20.
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