
When Can We Safely Reuse
Systems, Upgrade
Systems, or Use COTS
Components?
A. Wayne Wymore and A. Terry Bahill

Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS?

Received March 4, 1999; revised October 24, 1999; accepted March 16, 2000

ABSTRACT

In this article it is proven that two systems are I/O equivalent with respect to an initial state

pair if and only if their minimizations are isomorphic images, which means that the minimiza-

tions are essentially the same systems with just a renaming of states, inputs, and outputs. The

concept of homomorphic images is also defined: One system is a homomorphic image of the

other if the one system is simpler than the other, but has essentially the same overall

functionality. Two systems that are I/O equivalent with respect to an initial state pair are not

necessarily homomorphic images. Hence, a system that implements the one may not imple-

ment the other. To assume otherwise can lead to disaster. It is the responsibility of systems

engineers assigned to system functional analysis to consider the I/O requirement and the

performance requirement (which may include reusability considerations) and to specify

functional system designs for implementation. It is the responsibility of systems engineers

assigned to system architecture to consider the technology requirement and the cost require-

ment and to specify buildable system designs to implement those exact functional system

designs, not the requirements for I/O behavior. This paper shows that the equivalence of two

systems cannot be proven by looking only at input and output behavior. © 2000 John Wiley

& Sons, Inc. Syst Eng 3: 82�95, 2000

1. INTRODUCTION

Reusability, upgrades, and pressure to use commercial

off-the-shelf (COTS) systems force the question �How

can we prove that two systems are equivalent?� First,

suppose a system called Z1 was designed to perform

task-1. Next, suppose task-2 needs to be performed. A

new system called Z2 could be designed, or perhaps Z1

could be reused. In many cases, it would be a lot cheaper

to reuse Z1. For simplicity assume task-2 is a subset of

task-1; for example, task-1 could be spelling and gram-

mar checking, and task-2 might be only spelling check-

Regular Paper

Systems Engineering, Vol. 3, No. 2, 2000

© 2000 John Wiley & Sons, Inc.

82

ing. A necessary, but not sufficient, condition for using

Z1 for task-2 is that the I/O behavior of Z1 and Z2 be

identical for task-2. For example, the I/O behavior of

Z1 and Z2 would have to be identical when checking

spelling.

Second, suppose that we have a large complex sys-

tem that has been working well for several years, but

the hardware is getting old and expensive to maintain.

Will our application still work if we upgrade from

hardware-1 to hardware-2? Or perhaps our software

vendor has come out with a new version. Other sites

have upgraded, but we have not, so we are losing

compatibility. Will our application still work if we

upgrade from software-1 to software-2? A necessary

but not sufficient condition for success of the upgrade

is that the input/output behavior of the application be

the same on the old system as it is on the new system.

Third, suppose we used to make custom systems for

our customer. They worked very well, but they were

expensive. Now our customer wants us to design a new

system, but to keep the cost down, he wants us to use

commercial off-the-shelf (COTS) components. We

have a design, Z1, that satisfies the customer�s needed

functionality. But we want to know if a COTS product,

Z2, will also satisfy this functionality. For a start, we

can create input trajectories, play them into both de-

signs and look to see if the output trajectories are the

same.

These three scenarios require answers to the same

question as our old systems engineering validation

problem. Suppose Engineering designs a system; then

Manufacturing builds a physical system. Could an en-

gineer prove that the physical system implements the

design? If the states were observable, then the engineer

could construct an input trajectory that exercised all

state transitions, apply this input trajectory to both

systems, and compare the resulting state trajectories. If

they were identical, then the systems would be equiva-

lent. However, if the system states were not observable,

then the only thing the engineer could work with is the

input/output behavior of the systems. In this paper, we

show what you can say about systems where only the

inputs and outputs can be observed.

Notation: This paper applies to discrete systems of

the form Z = (SZ, IZ, OZ, NZ, RZ), where Z is the name

of the system, SZ is the set of states, IZ is the set of

inputs, OZ is the set of outputs, NZ is the next-state

function that describes the next state for all combina-

tions of present state and input values, and RZ is the

readout function that specifies the outputs for each state

[Chapman, Bahill and Wymore, 1992; Wymore, 1993].

The time scale of Z is denoted TZ and is defined as TZ =

IJS++, meaning zero and the positive integers. The set

of all possible input trajectories is denoted ITZ and is

defined as ITZ = FNS(TZ, IZ), meaning the set of all

functions that are defined on the set TZ with values in

the set IZ. Thus, an input trajectory is a listing of input

values as a function of time. We typically use the

symbol f for a representative input trajectory. For a

typical system experiment, we start the system in some

initial state, which we symbolize with DSZ, we specify

the input trajectory f that will be applied to the system

and then we compute the outputs as a function of time,

which is called the output trajectory. Thus, the output

trajectory is parametrized by the input trajectory and the

initial state: the output trajectory for system Z1 with

input trajectory f and initial state DSZ1 is denoted

OTZ1(f, DSZ1). The output at a particular time t is

denoted OTZ1(f, DSZ1)(t). Similarly, a listing of the

states as a function of time, which is called the state

trajectory, is parameterized by the input trajectory and

the initial state. The state trajectory for system Z1 with

input trajectory f and initial state DSZ1 is denoted

STZ1(f, DSZ1). The state at a particular time t is denoted

STZ1(f, DSZ1)(t) and OTZ1(f, DSZ1)(t) = RZ(STZ (f,

DSZ1)(t)). Furthermore, STZ(f, DSZ)(t + 1) = NZ

(STZ(f, DSZ)(t), f(t)).

2. I/O EQUIVALENCE WITH RESPECT TO
AN INITIAL STATE PAIR

Definition: Two systems Z1 and Z2 are input/output

(I/O) equivalent with respect to the initial state pair

(DSZ1, DSZ2) if and only if

1. IZ1 = IZ2, the inputs are the same,

2. OZ1 = OZ2, the outputs are the same,

3. DSZ1 ∈ SZ1, the initial state DSZ1 is a state of

Z1,

4. DSZ2 ∈ SZ2, the initial state DSZ2 is a state of

Z2,

5. for every f ∈ ITZ1 = ITZ2, OTZ1(f, DSZ1) =

OTZ2(f, DSZ2), for every possible input trajec-

tory the output trajectories are the same, and

6. every state of Z1 is reachable from the initial state

DSZ1, and every state of Z2 is reachable from the

initial state DSZ2.

Note: When there is no chance of ambiguity, we will

abbreviate �input/output equivalent with respect to an

initial state pair� with �I/O equivalent.�

Nomenclature: Intuitively, systems that have the

same functionality, but have different names for the

inputs, outputs, and states are isomorphic images. Sys-

tems that have essentially the same functionality, but

have different names and possibly a different number

of inputs, outputs, and states are homomorphic images.

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 83

Homophones are words that have the same sound, but

differ in spelling, origin and meaning, like night and

knight. They sound alike but look different. This paper

is about systems that have the same input/output behav-

ior, but differ in purpose, states, and structure: They

function alike but look different. Analogously, we say

that systems with the same input/output behavior are

homophonic echoes.

3. THEOREM 1 AND ITS IMPLICATIONS

Theorem 1: I/O equivalence with respect to an initial

state pair is reflexive, symmetric, and transitive.

If {Z1, Z2, Z3} are systems, then Z1 is I/O equivalent

to Z1 with respect to DSZ1 for any DSZ1 ∈ SZ1

(reflexivity),

if Z1 is I/O equivalent to Z2 with respect to the initial

state pair (DSZ1, DSZ2), then Z2 is I/O equivalent

to Z1 with respect to the pair (DSZ2, DSZ1)

(symmetry),

if Z1 is I/O equivalent to Z2 with respect to the pair

(DSZ1, DSZ2), and Z2 is I/O equivalent to Z3

with respect to (DSZ2, DSZ3), then Z1 is I/O

equivalent to Z3 with respect to (DSZ1, DSZ3),

(transitivity).

4. HOMOMORPHISMS

In general, homomorphic images require the definition

of three homomorphic functions: HI, mapping the input

values from one system to the other, HO, mapping the

output values, and HS, mapping the states. However,

in this paper we will simplify the mathematics (with-

out loss of generality) and only consider systems that

have the same input and output values, meaning both

functions HI and HO are the identity over the sets of

inputs and the sets of outputs, respectively. If such

systems are homomorphs, then they are called state-

homomorphs.

4.1. State-Homomorphisms

Definition: The system Z1 is a state-homomorphic

image of the system Z2 with respect to HS if and only

if

1. IZ1 = IZ2,

2. OZ1 = OZ2,

3. HS ∈ FNS (SZ2, ONTO, SZ1), a function map-

ping states of SZ2 to states of SZ1 must exist and

it must satisfy the ONTO property,

4. HS(NZ2(x, p)) = NZ1(HS(x), p) for every p ∈ IZ2

and x ∈ SZ2, the image of the next state of Z2,

started in the state x, is the next state of Z1 with

the initial state HS(x) and the same input, (the

symbol p is used for a particular value of the input

and x is used for a particular value of the state) and

5. RZ1(HS(x)) = RZ2(x) for every x ∈ SZ2, if the

states in RZ1 are mapped according to HS the

result will be equal to RZ2.

Notation: A function specifies a mapping of ele-

ments of set A (the domain) onto elements of set B (the

range). A function must be single-valued, i.e., no two

elements of B are images of the same element of A.

(Terminology: elements of A are mapped onto elements

of B, whereas elements of B are images of elements of

A.) If a function g is 1TO1, denoted g ∈ FNS(A, 1TO1,

B), then no two elements of A are mapped onto the same

element of B. If a function g is ONTO, denoted g ∈
FNS(A, ONTO, B), then each element of B is the image

of at least one element of A. The notation FNS(A, 1TO1,

ONTO, B) refers to all functions relating A to B that are

1TO1 and ONTO.

Corollaries: (1) State-homomorphism implies iden-

tical input sets and identical output sets. HS(STZ2(f,

x)(t) = STZ1(f, HS(x))(t) and OTZ2(f, x)(t) = OTZ1(f,

HS(x))(t), for every f ∈ ITZ and time t. (2) Systems Z1

and Z2 are state-isomorphic if and only if Z1 and Z2 are

state-homomorphic with respect to HS, and HS is 1TO1.

In other words, isomorphic images have the same num-

ber of states and the state relationship can be thought of

as a mere renaming.

Definition: Z1 is a homophonic echo of Z2 with

respect to HS if and only if HS ∈ FNS(SZ2, ONTO, SZ1)

such that OTZ2(f, x)(t) = OTZ1(f, HS(x)(t) for all ∈
IJS++ and RZ2(x) = I2Z1(HS(x)) for all x ∈ SZ2.

4.2. Homomorphism Examples

Notation: To define a system (Z) we must specify its

set of states (SZ), its set of inputs (IZ), its set of outputs

(OZ), its next-state function (NZ), and its readout func-

tion (RZ). For example, let us define system ZxA.

Specification of example system ZxA: Let ZxA =

(SZxA, IZxA, OZxA, NZxA, RZxA), where

SZxA = {1, 2, 3, 4} are the names of the system’s four states,

IZxA = {5, 6, 7} are the legal values for the system inputs,

OZxA = {8, 9, 10} are the output values produced by the system,

NZxA = { ((1, 5), 2), ((1, 6), 3), ((1, 7), 1),

 (2, 5), 3), ((2, 6), 3), ((2, 7), 1),

 ((3, 5), 2), ((3, 6), 4). ((3, 7), 1),

 ((4, 5), 3), ((4, 6), 3), ((4, 7), 1)}.

The next-state function shows the transitions between

states; each entry contains ((a present state, an input

84 WYMORE AND BAHILL

value), and a next state); e.g., the first entry above, ((1,

5), 2), says that if the system is in state 1 and it gets an

input of 5, then it will go to state 2.

RZxA = { (1, 8), (2, 9), (3, 10), (4, 9)}.

The readout function lists the states and their associated

outputs; e.g., if this system is in state 1, then its output

is 8.

Figure 1 shows the relationships in the definition of

ZxA.

Specification of ZxC: Let ZxC = (SZxC, IZxC,

OZxC, NZxC, RZxC), where

SZxC = {a, b, c},

IZxC = {5, 6, 7},

OZXC = {8, 9, 10},

NZxC = {((a, 5), b), ((a, 6), c), ((a, 7), a),
 ((b, 5), c), ((b, 6), c), ((b, 7), a),
 ((c, 5), b), ((c, 6), b), ((c, 7), a)},

RZxC = {(a, 8), (b, 9), (c, 10)}.

See Figure 2.

Relationship Between ZxA and ZxC: Systems ZxA

and ZxC look similar. It seems like there has been a

renaming and a collapse of two states into one, states 2

and 4 have collapsed into state b. This fits the definition

of homomorphic images. We can transform ZxA into

ZxC by renaming the states. In ZxA, wherever the state

is 1 replace it with a, where the state is either 2 or 4

replace it with b, and where the state is 3 replace it with

c. Stated formally ZxC is a homomorphic image of ZxA

with the homomorphic state function HSCA = {(1, a),

(2, b), (3, c), (4, b)}. ZxC is a minimization of ZxA.

Digital systems textbooks such as Katz [1994] present

many techniques for minimizing systems.

Proof that ZxC is a homomorphic image of ZxA:

HSCA is a function: No state of ZxA maps to more than

one state of ZxC. HSCA is ONTO: all states of ZxC are

imaged to at least one state in ZxA. Table I shows that

parts (4) and (5) of the definition at 4.1 are true. Col-

umns 1 and 2 list all possible combinations of present

states (called x) and inputs (called p). Column 3 shows

the next state for ZxA for each state-input pair. Column

5 shows the next states for ZxC. Now, if our homomor-

phic state function HSCA = {(1, a), (2, b), (3, c), (4, b)}

is applied to column 3, we get column 4, which is

Figure 1. ZxA.

Figure 2. ZxC.

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 85

identical to column 5. Furthermore, columns 6 and 7

are identical. Column 6 is derived by applying the

system readout function, RZxA, to column 1. Column 7

is derived by applying the homomorphic state function,

HSCA, to column 1 followed by the readout function

RZxC. Therefore, ZxC is a homomorphic image of ZxA.

5. THEOREM 2 AND ITS IMPLICATIONS

5.1. Theorem 2

Theorem 2: State-homomorphism implies I/O equiva-

lence with respect to any pair of initial states of which

the one is the homomorphic image of the other and from

which the respective systems are completely reachable.

If

Z1 is a state-homomorph of Z2 with respect to HS,

every state of Z1 is reachable from the initial state

DSZ1,

every state of Z2 is reachable from the initial state

DSZ2, and

HS(DSZ2) = DSZ1,

then Z1 and Z2 are I/O equivalent with respect to the

initial state pair (DSZ1, DSZ2).

Proof: All conditions required by the definition of

I/O equivalence with respect to an initial state pair are

fulfilled by the hypotheses except condition (5), which

is proved as follows:

If f ∈ ITZ1 = ITZ2, then

OTZ2(f, DSZ2)(t) = OTZ1(f, HS(DSZ2))(t),

by the definition of homomorphism and the corollaries

to that definition,

= OTZ1(f, DSZ1)(t),

since HS(DSZ2) = DSZ1.

However, I/O equivalence with respect to an initial

state pair (a homophonic relationship) does not imply

a homomorphic relationship between the systems.

5.2. A Conjectured Theorem

If Z1 and Z2 are I/O equivalent with respect to the initial

state pair (DSZ1, DSZ2), then Z1 is a state-homomorph

of Z2 or Z2 is a state-homomorph of Z1. This Conjec-

tured Theorem is not true as will be shown with the

following counterexample.

Counterexample: Systems ZxA and ZxC have al-

ready been defined. A third system ZxB will now be

defined with the same state set as ZxA: {1, 2, 3, 4}. It

will be shown that neither ZxA nor ZxB is a state-homo-

morphic image of the other. Then it will be shown that

ZxC is a state-homomorphic image of both ZxA and

ZxB, with respect to mappings HSCA and HSCB, re-

spectively. It will be seen that HSCA(1) = HSCB(1) =

a, and hence, by Theorem 2 proven above, ZxA is I/O

equivalent to ZxC with respect to the initial state pair

(1, a), and ZxB is I/O equivalent to ZxC with respect to

the initial state pair (1, a) and hence, by the symmetry

and transitivity of I/O equivalence asserted in Theorem

1, ZxA and ZxB are I/O equivalent with respect to the

initial state pair (1, 1).

Hence, it is not the case that I/O equivalence with

respect to an initial state pair implies a state-homomor-

phism between the systems.

Table I. Proof that ZxC Is a Homomorphic Image of ZxA

86 WYMORE AND BAHILL

Specification of ZxB:

ZxB = (SZxB, IZxB, OZxB, NZxB, RZxB),

where

SZxB = {1, 2, 3, 4},

IZxB = {5, 6, 7}
OZxB = {8, 9, 10},
NZxB = {((1, 5), 2), ((1, 6), 3), ((1, 7), 1),

 ((2, 5), 3), ((2, 6), 4), ((2, 7), 1),

 ((3, 5), 2), ((3, 6), 2), ((3, 7), 1),

 ((4, 5), 2), ((4, 6), 2), ((4, 7), 1)},

RZxB = {(1, 8), (2, 9), (3, 10), (4, 10)}.

See Figure 3.

I/O Equivalence of ZxA and ZxB: Table II is a

system experiment illustrating that ZxA and ZxB are I/O

equivalent with respect to the initial state pair (1, 1). If

both systems are started in state 1 and the indicated

input trajectory is applied, then the output trajectories

are identical.

Table II shows that ZxA and ZxB are I/O equivalent

with respect to initial states. If this experiment were

performed on physical systems, the state trajectories

might not be seen, perhaps only the input and output

trajectories could be seen. But to prove I/O equivalence

with respect to an initial state pair only �power-up� or

�start� states need be observable. However, Table II is

merely an illustration of I/O equivalence with respect

to an initial state pair; it is not a proof, because condition

(5) of the definition of I/O equivalence with respect to

an initial state pair requires that the output trajectories

be the same for every possible input trajectory and it is

not likely that we can exercise every possible input

trajectory. However, the input trajectory of Table II

actually is sufficient, because it was constructed using

the next-state function and it exercises all state transi-

tions in both systems. The concept of I/O equivalence

with respect to an initial state pair is a model-based

concept. The proofs and theorems in this paper apply to

models of the physical systems. The conclusions drawn

are only as good as the models. Finally, we note that

proving that two systems are I/O equivalent with respect

to initial states does not prove that the systems them-

selves are equivalent.

There is no state-homomorphism between ZxA and

ZxB. First, let us try to find a function HSBA that would

make ZxB a state-homomorphic image of ZxA. The

necessity to satisfy condition (5) of the definition at 4.1,

namely RZxA(x) = RZxB(HS(x)), implies that HSBA =

{(1, 1), (2, 2), (3, 3), (4, 2)}, which is single-valued but

not ONTO (state 4 of ZxB is missing), or else HSBA =

{(1, 1), (2, 2), (3, 3), (4, 2), (3, 4)}, which is ONTO but

not single-valued (state 3 of ZxA is mapped to two

values of ZxB). Therefore, it must be concluded that ZxB

is not a state-homomorphic image of ZxA. The same

problems arise in trying to define HSAB in order for ZxA

to be a state-homomorphic image of ZxB: Either

HSAB = {(1, 1), (2, 2), (3, 3), (4, 3)}, which is single-

valued but not ONTO, or HSAB = {(1, 1), (2, 2), (3, 3),

(4, 3), (2, 4)}, which is ONTO but not single-valued.

Therefore, ZxA is not a state-homomorphic image of

ZxB.

ZxC is a state-homomorphic image of both ZxA and

ZxB. We have already shown that ZxC is a state-homo-

morphic image of ZxA. Let us now show that ZxC is also

a state-homomorphic image of ZxB. Let HSCB = {(1,

a), (2, b), (3, c), (4, c)}. Table III shows the results of

computations proving that HSCB(NZxB(x, p)) =

NZxC(HSCB(x), p) (columns 4 and 5 are identical) and

RZxB(x) = RZxC(HSCB(x)) (columns 6 and 7 are iden-

tical) for every x ∈ SZxB and p ∈ IZxB. See Table III.

Figure 3. ZxB.

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 87

Hence, ZxC is a state-homomorphic image of both

ZxA and ZxB with respect to HSCA and HSCB, respec-

tively. Every state of ZxC is reachable from the state a ∈
SZxC and every state of both ZxA and ZxB is reachable

from the state 1 ∈ SZxA = SZxB. Furthermore, HSCA(1)

= HSCB(1) = a. So, according to Theorem 2, ZxA and

ZxB are both I/O equivalent to ZxC with respect to the

initial state pair (1, a) in both cases. By the symmetry

and transitivity of I/O equivalence with respect to an initial

state pair as asserted in the corollary to the definition of

I/O equivalence with respect to an initial state pair

(Theorem 1), ZxA and ZxB are I/O equivalent with

respect to the initial state pair (1, 1). But neither ZxA

nor ZxB is a state-homomorphic image of the other.

6. THE ASSUMPTION OF REUSABILITY
MAY BE DANGEROUS

The practical implication of such a possibility can be

seen from the following scenario: System functional

analysts in Systems Engineering want the functionality

of ZxC, which is not commercially available. But they

know that ZxA easily implements ZxC. Therefore, they

specify that ZxA be bought. However, system architects

in Systems Engineering buy ZxB, because it is cheaper.

That�s OK, isn�t it? After all, ZxA and ZxB are I/O

equivalent with respect to an initial state pair and,

furthermore, if either ZxA or ZxB is implemented, then

ZxC is automatically implemented. So what difference

does it make which of ZxA or ZxB is implemented?

Later, in the same or another project, Systems Engi-

neering discovers that a certain function can be per-

formed by ZxA started in state 4. Wanting to reuse what

they already have bought, Systems Engineering speci-

fies ZxB, and the system fails because ZxA and ZxB are

not I/O equivalent with respect to the initial state pair

(4, 4). As shown in Table II, ZxA and ZxB have the same

input�output behavior, if they are started in the initial

state pairs (1, 1), (2, 2), or (3, 3), but not (4, 4).

This substitution of ZxB for ZxA would work if ZxB

could be configured and documented to prevent state 4

from ever being an initial state. But, for complex sys-

tems, it would be difficult to detect all forbidden initial

states, and it would be even harder to make the docu-

Table II. A System Experiment on ZxA and ZxB Illustrating I/O Equivalence

88 WYMORE AND BAHILL

mentation describing this restriction stay with the sys-

tem for its entire life cycle.

What can be said about two systems Z1 and Z2 that

are I/O equivalent with respect to an initial state pair is

that for each system there is another system Z1* and

Z2*, respectively, which is a state-homomorphic image

of Z1 and Z2 respectively, and Z1* and Z2* are state-

isomorphic, or essentially the same system. This will be

elaborated in the next three sections.

7. I/O EQUIVALENCE AND MINIMALITY

Definition: If {x1, x2} ⊂ SZ, then states x1 and x2 are

I/O equivalent if and only if OTZ(f, x1) = OTZ(f, x2) for

every f ∈ ITZ. The system Z is minimal if and only if Z

has no I/O equivalent states. The set of states of Z

equivalent to the state x1 is denoted EQZ(x1). The

following theorem is well known from the literature

(see, e.g., section 9.2 of Katz [1994]).

7.1. Theorem 3 and Examples

Theorem 3: For every system Z there exists a minimal

system denoted MINSY(Z) such that MINSY(Z) is a

state-homomorphic image of Z. Furthermore, if Z$ is a

minimal system and a state-homomorphic image of Z

with respect to EQZ, then Z$ and MINSY(Z) are state-

isomorphic.

If Z* = MINSY(Z), then Z* can be defined as follows:

SZ∗ = {EQZ(x): x ∈ SZ};

the states of SZ* are the equivalence classes made from

the states of SZ,

IZ∗ = IZ,

OZz∗ = OZ,

NZ∗ = {((EQZ(x), p), EQZ(NZ(x, p))): x ∈ SZ; p ∈ IZ},

RZ∗ = {EQZ(x), RZ(x)): x ∈ SZ}.

Examples of minimal systems: The system ZxC is

minimal since RZxC(x1) <> RZxC(x2) for every {x1,

x2}⊂ SZxC, x1 <> x2. So SZxC has no equivalent states,

and ZxC is minimal.

8. TIME INVARIANCE AND CAUSALITY
CONDITIONS

Every system must satisfy the time invariance condi-

tion: If

f ∈ ITZ, x ∈ SZ, t ∈ TZ, and r ∈ TZ,

then

STZ (f → r, STZ(f, x)(r))(t) = STZ(f, x)(r + t),

where (f → r)(t) = f(r + t) for every t. The time invariance

condition can be interpreted in terms of the results of

three system experiments on the system model Z.

Experiment 1: Start the system in the state x, intro-

duce the input trajectory f, and run the system to time

r: record the state of the system at that time, STZ(f, x)(r).

Experiment 2: Start the system in the state STZ(f,

x)(r), introduce the input trajectory f → r (this notation

means that input trajectory f is time shifted r units to the

left) whose first two values are f → r(0) = f(r), f → r(1) =

f(r + 1), (f → r takes up where f left off at the end of

Table III. Proof that ZxC Is a State Homomorphic Image of ZxB

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 89

Experiment 1), and run the system to time t: record the

state of the system at that time, STZ(f → r, STZ(f, x)(r))(t).

Experiment 3: Start the system in the state x, introduce

the input trajectory f, and run the system to time r + t:

record the state of the system at that time, STZ(f, x)(r + t).

The state of the system at the end of Experiments 2

and 3 must be the same:

STZ (f → r, STZ (f, x)(r))(t) = STZ(f, x)(r + t).

The time invariance condition is satisfied by all

systems that do not change with time, as well as some

other systems.

Every system must satisfy the causality (or nonan-

ticipatory) condition: If {f1, f 2} ∈ ITZ, x ∈ SZ, t ∈
TZ, and f1 and f 2 agree at all time values from 0 up to

but not necessarily including time t (or any values

beyond t), then STZ(f1, x)(t) = STZ(f2, x)(t). The cau-

sality condition can be interpreted in terms of the results

of two system experiments on the system model Z.

Experiment 1: Start the system in the state x, intro-

duce the input trajectory f1, and run the system to time

t: record the state of the system at that time, STZ(f1,

x)(t).

Experiment 2: Start the system in the state x, intro-

duce the input trajectory f 2, and run the system to time

t: record the state of the system at that time, STZ(f2,

x)(t).

If f1 and f 2 have exactly the same values from time

0 up to, but not including time t (and maybe even differ

wildly at and after time t), then the states of Z at the end

of both experiments must still be the same: STZ(f1, x)(t) =

STZ(f 2, x)(t).

The causality condition says that a system cannot

look into the future.

9. THEOREM 4 AND ITS IMPLICATIONS

Theorem 4: If two systems have an initial state pair

from which each is, respectively, completely reachable,

then the two systems are I/O equivalent with respect to

that initial state pair if and only if they have state-

isomorphic minimizations.

If Z1 and Z2 are systems, for i ∈ {1, 2}: DSZi is an

initial state of Zi such that every state of Zi is reachable

from DSZi and Zi* = MINSY(Zi), such that DSZi* =

EQZi(DSZi), then Z1 and Z2 are I/O equivalent with

respect to the initial state pair (DSZ1, DSZ2), if and only

if Z1* is state-isomorphic to Z2*.

Proof: First, assume that Z1 and Z2 are I/O equiva-

lent with respect to the initial state pair (DSZ1, DSZ2).

Then we must show that Z1* and Z2* are state-isomor-

phic. By Theorems 2 and 3, Zi and Zi* are I/O equiva-

lent with respect to the initial state pair (DSZi, DSZi*).

By hypothesis, Z1 and Z2 are I/O equivalent with re-

spect to the initial state pair (DSZ1, DSZ2). By the

symmetry and transitivity of I/O equivalence, Z1* and

Z2* are I/O equivalent with respect to the initial state

pair (DSZ1*, DSZ2*).

It must be shown that there exists HS ∈ FNS(SZ1*,

1TO1, ONTO, SZ2*) such that for (x, p) ∈ SZ1*IZ1*,

HS(NZ1*(x, p)) = NZ2*(HS(x), p) and RZ1*(x) =

RZ2*(HS(x)).

Let HS = {(STZ1*(f, DSZ1*)(t), STZ2*(f, DSZ2*)(t)):

(f, t) ∈ ITZ1* >< TSZ1*}, as the most �natural� candi-

date for the definition of the state-isomorphism because

as (f, t) runs over all of ITZ1 >< TZ1, (STZi*(f,

DSZi*))(t) runs over all of SZi* because of the reacha-

bility assumption. Assuming HS ∈ FNS(SZ1*, 1TO1,

ONTO, SZ2*): for (x, p) ∈ SZ1*>< IZ1*,

HS(NZ1∗(x, p)) = HS(NZ1∗(STZ1∗(f, DSZ1∗)(t), p)),

where x = STZ1*(f, DSZ1*)(t) for some (f, t) ∈
ITZ1*><TSZ1*, where it can be assumed that f(t) = p,

= HS(STZ1∗(f, DSZ1∗)(t + 1))
= STZ 2∗(f, DSZ2∗)(t + 1)), by the definition of HS,

= NZ 2∗(STZ2∗(f, DSZ 2∗)(t), f (t))
= NZ 2∗(HS(x), p)

and

RZ1∗(x)

= RZ1∗(STZ1∗(f, DSZ1∗)(t)), where x = STZ1∗(f, DSZ1∗)(t)
= OTZ1∗(f, DSZ1∗)(t)
= OTZ2∗(f, DSZ2∗)(t)

since Z1* and Z2* are I/O equivalent with respect to the

initial state pair (DSZ1*, DSZ2*),

= RZ2∗(STZ2∗(f, DSZ2∗)(t)
= RZ2∗(HS(x)).

Now all that must be shown is that HS ∈ FNS(SZ1*,

1TO1, ONTO, SZ2*). That HS ∈ FNS(SZ1*, SZ2*) is

a consequence of the following three observations/de-

ductions corresponding to the conditions required by

the definition of a function:

1. HS ⊂ SZ1* >< SZ2*.

2. If x ∈ SZ1*, then, by the reachability hypothesis,

there exists (f, t) ∈ ITZ1* >< TSZ1* such that x =

STZ1*(f, DSZ1*)(t). Then (x, STZ2*(f, DSZ2*)(t)) ∈
HS.

3. Now it must be shown that HS is single-valued;

let

STZ1∗(f1, DSZ1∗)(t1) = x = STZ1∗(f 2, DSZ1∗)(t2).

90 WYMORE AND BAHILL

It must be shown that, if y1 = STZ2*(f1, DSZ2*)(t1)

and y2 = STZ2*(f 2, DSZ2*)(t2), then y1 = y2.

Z2* is minimal, by hypothesis, and therefore, Z2*

has no two I/O equivalent states, by definition. If it can

be shown, therefore, that y1 and y2 are I/O equivalent,

then it can be concluded that y1 = y2. To this end, it must

be shown that for every f ∈ ITZ2*, OTZ2*(f, y1) =

OTZ2*(f, y2).

Let f ∈ ITZ2* and t ∈ TZ2* be arbitrary. It will be

shown that OTZ2*(f, y1)(t) = OTZ2*(f, y2)(t). Let f 3 be

the concatenation of the input trajectories f1 and f at

time t1, that is,

f 3 = f1(t), if 0 ≤ t ≤ t1,
f 3 = f (t − t1), if t1 ≤ t.

Let f4 be the concatenation of f 2 and f at time t2.

Then f 3 → t1 = f4 → t2 = f, that is, the values of both

f 3 and f4 at and after times t1 and t2, respectively, are

both given by the function f. This follows from the

definition of concatenation. Note that

x = STZ1∗(f 3, DSZ1∗)(t1)

= STZ1∗(f 4, DSZ1∗)(t2)

and

y1 = STZ2∗(f 3, DSZ2)(t1) and
y2 = STZ2∗(f 4, DSZ2∗)(t2),

by the causality condition because f 3 is identical to f1

to time t1 and f4 is identical to f 2 up to time t2.

Then

OTZ2∗(f, y1)(t) =
RZ2∗(STZ2∗(f, STZ2∗(f1, DSZ2∗)(t1))(t)),

by the definition of y1 and of OTZ2,

= RZ2∗(STZ2∗(f3, DS Z2∗)(t1 + t)), by the time invariance condition,

= OTZ2∗(f3, DSZ2∗)(t1 + t)
= OTZ1∗(f3, DSZ1∗)(t1 + t),

since Z2* and Z1* are I/O equivalent with respect to

DSZ2* and DSZ1*, as proved in the first paragraph of

this proof,

= RZ1∗(STZ1∗(f 3, DSZ1∗)(t1 + t)),
by the definition of OTZ1∗,

= RZ1∗(STZ1∗(f 3 → t1, STZ1∗(f 3, DSZ1∗)(t1))(t),
by the time invariance condition,

= RZ1∗(STZ1∗(f, STZ1∗(f1, DSZ1∗)(t1))(t)),

since f 3 → t1 = f and f 3 prior to time t1 is f1,

= RZ1∗(STZ1∗(f, x)(t)),

because x = STZ1*(f1, DSZ1*)(t1), by hypothesis,

= RZ1∗(STZ1∗(f 4 → t2, STZ1∗(f 2, DSZ1∗)(t2))(t)

= RZ1∗(STZ1∗(f 4 DSZ1∗)(t + t2)),

by the definition of f4 and the time invariance condition,

= OTZ1∗(f4, DSZ1∗)(t2 + t)

= OTZ2∗(f4, DSZ2∗)(t2 + t),

because Z1* and Z2* are I/O equivalent for DSZ1* and

DSZ2*,

= RZ2∗(STZ2∗(f 4 → t2, STZ2(f 4, DSZ2∗)(t2))(t)),
by the time invariance condition,

= RZ2∗(STZ2∗(f, y2)(t)),

by the causality condition since the values of f4 → t2

for time t2 and beyond are given by f,

OTZ2∗(f, y2)(t).

Hence, OTZ2*(f, y1)(t) = OTZ2*(f, y2)(t), y1 and y2

are I/O equivalent and, since by hypothesis Z2* is

minimal, y1 = y2, and HS is single-valued. Hence HS ∈
FNS(SZ1*, SZ2*).

HS is ONTO by the reachability hypothesis. Exactly

the same argument used to prove that HS is single-

valued can be used to prove that HS is 1TO1 by

exchanging the roles of Z1 and Z2. Hence, Z1* and Z2*

are state-isomorphic, Z1* is a homomorphic image of

Z1, Z2* is a homomorphic image of Z2 and Zi* is

completely reachable for DSZi*.

Assume now that Z1* is state-isomorphic to Z2*

with respect to HS, and HS(DSZ1*) = DSZ2*. Then Z1*

is completely reachable from DSZ1* and Z2* is com-

pletely reachable from DSZ2*.

Proof that Zi* is completely reachable from DSZi*,

for i ∈ {1, 2}: Since, by hypothesis, Zi is reachable from

DSZi, then Zi* is completely reachable from DSZi* =

EQZ(DSZi). Let y* ∈ Zi*, y* = EQZi(y) for y ∈ SZi.

Then

y = STZi(f, DSZi)(t) for some f ∈ ITZi and t ∈ TZi,

and

y∗ = EQZi(y) = EQZi(STZi(f, DSZi)(t)),

y∗ = STZi∗(f, EQZi(DSZi))(t),

y∗ = STZi∗(f, DSZi∗)(t) QED.

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 91

Then Z1* and Z2* are I/O equivalent with respect to the

pair (DSZ1*, DSZ2*) of initials states by Theorem 2.

Hence, Z1 is I/O equivalent to Z1* which is I/O equiva-

lent to Z2* which is I/O equivalent to Z2. Hence, Z1 is

I/O equivalent to Z2.

10. IMPLICATIONS

Suppose an engineer tried to implement the design ZxA

in, say, TTL circuitry. How could he or she test this

hardware to prove that it did indeed implement the

design? If the states were observable, then the engineer

could construct an input trajectory (or a set of input

trajectories) that exercised all state transitions, apply

this input trajectory to ZxA and the TTL circuit, and

compare the resulting state trajectories. If they were

identical, then the systems would be equivalent. If there

were m states, n input possibilities, and k output values,

then the lower limit on the length of the input trajectory

would be mn, 12 for ZxA. The actual length required of

the input trajectory is undecidable: In Table II, it took

20 transitions to exercise all of the state transitions. The

upper limit on the length required of the input trajectory

is mmn. However, what if the states were not observable?

Well, then the engineer could set each state as an initial

state and then prove I/O equivalence with respect to an

initial state pair as in Table II. This would require mn

state transitions. Finally, what if you cannot set the initial

states? Then you cannot prove system equivalence!

�The cost of testing a chip using conventional meth-

ods will, by 2012, eclipse the cost of fabricating that

chip� [Runyon, 1999], and even with this cost, we

cannot guarantee that the chip will do what it is sup-

posed to do! The most obvious method of proving

conformance of a real system to its design is to show

the equivalence of their state trajectories. However, this

could be very costly if there were millions of states, and

it would be impossible if the states were not observable.

Such difficulties have pushed computer designers to

abandon input/output testing to prove equivalence. In-

stead, they now design built-in self-tests for most inte-

grated circuits [Runyon, 1999].

We have mentioned four reasons why engineers

might want to prove that two systems are equivalent:

desire to reuse existing systems, plans to upgrade sys-

tems, pressure to use commercial off the shelf (COTS)

systems, and the need to verify that a physical system

conforms to its design. Of course, there are many more

reasons. One of the best ways to prove system equiva-

lence is to design an input trajectory (or perhaps a set

of input trajectories) that exercises every possible

state transition, apply it to both systems, and ensure

that the two state trajectories are identical. However,

this might be impossible, because the states are not

observable: or it might be too expensive, due to the large

number of states. Here are a few techniques that have

been used in lieu of proving system equivalence: (1)

Create multiple reset states and prove I/O equivalence

with respect to an initial state pair for all of them. (2)

Build an observer to estimate the system states. (3)

Design built-in self-tests. (4) Add extra outputs so that

the states can be identified by examining the outputs.

A very common technique for describing the desired

behavior of a system is to describe acceptable input/out-

put trajectories for the system. Such descriptions of

input and output behavior as functions of time are

variously called trajectories, behavioral scenarios, use

cases, threads, operational scenarios, logistics, func-

tionality, test vectors, sequence diagrams, or interaction

diagrams. When using such techniques the following

question often arises, �How do you know when you

have enough scenarios?� The answer seems to be never.

Because merely looking at input/output behavior can

never guarantee correct system behavior: we must be

able to see the states.

We have shown that systems should be designed so

that they have the needed functionality rather than the

desired input/output behavior. In this paper, we used

only one method for doing the functional design: finite

state machines. There are of course, many other meth-

ods. See Bahill et al. [1998] for an overview.

Computer engineers have struggled to minimize circuits

in order to reduce the number of flip-flops or even diodes.

But currently, with these components being so inexpensive,

it does not seem to be worth the effort to minimize state

machines anymore. In this paper, we have shown a new

reason to minimize state machines: It will make it easier to

prove equivalence and therefore facilitate reuse.

Nowadays, all systems are supposed to be designed

so that they are better, faster, and cheaper. The mantra

for doing this seems to be reuse. Databases are being

put on the Internet for widespread use. Integrated Prod-

uct Development teams continually try to reuse parts of

previous teams� efforts. Object libraries are created to

encourage reuse. However, inadequate testing of reused

software caused the failure of the Ariane 5 missile

[Kunzig, 1997]. And reuse in object-oriented software

is cautioned by the following infamous Internet myth.

The Australian military�s virtual reality simulators for

helicopter combat training have detailed landscapes of

the Australian Outback. To increase realism, they were

asked to add mobs of kangaroos. Being efficient pro-

grammers, they reused some code originally designed

to model the behavior of infantry detachments under the

same stimuli. They changed the mapped icon from a

soldier to a kangaroo, and increased the figures� speed

of movement. In an early demonstration, a helicopter in

92 WYMORE AND BAHILL

low-level flight buzzed the virtual kangaroos. The kan-

garoos scattered, as predicted, and the visitors nodded

appreciatively. Then they did a double take as the kan-

garoos reappeared from behind a hill and launched a

barrage of Stinger missiles at the hapless helicopter.

Apparently, the programmers did not remove the launch

weapons functionality from the objects. The lesson?

The programmers got the behavior they wanted: re-

treat when a helicopter approaches, but that behavior

was not a complete description of the functionality

of that object. Reference: http://www.sie.arizona.edu/

sysengr/OOSE/ kangaroo.html.

11. SOMETIMES IT WORKS

Why is it so enticing to use input/output behavior to prove

system equivalence? Because sometimes it works!

In the field of Digital Design (e.g., computer design),

the two basic types of systems are called combinational

and sequential [Katz, 1994]. In the field of cybernetics,

von Foerster [1982] called them, respectively, trivial

and nontrivial systems. In combinational systems, the

output depends only on the present inputs, whereas, in

sequential systems, the output depends on the sequence

of previous inputs. Combinational problems can be

modeled and implemented as sequential systems. But

not vice versa. Note: sequential system, state machine,

and nontrivial system are usually considered to be syn-

onymous phrases.

Consider a household three-way light system with

one light and two switches, one at each end of a hallway.

Define the inputs to be the position of the switches {up,

down}. We can create the following sequential model

for this system:

Z = (SZ, IZ, OZ, NZ, RZ),

where

SZ = { (S1up − S2up), (S1up − S2down),

(S1down − S2up), (S1down − S2down)},

I1Z = {up, down},

I2Z = {up, down},

OZ = {on, off},

NZ = { (((S1up − S2up), (up, down)), (S1up − S2down)),

(((S1up − S2up), (down, up)), (S1down − S2up)),

(((S1up − S2down), (up, up)), (S1up − S2up)),

 (((S1up − S2down), (down, down)), (S1down − S2down)),

 (((S1down − S2down), (up, down)), (S1up − S2down)),

 (((S1down − S2down), (down, up)), (S1down − S2up)),

 (((S1down − S2up), (down, down)), (S1down − S2down)),

(((S1down − S2up), (up, up)), (S1up − S2up))}.

For simplicity, input combinations that do not produce

a change of state are not shown; also, simultaneous

changes of both switches are not shown.

RZ = { ((S1up − S2up), on), ((S1up − S2down), off),
((S1down − S2up), off), ((S1down − S2down), on)} .

Given the present state and an input trajectory, we can

compute the state trajectory. Therefore, the three-way

light system can be modeled as a sequential system, and

it can be implemented with flip-flops.

However, in actuality, the three-way light system is

only a combinational problem: it does not need a se-

quential solution. The present state depends only on the

present positions of the switches. The system can be

modeled with the truth table of Table IV.

From this Table IV, we can derive the following

equation:

Light = S1
__

 • S2
__

 + S1 • S2.

This equation (or model) can be implemented using

only AND and OR gates. This combinational system

implementation is simpler than the sequential system

implementation presented above. Furthermore, the

equivalence of this combinational model with the

physical system can be proven using only input/output

behavior.

Contrast this three-way light system with a three-

way lamp that can be off, on with 50 watts, on with 100

watts, or on with 150 watts. Turn the switch 90°, and

the lamp is on dimly. Turn it again, and the lamp is on

with medium brightness. Turn it a third time, and the

lamp is on brightly. A final turn, turns the lamp off. The

behavior of this system clearly depends on its previous

state: It is a sequential problem and requires a sequential

solution. The equivalence of the sequential solution

(model) with the physical system cannot be proven

using only input/output behavior.

Therefore, in the real world, there are combinational

problems that should have combinational solutions;

however, they could also have sequential solutions. An

engineer can prove the equivalence of these combina-

tional problems using only input/output behavior. How-

ever, real-world sequential problems must have

Table IV. A Truth Table

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 93

sequential solutions. And the equivalence of these solu-

tions cannot be proven using only input/output behav-

ior. These same observations have been made

previously by von Foerster [1982].

In this paper, we have shown that an engineer cannot

prove equivalence of two sequential systems using only

input/output behavior. But there are many engineers

who say that they have proven the equivalence two

systems using only input/output behavior. We suggest

that their systems were merely combinatorial problems.

And for combinatorial problems, equivalence can be

proven using only input/output behavior.

12. CONCLUSIONS

If Z1 implements Z2, and Z3 is a homomorphic image

of Z2, then Z1 also implements Z3. The minimization, say

Z2*, of a system Z2 is a state-homomorphic image of Z2,

so, if Z1 implements Z2, then Z1 also implements Z2*.

Two systems are I/O equivalent with respect to an

initial state pair if and only if they have state-isomorphic

minimizations. However, two systems that are I/O

equivalent with respect to an initial state pair are not

necessarily homomorphic images. Hence, a system that

implements the one may not implement the other. That

is, the fact that Z1 is an implementation of Z2* does not

imply that Z1 is also an implementation of Z2. To

assume otherwise can lead to disaster. It is the respon-

sibility of systems engineers assigned to system func-

tional analysis to consider the I/O requirement and the

performance requirement and to specify functional sys-

tem designs for implementation. It is the responsibility

of systems engineers assigned to system architecture to

consider the technology requirement and the cost re-

quirement and to specify buildable system designs to

implement those exact functional system designs.

In this paper we have shown that (1) proving that two

systems are I/O equivalent with respect to an initial state

pair does not prove that the systems are equivalent

(homophonic images are not homomorphic images),

(2) the assumption of reusability may be dangerous, and

(3) if two systems are input/output equivalent with

respect to an initial state pair, then either they are

isomorphs or at least one of them is not minimal and

their minimizations are isomorphic images.

These conclusions should be important to senior

systems engineers and program managers, because

these people influence the selection the system archi-

tecture. If the system architecture prescribes a system

that has the desired input/output behavior, rather than

the needed functionality, then the system may fail.

APPENDIX

Notation: References (i.e., A1.*) are to paragraphs

in Appendix-1 of Wymore [1993].

+ the addition operator (A1.114, A1.115,

A1.201)

→ the translation or time shift operator (A1.284)

∈ the �is an element of� relation (A1.2, A1.126)

<> the �not equals� relation (A1.16, A1.128)

= the �equals� relation (A1.2, A1.16, A1.128)

∩ the intersection of two sets (A1.74 to A1.91)

° the function composition operator (A1.269)

⊂ the subset relation (A1.3, A1.133)

FNS(SZ1, SZ2)

the set of all functions that are defined on the

sets SZ1 and SZ2

FNS(A, 1TO1, B)

functions that map one value in set A to one

value in set B (A1.222)

FNS(A, ONTO, B)

functions where each element of B is imaged

by at least one element of A (A1.224 to

A1.226)

FNS(A, 1TO1, ONTO, B)

functions relating A to B that are 1TO1 and

ONTO

ID the identity function (A1.165 to A1.168)

f a symbol for some particular input trajectory

p a symbol for some particular value of an input

x a symbol for some particular value of a state

y a symbol for some particular value of a next-

state

t a symbol for some particular value of time

r a symbol for another particular value of time

REFERENCES

A.T. Bahill, M. Alford, K. Bharathan, J. Clymer, D.L. Dean,

J. Duke, G. Hill, E. LaBudde, E. Taipale, and A. W.

Wymore, The Design-Methods Comparison Project, IEEE

Trans Syst, Man, Cybernet Part C: Appl Rev, 28 (1998),

80�103; also at http://www.sie.arizona.edu/sysengr/

methods2.

W.L. Chapman, A.T. Bahill, and A.W. Wymore, Engineering

modeling and design, CRC Press, Boca Raton, FL, 1992.

R.H. Katz, Contemporary logic design, Benjamin/Cum-

mings, Redwood City, CA, 1994.

R. Kunzig, Europe�s dream, Discover, 18 (May 1997), 96�

103.

S. Runyon, Testing big chips becomes an internal affair, IEEE

Spectrum 36(4) (1999), 49�55.

H. von Foerster, Observing systems, Intersystems, Seaside, 1982.

A.W. Wymore, Model-based systems engineering, CRC

Press, Boca Raton, FL, 1993.

94 WYMORE AND BAHILL

Wayne Wymore earned B.S. and M.S. degrees at Iowa State University, and the Ph.D. at the University

of Wisconsin, Madison, all in mathematics. He is Professor Emeritus of Systems and Industrial Engineer-

ing at the University of Arizona, where he was the first Chairman of the Department of Systems

Engineering and first Director of the Computing Center. While managing, teaching, researching, and

consulting internationally (50 organizations in 13 countries in 21 fields of application), he authored A

Mathematical Theory of Systems Engineering: The Elements, 1967, Systems Engineering Methodology

for Interdisciplinary Teams, 1976, and Model-Based Systems Engineering, 1993. System Functional

Analysis and System Design, Phase 2 of Model-Based Systems Engineering is forthcoming. He is a Fellow

of INCOSE.

Terry Bahill is a Professor of Systems Engineering at the University of Arizona in Tucson. He received

his Ph.D. in electrical engineering and computer science from the University of California, Berkeley, in

1975. Bahill has worked with Hughes Missile Systems in Tucson, Sandia Laboratories in Albuquerque,

Lockheed Martin Tactical Defense Systems in Eagan, Minnesota, Boeing Information, Space and Defense

Systems in Kent, Washington, and Idaho National Engineering and Environmental Laboratory in Idaho

Falls. For these companies he presented seminars on Systems Engineering, worked on product develop-

ment teams, and helped them describe their Systems Engineering Process. He holds a U.S. Patent for the

Bat Chooser, a system that computes the Ideal Bat Weight for individual baseball and softball batters. He

is Editor of the CRC Press Series on Systems Engineering. He is a Fellow of the Institute of Electrical

and Electronics Engineers (IEEE) and of the International Council on Systems Engineering (INCOSE).

He is Chair of the INCOSE Fellows Selection Committee.

REUSE SYSTEMS, UPGRADE SYSTEMS, OR USE COTS COMPONENTS? 95

