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Abstract

This chapter presents three key processes central to systems engineering: require-
ments discovery, tradeoff studies, and risk analysis. It compares and contrasts
these three processes and then combines them into a single Overarching Process.
The three original processes can then be viewed as specific tailorings of the
Overarching (superset) Process. Similarly, the Overarching Process can be
viewed as a top-level process (a superset) for model-based system engineering
(MBSE) implementations. The Overarching Process itself is not an example of
model-based systems engineering, except at a high level. This chapter also
identifies the activities in the Overarching Process that contribute to uncertainty.
All of these activities involve human decision-making. Therefore, most mistakes
caused by uncertainty are found in the system models and documentation. These
mistakes often arise from confirmation bias, severity amplifiers, and framing. The
two key examples used in this chapter are the Cookie Acquisition System and the
BaConLaws model for baseball-bat collisions.

Keywords

Uncertainty · Requirements · Tradeoff study · Trade study · Risk analysis ·
Baseball · Decision analysis and resolution · Sensitivity analyses · Multi-
objective decision-making
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Introduction to Modeling

A model is a simplified representation of some aspect of a real system. Models are
ephemeral: They are created, they explain a phenomenon, they stimulate discussion,
they foment alternatives, and then they are replaced by newer models. Engineers
know how to construct a model, but quite frequently, they miss a few steps. This
recognition provides the impetus for this chapter that presents a succinct description
of the modeling process.

Requirements discovery, tradeoff studies, and risk analyses are three distinct
systems engineering activities. Even though they have the same underlying process
structure, they appear different because they employ different vocabularies, inputs,
and outputs. To convey the similarity of these processes to the reader, we abstracted
and grouped the common activities in these three processes. The incipient develop-
ment of this approach was presented in Tradeoff Decisions in System Design [8]. In
the interest of clarity, the processes, shown in our figures, suppress the explicit
representation of temporal sequences. Also, in the interest of clarity, we suppress the
multitude of feedback loops that arise when several of these activities are performed
in parallel.

In this chapter, we discuss these three processes, along with their sources of
uncertainty, and present existing ad hoc methods and mechanisms for identifying
uncertainties. We dealt with handling uncertainties in Madni and Bahill [38]. Next,
we present the Overarching Process as a superset of these three processes. Finally,
we present a system for ameliorating uncertainty in the Overarching Process. In the
approach presented, uncertainty is consistently and uniformly addressed using the
Overarching Process as a reference model.

Uncertainty Is Ubiquitous

Uncertainty is ubiquitous in our environment, and occasionally, people deliberately
create uncertainty, for example, in games of chance such as playing card games. In
card games, one or more decks of cards are shuffled to create a random ordering of
cards. Thus, when a card facing down is about to be turned over, neither its suit nor
its rank is known for sure (ideally).

In the field of metrology, measuring uncertainty is a core concept that quantifies
the measurement error that one should reasonably expect. Uncertainty is involved in
every measurement and is represented as significant figures using the number
system. Numbers are restricted to only the physically meaningful digits. This
quantification of uncertainty is then propagated throughout the calculations so that
the uncertainty in the calculated values depends on the uncertainties associated with
the measured values and the calculation algorithm.

As important, our understanding of nature is incomplete. Therefore, our models
of natural phenomena have uncertainty. The Heisenberg uncertainty principle states
that we cannot simultaneously measure both the position and velocity of an electron
(or any number of other subatomic particles). As we measure the position ever more
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accurately, the estimate of the velocity becomes more inexact. Astrophysicists have
proposed dark matter and dark energy to patch the holes in our laws of physics that
are used to model nature. Even so, our models remain incomplete. Therefore, we still
cannot predict the future. (“It’s tough to make predictions, especially about the
future.” Impishly attributed to Yogi Berra.)

In optimization models, uncertainty is used to describe situations where the user
does not have full control. Likewise, it is common to include estimates of uncertainty
in economic and weather forecasts. Similarly, pollsters employ uncertainty in their
models for polling and predicting political elections. In decision science, we employ
probabilistic models for human decision-making under uncertainty.

In a systems engineering process, there cannot be a block that says “manage
uncertainty” because uncertainty is ubiquitous: It is everywhere. Uncertainty must
be managed where and when it occurs. Handling uncertainty is like making a peanut
butter and jelly sandwich – just as the peanut butter must be spread over the surface
of a slice of bread, so also uncertainty needs to be spread across the whole systems
engineering process.

Model-Based System Engineering

System design can be component-based (e.g., WWII battleships), function-based
(e.g., 1970s, MIL-STD 499A), requirements-based (e.g., 1990s, MIL-STD 499B), or
model-based (e.g., 2000s, OMG, and Estefan [23]). Model-based system engineer-
ing and design has the advantage of executable models that improve efficiency and
rigor. It also provides a common terminology (ontology), explicit representations,
and a central source of truth from which views can be extracted for the needs of
particular stakeholders [40]. The earliest development of this technique was in
Wayne Wymore’s [54] book entitled Model-Based System Engineering, although
the phrase Model-Based System Design was in the title and topics of Jerzy
Rozenblit’s [50] PhD dissertation. One of the first model-based systems engineering
process models was that of Bahill and Gissing [7]. A good summary of the
Wymorian process is given in Estefan [23]. Model-based systems engineering
depends on having and using well-structured models that are appropriate for the
given problem domain [9, 40]. An ancient Chinese proverb that was invented by a
New York City journalist a century ago says, “A picture is worth a thousand words.”
In engineering design, this phrase has morphed into “a model is worth a thousand
pictures.” This means that models greatly reduce the complexity of a system
description. This is akin to design elegance. The complexity is there, but the ability
to create views for specific viewpoints enables focusing on issues relevant to
different stakeholders. Model elements that are not important to a particular stake-
holder can be abstracted or elided.

In this chapter, we derive the Overarching Process that can be used as an
enveloping process on top of a model-based system engineering (MBSE) method-
ology. Other chapters in this handbook (e.g., [23]) show various implementations of
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MBSE processes. But this chapter is at a higher level of abstraction. It shows an
Overarching Process for MBSE.

The Overarching Process is a top-level, front-end process. Rather than sitting
down with the customer on the first day of the project and filling out SysML
diagrams, the customer would be better served by starting with the Overarching
Process.

“All the really important mistakes are made the first day,” Eb Rechtin, The Art of System
Architecting, p. 28, [49].

Purpose of Models

Models can be used for many reasons, such as guiding decisions, understanding an
existing system, improving a system, creating a new design or system, controlling a
system, improving operator performance, suggesting new experiments, guiding data
collection activities, allocating resources, identifying cost drivers, increasing return
on investment, helping to sell the product, and reducing risk [34]. Running business
process models clarifies requirements, reveals bottlenecks, reduces cost, identifies
fragmented activities, and exposes duplication of efforts [35].

Kinds of Models

There are different kinds of models in systems engineering. These models address
different system perspectives: behavioral, structural, performance, and analysis.
Behavioral models describe how the system responds to external excitation, that
is, how the system functions transform the inputs into outputs. The BaConLaws
model [3] is a model of behavior. It describes the linear and angular velocity of
baseballs and softballs and baseball and softball bats after the collision in terms of
these same parameters before the collision. Structural models describe the compo-
nents and their interactions. Three-dimensional CAD/CAM images check the
buildability of structures. Performance models describe units, values, and tolerances
for properties such as weight, speed of response, available power, etc. These might
be captured in requirements. Typical baseball performance measures include batting
average, slugging average, and On-base Plus Slugging (OPS). Analysis models are
used to calculate the properties of the whole system from the properties of its parts.
For example, the time for a car to accelerate from 0 to 60 mph can be calculated from
the mass of the car, the torque transmitted through the drive train, the aerodynamic
drag coefficients, and the friction between the tires and the pavement.

Types of Models

There are many types of models [36]. People generally use only a few and errone-
ously believe them to be the totality of models because they tend to think of models
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from their narrow perspectives. Examples of most commonly used types of models
include models based on physiological and physical laws and principles, differential
equations, difference equations, algebraic equations, geometric representations of
physical structure, computer simulations and animations, Laplace transforms, trans-
fer functions, linear systems theory, state-space models (e.g., _x ¼ Axþ Bu), state
machine diagrams, charts, graphs, drawings, pictures, functional flow block dia-
grams, object-oriented models, UML and SysML diagrams, Markov processes,
time-series models, physical analogs, Monte Carlo simulations, optimization algo-
rithms, statistical distributions, mathematical programming, financial models, PERT
charts, Gantt charts, risk analyses models, tradeoff analyses models, mental models,
computer-based story representations, scenario models, and use case models. The
appropriate type of model depends on the particular system being studied, the
question being asked of the model, the operational context, and the modelers’
background.

For example, to understand how people make decisions, at least three phenomena
should be accounted for: confirmation bias, attribute substitution, and representa-
tiveness. For the biological domain, we must first choose the subject, that is, a virus,
a bacterium, a plant, or an animal. Once we have chosen our subject, we can then
derive its genome. To model something in the social domain, we might use a novel,
an encyclical, a song, a poem, or possibly even a joke.

Most models of real-world phenomena require a combination of these types. For
example, Bahill [3] uses Newton’s principles, the conservation laws of physics,
algebraic equations, spreadsheets, figures, tables, simulations, an optimization pack-
age, design of experiments, and statistics. Hence, the BaConLaws model comprises
many different types of models.

Tasks in the Modeling Process

In this section, we provide a checklist of the principal tasks or steps that should be
performed in a modeling study [2]. Modelers should look at each item on the list to
determine if they have done that task. If not, then they should explain why they did
not do it. But before explaining our checklist, we must present an example that can
be used to illustrate the items on the checklist.

Model for a Baseball-Bat Collision

An effective way to understand these tasks in the modeling process is through an
example. A suitable example is one in which the details are quantitative, publicly
available, and readily accessible and whose principles are commonly understood by
engineers. We decided to use the BaConLaws model for baseball from Bahill [3],
Chap. 4. A very brief synopsis of this model is presented below. The reader may skip
the equations without loss of continuity.
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The following equations comprise the BaConLaws model for bat-ball collisions.
First, the kinetic energy lost (transformed into heat) during the collision is

KElost ¼ 1

2

mballmbatIbat vball-before � vbat-cm-before � ωbat-beforedcm-ip
2
1� CoR2

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

,

ð1Þ
where dcm-ip is the distance between the bat’s center of mass and the impact point,
and CoR is the coefficient of restitution, which also models the energy lost.

The linear velocity of the ball after the collision is

vball-after ¼ vball-before �
vball-before � vbat-cm-before � ωbat-beforedcm-ip 1þ CoRð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

where vball-before < 0:

ð2Þ
The linear velocity of the bat after the collision is

vbat-cm-after ¼ vbat-cm-before

þ vball-before � vbat-cm-before � ωbat-beforedcm-ip 1þ CoRð ÞmballIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

ð3Þ
The angular velocity of the bat after the collision is

ωbat-after ¼ ωbat-before

þ vball-before � vbat-cm-before � dcm-ipωbat-before 1þ CoRð Þmballmbatdcm-ip

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

ð4Þ

Our most succinct presentation of this BaConLaws model is

CoR ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after
vball-before � vbat-cm-before � dcm-ipωbat-before

where 0 < CoR < 1

A ¼ vball-before � vbat-cm-before � dcm-ipωbat-before 1þ CoRð Þ
mballIbat þ mbatIbat þ mballmbatd

2
cm-ip

and A < 0

vball-after ¼ vball-before � AmbatIbat

vbat-after ¼ vbat-before þ AmballIbat

ωbat-after ¼ ωbat-before þ Amballmbatdcm-ip

ωball-after ¼ ωball-before

ð5Þ
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The numerical value for A is unique for each bat-ball collision. Of course, more
complicated models exist, for example, those not described by Fig. 1 and therefore
where ωball-after 6¼ ωball-before.

If you do not want to follow the equations of this model, then just imagine
watching a baseball game. Your thoughts should fill the squiggly braces in the
following checklist. We describe {in squiggly braces} the parts of the BaConLaws
model that implement the individual tasks.

Checklist for Tasks Necessary in a Modeling Project

• Describe the system to be modeled. {The BaConLaws model describes head-on
collisions between bats and balls, that is, when the bat is going upward at about
10� and the ball is coming downward at about 10� and there is no offset between
the bat displacement vector and the ball displacement vector. It gives the velocity
and spin of the bat and ball before and after collisions. It does not describe the
dynamics during the collision nor the swing of the bat.}

• State the purpose of the model. {The purpose of the BaConLaws model was to
explain bat-ball collisions with precise, correct equations, without jargon. This
included defining the performance criterion function. If the model were being

Fig. 1 Forces on a ball-in-flight (top) and a schematic of a head-on bat-ball collision (bottom). The
center of mass is cm, and the center of percussion is cop. (© 2019, Bahill. Used with permission)
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asked a different question, say about a player’s salary contract, an entirely
different type of model would have been used, for example, a financial investment
model [18, 19].} Here are some baseball models created by physic professors that
are not equation-based:
Al Nathan
https://www.scientificamerican.com/article/baseball-physics-opening-day/
David Kagan
https://physics.csuchico.edu/baseball/talks/AAPT(Nov-2012)/slides.pdf
Rod Cross
http://www.physics.usyd.edu.au/~cross/baseball.html
Bob Adair
https://www.amazon.com/Physics-Baseball-3rd-Robert-Adair/dp/0060084367

• Determine the level of the model [11]. {The level for the BaConLaws model
encompasses the ball velocity, the bat velocity, and the bat angular velocity after
the collision in terms of those same parameters before the collision. The timescale
is in milliseconds.}

• State the assumptions and, at every review, reassess the assumptions. {Our
assumptions were stated (on pages 24 and 36 of Bahill [3]), and they were
reviewed repeatedly.}

• Investigate alternative models. {Many bat swing models were presented in
Chap. 1 [3]. Alternative collision configurations were explained in
Chaps. 2 and 3. Chapter 3 also presented nine alternative definitions for the
sweet spot of the bat. The BaConLaws model was given in Chap. 4, and
alternative models were given in Chaps. 5 and 9. Having alternative models
helps ensure that you understand the physical system. No model is more correct
than another. Alternative models just emphasize different views of the physical
system. They are not competing models; they are synergetic.}

• Select tools for the model and simulation. {We used the What’sBest! optimizer,
the Pascal language, the Excel spreadsheets, the Math Type equation editor, and
MS Word.} This should not be a casual decision. One should not merely accept
the default. Tradeoff studies should be used to help select the best tools.

• Make the model. {The BaConLaws model is shown in Eqs. (1) to (5).}
• Integrate with models for other systems. {The outputs of the BaConLaws model

became inputs to the ball-in-flight model of Chap. 7 and the Probability of
Success model in Chap. 9 of Bahill [3].}

• Gather data describing system behavior. {We used data from our internal data-
bases, peer-reviewed journal papers, and the following online databases:
http://mlb.com/statcast/
https://baseballsavant.mlb.com/statcast_search
https://www.baseball-reference.com/.}

• Show that the model behaves like the real system. {The outputs of the simulations
were compared to the data listed in the above paragraph.}
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• Verify and validate the model. {Verification means, Did you build the system
right? For the BaConLaws model, the outputs of the simulations agree with the
data listed in the above paragraph. The double checks in the simulation ensured
the correctness of the spreadsheets. For example, the kinetic energy lost was
computed with equations and also by summing individual kinetic energy com-
ponents. The conservation laws were used in the derivations, and the final outputs
of the simulation were inserted into the conservation law equations to ensure
consistency of the spreadsheet. The main output of the BaConLaws model was
compared to the output of the Effective Mass model in Chap. 5 of Bahill [3]. The
physics was peer-reviewed by two anonymous physics professors. Each of the
main BaConLaws equations was derived using at least two techniques. Finally,
the equations were checked by an independent mathematician. Validation means,
Did you build the right system? Our customer wanted a system that described
head-on collisions between bats and balls. They wanted a system that would give
bat and ball velocity and the bat angular velocity after the collision in terms of
those same parameters before the collision. This is what our system does: See
Eqs. (2) to (5) above. Finally, we performed a sensitivity analysis, which is a
powerful validation tool [30, 53]. It warns if something is wrong with the model.
It might also define the boundary conditions for parameters, discover potential
brittleness, impact recommended operating procedures, find quirks in how the
system must be used, etc.} Enough details should be given to allow other users to
replicate your results. If other people cannot replicate your experiments and
analysis, then your model fails validation.

• Perform a sensitivity analysis of the model as follows.

Sensitivity Analysis of a Bat-Ball Collision Model
The batter in a game of baseball or softball would like to obtain the maximum batted
ball velocity. The larger the batted ball velocity, the more likely the batter will get on
base safely. Therefore, we made the batted ball velocity our performance criterion.
(Our equations are vector equations. In our analysis, we represented both the
magnitudes and directions of the vectors. However, in the book and in this chapter,
we only present the magnitudes.)

The linear velocity of the ball after the collision is

vball-after ¼ vball-before

� vball-before � vbat-cm-before � ωbat-beforedcm-ip 1þ CoRð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

ð6Þ
In a simple sensitivity analysis, an input is changed by a small amount, and the

resulting change in the output is recorded. For example, in Table 1, when
vbat-cm-before (the velocity of the center of mass of the bat before the collision) was
increased by 1%, vball-after increased by 0.62%. This was the most sensitive input
listed in Table 1.
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Next, the coefficient of restitution, CoR, was set as a constant, and we computed
the partial derivatives of the batted ball velocity, vball-after, with respect to the eight
model inputs and parameters. Finally, we used partial derivatives and computed the
semirelative sensitivity functions [53].

Table 2 gives the nominal values, along with the range of physically realistic
values for collegiate and professional baseball batters, and the semirelative sensitiv-
ity values computed analytically. The bigger the sensitivity value, the more impor-
tant the variable or parameter is for maximizing batted ball velocity.

The equations of the BaConLaws model have the variable dcm-ip for the distance
between the bat center of mass and the impact point. To get numerical values for
Table 2, we needed a particular impact point. For this, we used the center of
percussion, hence dcm-cop. The variable vtbat-cop-before is the total velocity, meaning
the sum of the linear and angular velocity, of the center of percussion of the bat
before the collision.

The right column of Table 2 shows that the most important property (the largest
absolute value), in terms of maximizing batted ball velocity, is the linear velocity of
the center of mass of the bat before the collision, vbat-cm-before. This is certainly no
surprise. The second most important property is the coefficient of restitution, CoR.
The least important properties are the angular velocity of the ball, ωball-before; the
distance between the center of mass and the center of percussion, dcm-cop; and the
moment of inertia of the bat, Ibat. For our analysis, the sensitivities to the distance
between the center of mass and the center of percussion, dcm-cop, and the mass of the
ball, mball, are negative, which merely means that as they increase, the batted ball
velocity decreases. The second-order interaction terms, which are not shown, are
small, which is good. The results shown in Tables 1 and 2, for two different
sensitivity analysis techniques, agree.

{The most important parameters, in terms of maximizing batted ball speed, are
the velocity of the center of mass of the bat before the collision and the coefficient of
restitution, CoR. The least important parameter is the angular velocity of the pitched
ball.}

• Explain a discovery that was not planned in the model’s design. {(1) We were
surprised when the equation for the kinetic energy lost in the collision fell right

Table 1 Relative sensitivity analysis

Inputs

Nominal
values, SI
units

Nominal
values,
baseball
units

vball-after when the input was
increased by 1%. The nominal value
was 91.894 mph

Percent
change in
vball-after

vball-before �37 m/s �83 mph 92.066 0.19

ωball-before 209 rad/s 2000 rpm 91.894 0

vbat-cm-before 23 m/s 52 mph 92.463 0.62

ωbat-before 32 rad/s 309 rpm 92.000 0.12

CoR 0.465 0.465 92.450 0.60
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out of the BaConLaws set of equations. (2). Before writing that book, we did not
expect to prove that cupping the barrel end of the bat does little good. (3) Although
it seems intuitive, we were surprised when the mathematics showed that a
baseball could be thrown farther than a tennis ball.}

• Perform a risk analysis. {Risk to our publisher. The biggest risk is that people
might be reluctant to buy a book with equations in it. Also, Springer would be
disappointed if sales were low. Therefore, by writing with the reader in mind, we
tried to ensure that sales would not be below expectations. We expect no
copyright problems because most of the material is original, and we have
permissions for the two figures that are not. Risk to our reader. Someone could
modify their bat and hurt him or herself by working with tools, or they could be
thrown out of a game for using an altered bat. Risk to the authors. If our equations
were wrong, or if important assumptions were omitted, then we would confuse
our readers and tarnish our reputations. Risk to quality. The book is produced in
India. Typographical and editing mistakes that occur are hard to correct because
of poor communication channels. Risk to baseball managers, general managers,
and umpires. It will put a burden on these people to understand the results of
mathematical modeling. Risk to Major League Baseball (MLB). It could embar-
rass MLB into disclosing their algorithms. Some of these risks may seem
unlikely. However, one of the most important parts of a risk analysis is exploring
unlikely risks.}

• Analyze the performance of the model. {This was described above in the verifi-
cation paragraph.}

• Reevaluate and improve the model. {In the future, we will explain why the
curveball curves. We will also investigate the cognitive processing and
decision-making of the batter [4, 5, 8, 10, 42]. We will describe the thrust and
parry of the pitcher and the batter.}

• Suggest new experiments and measurements for the real system that might
challenge existing models. MLB is providing copious amounts of new data.
Next, scientists need MLB’s actual algorithms and measurements for the spin
on the batted ball, particularly for the home run trajectories that are so popular on
television. Another proposed area of measurement and display involves the
erratic meandering of fielders trying to catch pop-ups. This behavior and the
paper by McBeath et al. [42] show that the ball’s trajectory often has bizarre loops
and cusps. MLB should show these trajectories on the television screen to help
laypeople understand the fielders’ wanderings. In the third edition of this book,
once we build a gold standard input data set for swings of the bat, we will directly
compare the BaConLaws model and other bat-ball collision models.}

In this section, we presented a checklist that should be used to ensure that the
most important modeling tasks have been performed. The checklist was exemplified
with a model for baseball-bat collisions.
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Requirements Discovery Process

Wemust avoid hearing the common customer complaint, “You gave me what I asked for, not
what I wanted!” (Norm Augustine, personal communication)

Figure 2 presents the requirements discovery process. Uncertainty exists in
several aspects of this process. The activities that have the most uncertainty are
marked with a▼. To begin with, not all stakeholders can be identified with certainty
at the start of the project [33]. The identification of customer needs is a step that

Fig. 2 Requirements discovery process. (Based on Bahill and Madni [8])

208 A. T. Bahill and A. M. Madni



requires iterations because uncertainty exists in the initial identification of needs.
The same goes for the problem statement. The initial statement of the problem can be
expected to be reused and refined as customer needs are more clearly articulated.
Therefore, requirements discovery is an iterative process in which each iteration
reduces uncertainty in the identification of requirements. Upon customer consensus,
the requirements are decomposed, allocated, further refined (derived), prioritized,
validated, and finalized. Iteration is the primary means of reducing uncertainty in the
requirements discovery and derivation task. Query reformulation is the primary
means for reducing uncertainty in the problem statement task. Uncertainty in
program schedule and technology maturation is addressed through incorporating
schedule buffers and safety margins.

The requirements discovery process has a multitude of unshown feedback loops.
For example, the Manage Requirements Activity has inputs to all of the mainline
activities, such as discover requirements, clarify requirements. decompose require-
ments, allocate requirements, derive requirements, and prioritize requirements.

Where Do Requirements Come From?

Requirements come from project stakeholders [6]. Stakeholders include, among
others, end users, operators, surrogate customers, managers, sponsors, staff mem-
bers, testers, maintainers, bill payers, regulatory agencies, potential victims, and
systems that will interact with your system [17, 27]. Many requirements can be
derived from previous systems. And if you are lucky, requirements can come from
the use cases, as shown in the following sections.

A Use Case Template

While the use case diagram is simple, the use case package is complex. It is
inadequately explained in most books and papers. Therefore, we start our system
development with a formal use case template. Less formal descriptions are called
stories.

A use case is an abstraction of the required functions of a system. A use case
usually produces an observable result of value to the user. Each use case describes a
sequence of interactions between one or more actors and the system [47]. Our design
process is use case-based.

Name: A use case should be named with a verb phrase in the active present tense
form. It should not relate to any particular solution.

Iteration: This is configuration management. Sometimes, we just number them.
Derived from: Explain the source for the use case. For example, it might be the

mission statement, the concept of operations (ConOps), a business use case, or a
customer requirement.

Brief description: Describe the general sequence that produces an observable
result of value to the user.
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Level: The amount of detail required in the use case. Do not mix classes of
different levels in the same use case.

Priority: The importance of this use case relative to other use cases
Scope: This defines the boundary of what the use case applies to.
Added value: Describe the benefit (usually) for the primary actor. This is an

important slot.
Goal: The goal is the behavior that the primary actor expects to get from the use

case. You should have a goal or an added value, but probably not both.
Primary actor: Actors are named with nouns or noun phrases. Actors reflect the

roles of things outside the system that interact with the system. Primary actors
initiate the functions described by use cases.

Supporting actor: Supporting (or secondary) actors are used by the system.
They are not a part of the system and thus cannot be designed or altered. They often
represent external systems or commercial-off-the-shelf (COTS) components. If your
system changes them, then those effects are unintended consequences.

Frequency: How often is the use case likely to be used? When this slot is helpful,
it is very helpful. When it is not, do not use it.

Precondition: The precondition should contain, among other things, the state of
the system and values for pertinent attributes before the main success scenario starts.

Trigger: The trigger should contain the event that causes a transition from the
preconditioned state to the first step in the main success scenario.

Main success scenario:

1. This numbered set of steps illustrates the usual, successful interactions of actors
with the system. Usually, the first step states the action of the primary actor that
starts the use case.

2a. The last step tells you where to go next (e.g., exit use case).

Alternate flows:

2b. Alternate flows describe failure conditions and unsuccessful interactions (exit
use case).

The main success scenario and the alternate flows can contain diagrams, such as
sequence and activity diagrams.

Postcondition: Describes the state of the system after exit from the use case no
matter which flows were executed. This is hard to write.

Specific Requirements
The steps in the main success scenario should suggest the functions that the

system is supposed to perform. From these, we should be able to write system
requirements.

Functional requirements: Describe the functional requirements with shall
statements.

Nonfunctional requirements: Describe the nonfunctional (often performance)
requirements with shall statements.
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Requirements are sometimes quantified with scoring functions ([54]
pp. 385–397; [8], [21], pp. 246–258).

Author/owner: This is an important field. It tells you whom to talk to if you want
to change the use case.

Last changed: Use some form of configuration management such as the date of
the last change or the revision history.

No standard specifies which slots should be in a use case description. Your
minimal set should be based on your company requirements template. The number
of slots and the detail in each slot increase as the design progresses from the
requirements model to the analysis model to the design model to the implementation
model. Other useful slots contain rules, assumptions, and extension points. Do not
use slots that do not help you. If you find that the trigger, precondition, or post-
condition does not help you to create state machine diagrams, then do not use them.
A use case description is also called a use case report, a use case narrative, and
stories. A use case package contains a use case description, sequence diagrams,
activity diagrams, supplementary requirements, and other UML stuff [47]. Other
chapters in this handbook use other templates.

A Use Case Example from a Chocolate Chip Cookie-Making System

Imagine that while reading this book, you experience an irresistible urge for choc-
olate chip cookies. Frantically, you rummage your kitchen. Lo and behold, you find a
tube of chocolate chip cookie dough in your refrigerator! Assume that you have a
typical kitchen – a stove, an oven, a timer, pots and pans, utensils, and, of course,
cookie sheets. And you have the all-important tube of Pillsbury’s Chocolate Chip
Cookie dough, with these instructions printed on the label:

• Preheat oven to 350 �F.
• Spoon heaping teaspoons of well-chilled dough about 2 in. apart onto a cool

ungreased cookie sheet.
• Bake at 350 �F for 10 min.

You are in business!
Write a use case that will describe how your system should work.
Name: Bake my Cookies
Note: For clarity, we set use case names in a different font, probably Verdana.
Iteration: 3.1
Derived from: Problem statement
Brief description: The cookie-making system bakes cookies to perfection. It is

named Cookie.
Level: High
Priority: This use case is of the highest priority.
Scope: A typical home kitchen with pots, pans, utensils, etc.
Added value: Students’ brains always work better with a tummy full of cookies.
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Goal: To produce stupendous freshly baked cookies
Primary actor: Student
Supporting actors: A tube of Pillsbury’s Chocolate Chip Cookie dough
Frequency: Once a month
Precondition: All ingredients and cookware are available.
Trigger: Student gets “hungry” for cookies.
Main success scenario:

1. Student decides to bake cookies.
2. Student turns on the oven and sets the desired oven temperature to 350 �F.
3. Cookie increases the temperature in the oven.
4. Student gets a tube of Pillsbury’s Chocolate Chip Cookie dough out of the

refrigerator and spoons heaping teaspoons of well-chilled dough about 2 in.
apart onto an ungreased cookie sheet. Your Mom would probably worry about
the expiration date of the product, which is a possible risk.

5. Cookie signals that the oven has preheated to 350 �F.
6. Student puts the cookie sheet full of cookies into the oven and sets the timer for

10 min.
7. Cookie signals that the baking time is over. If this signal is erroneously too late,

the cookies could burn.
8. Student takes the cookies out of the oven. The cookie sheet will be hot. Student

must wear an oven mitt. Student puts the cookies on a cooling rack and turns the
oven off. Failing to turn the oven off creates a risk.

9. Student eats the cookies and notes their quality (exit use case).
Unanchored alternate flow: At any time, Student can abort the process and

turn off the oven (exit use case).
Postcondition: The kitchen is a mess, but the oven is off.
The steps in the main success scenario suggest the functions that the system is

supposed to perform. From these steps, we can write the following system
requirements. This process was developed by Daniels and Bahill [20].

Specific Requirements
Functional requirements:

ReqF1: Cookie shall provide a mechanism for Student to enter the desired baking
time. The abbreviation ReqF* means a functional requirement.

ReqF2: Cookie shall display the desired baking time entered by Student.
ReqF3: Cookie shall heat the oven from room temperature to 350 �F in less than

5 min.
ReqF4: Cookie shall calculate and display the remaining baking time.
ReqF5: Cookie shall emit an audible signal when the oven is preheated and when the

baking time is over.
ReqF6: Cookie shall visually indicate when the oven is preheated and when the

baking time is over.
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ReqF7: Cookie shall execute Built-in Self-Tests (BiST) (derived from company
policy).

ReqF8: Cookie shall have a hard upper limit on oven temperature at 550�, even
during self-cleaning (derived from the risk analysis). Rationale: This will help
prevent fire.

ReqF9: Cookie shall turn off the oven when it is no longer being used (derived from
the risk analysis). Implementation could be (1) turning the oven off 20 min after
the end of the timer interval, (2) turning on an alarm 20 min after the end of the
timer interval, and (3) turning the oven off 20 min after the end of the timer
interval if there is no food inside of the oven.

Nonfunctional requirements:

ReqNF1: The remaining baking time displayed by Cookie shall be visible to a
Student with 20/20 vision standing 5 ft from the oven in a room with an
illuminance level between 0 and 1000 lux. The abbreviation ReqNF* means a
nonfunctional (usually performance) requirement.

ReqNF2: Cookie shall raise the temperature of food in the oven so that temperatures
at two distinct locations in the food differ by less than 10%.

ReqNF3: Cookie shall update the remaining baking time display every minute.
ReqNF4: The audible signal emitted by Cookie shall have an intensity level of

80 � 2 decibels (dB) at a distance of 30 cm and a frequency of 440 Hz. Note:
“Goalposts” like this, where all values inside the limits are accepted and all values
outside the limits are rejected, are no longer fashionable for requirements since
Taguchi (see [48]) scoring functions like that shown in Fig. 6 are preferable ([8],
pp. 386–389).

ReqNF5: Cookie shall comply with section 1030 of Title 21, Food and Drugs,
Chapter I – Food and Drug Administration, Department of Health and Human
Services, Subchapter J: Radiological Health.

ReqNF6: The desired baking time shall be adjustable between 1 min and 10 h.
Author/owner: Hungry Student
Last changed: January 5, 2021

Requirements must be necessary, verifiable, unambiguous, etc. Bahill and Madni
([8], pp. 379–386) list, with explanations, 28 such characteristics of good
requirements.

A Test Plan for This System

An important part of the incipient system design is describing how the system will be
tested. Fortunately, with use cases, this is a simple task. To test means to apply
inputs, measure and record outputs, compare outputs to requirements, and finally
indicate passing status.
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This test plan is based on the main success scenario of the Bake My Cookies use
case.

1. Tester turns on the oven and sets the desired temperature to 350 �F.
2. Tester waits until Cookie signals that the oven has preheated to 350 �F.
3. Tester stands 5 ft from the oven and observes the visual display. He measures the

sound intensity and the frequency of the auditory signal from a distance of 30 cm.
He measures the actual temperature inside the oven. He records the results.

4. Tester sets the timer for 10 min.
5. Tester waits until Cookie signals that 10 min is over.
6. Tester stands 5 ft from the oven and observes the visual display. He or she

measures the sound intensity and the frequency of the auditory signal from a
distance of 30 cm. He or she measures the actual temperature inside the oven. He
or she notes the desired and actual elapsed time (10 min) and records all of the
results.

7. Tester turns the oven off.
8. Tester notes that the oven temperature is decreasing (end of test).

This series of steps can easily be converted into an activity diagram or a sequence
diagram. Some chapters in this handbook may skip the text and go directly to an
activity diagram or a sequence diagram.

This section has presented a high-level or front-end process for discovering
system requirements. It has not shown how to document requirements at a low
level: For this, relational databases or SysML diagrams can be used. Friedenthal
et al. [25] and Madni and Sievers [41] show examples of using Use Case Diagrams
(uc), Requirements Diagrams (req), Sequence Diagrams (sd), Activity Diagrams
(act), Block Definition Diagrams (bdd), Package Diagrams (pkg), and requirements
tables and matrices to show the implementation of requirements documentation at a
low level.

Tradeoff Study Process

When a decision is important, a formal tradeoff study may be in order [22, 31].
Decisions that may require formal tradeoff studies include bid/no-bid, make-reuse-
buy, formal inspection versus checklist inspection, tool and vendor selection, incip-
ient architectural design, hiring and promotions, and helping your customer to
choose a solution from among various alternatives.

A tradeoff study is not something that is done once at the beginning of a project.
Throughout a project, you are continually making tradeoffs such as creating team
communication methods, selecting components, choosing implementation tech-
niques, designing test plans, and maintaining the schedule. Many of these tradeoff
decisions should be formally documented.

Companies should have criteria for when to do formal decision analysis, such as:
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• When the decision is related to a moderate- or high-risk issue
• When the decision affects work products under configuration management
• When the result of the decision could cause significant schedule delays or cost

overruns
• On material procurement of the 20% of the parts that constitute 80% of the total

material costs
• When the decision is selecting one or a few alternatives from a list
• When a decision is related to major changes in work products that have been

baselined
• When a decision affects the ability to achieve project objectives
• When the cost of the formal evaluation is reasonable when compared to the

decision’s impact
• On design-implementation decisions when technical performance failure may

cause a catastrophic failure
• On decisions with the potential to significantly reduce design risk, engineering

changes, cycle time, or production costs

Killer trades are used to eliminate a large number of possible alternatives in one
fell swoop. When evaluating alternatives is expensive, then early in the tradeoff
study, you should identify important requirements that can eliminate many alterna-
tives. If these requirements are performance related, then they are called key
performance parameters (KPP). These requirements produce killer criteria. Subse-
quent killer trades can often eliminate, if you are lucky, maybe 90% of the possible
alternatives.

In the Cookie Acquisition System, a killer criterion is that the cookies must be
chocolate chip. Gingerbread, oatmeal, bonbons, rum balls, animal crackers, biscotti,
ladyfingers, macarons, etc. will not do. This eliminates maybe 99% of possible
cookies.

Alternative solutions should be suggested by stories, use cases, and the concept of
operations (ConOps). Everybody should suggest alternatives and criteria during
brainstorming sessions and in private contemplation. It is important to get many
alternative solutions and criteria and then eliminate most. Bizarre alternatives should
suggest new requirements.

Figure 3 presents the tradeoff study process. The activities that have the most
uncertainty are marked with a▼. The first step has several sources of uncertainty. It
is inevitably the case that the initial problem statement is imprecise and the tradeoff
space (alternative solutions) initially defined is incomplete. These sources of uncer-
tainty need to be addressed before proceeding with tradeoff studies. Probing the
statement of the problem, reformulating queries, and identifying new variables that
need to be included in the tradeoff space are the means for reducing uncertainty.
Thereafter, the steps are relatively straightforward.

In this chapter, we have assumed that the reader is familiar with the requirements
discovery process, the tradeoff study process, and the risk analysis process. How-
ever, the tradeoff study process has a few subtleties that some readers may not be
cognizant of. Other chapters in this handbook on MBSE do not recognize these
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subtleties in doing tradeoff studies. So we offer a simplified example of a tradeoff
study in this next section.

Tradeoff Study Example from a Chocolate Chip Cookie Acquisition
System

Imagine that while reading this chapter, you experience an irresistible urge for
chocolate chip cookies and a glass of milk. You can simply state this as, “I want
chocolate chip cookies.” You begin to explore how to get hold of chocolate chip
cookies to satisfy this urge. You quickly discover that there are no chocolate chip
cookies in your home. You do have yogurt, but that does not help. You begin to
explore your options. You could head over to a bakery and buy chocolate chip
cookies. But wait! That would cut into valuable study time. You simply cannot
afford to do that! How about having a pizza delivered instead? No! You want
chocolate chip cookies. Frantically, you start rummaging the kitchen. Lo and behold,
you find a tube of chocolate chip cookie dough in your refrigerator! You are going to
make chocolate chip cookies! However, is that the best alternative? Perhaps you
need to do a tradeoff study.

The following is a tiny excerpt of a tradeoff study for the Chocolate Chip Cookie
Acquisition System. The complete example is given in Bahill and Madni [8],
pp. 15–30, 469–474, and 616–618). The question that this tradeoff study will answer
is, “What is the best way for our student to get chocolate chip cookies?” First, is
formal evaluation necessary? Our customer, the student, says that this is important.
Therefore, we will do a tradeoff study. We will use the following three evaluation
criteria which are derived from use case descriptions. Evaluation criteria are often
called measures of effectiveness.

Name of criterion: Audible signal indicating cookies are ready
Description: An audible signal shall indicate when the cookies are ready. This

signal should have a nominal intensity level of 80 � 2 decibels.
Weight of importance: 9
Basic measure: Intensity level of an audible signal

Fig. 3 A use case diagram for the Cookie Acquisition System. The chocolate chip cookie dough is
shown as a secondary actor. More formally, the refrigerator might be the secondary actor, and it
stores the chocolate chip cookie dough until it is requested
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Measurement method: During design and construction, the proposed device
will be mounted on a test bench and will be activated following test instructions. The
sound intensity level in decibels (dB) will be measured at a distance of 30 cm. At the
final test and during operation, an actual oven will activate the audible signal, and the
sound intensity level in decibels will be measured at a distance of 30 cm.

Units: Decibels (dB)
Trace to functional requirement, ReqF5, in the Bake My Cookies use case ([8],

pp. 19–21)
Owner: Engineering
Date of last change: 12/25/2020
Name of criterion: Lost study time
Description: While the Student is making cookies, driving to the bakery to buy

cookies, or bargaining with his mother to get her to make cookies for him, he will not
be studying. This lost study time is the criterion. Comment: For optimal learning,
students do need breaks.

Weight of importance: 7
Basic measure: Amount of study time lost in getting the cookies
Measurement method: During design, this lost study time will be calculated by

analysis. At the final test and during operation, this lost time will be measured.
Units: Minutes
Scoring function: This criterion requires a scoring function that changes “lost

study time” into a “more is better” situation.
Trace to the concept of operations
Owner: Student
Date of last change: 7/8/2020
Name of criterion: Nutrition
Description: Four cookies (2 oz) should contain less than 520 calories, 24 g of

fat, and 72 g of carbohydrates.
Weight of importance: 5
Basic measure: Calories, grams of fat, and grams of carbohydrates
Measurement method: Use data from the Internet, for example, http://www.

pillsbury.com/products/cookies/refrigerated-cookies/chocolate-chip.
Units: Calories, grams of fat, and grams of carbohydrates
Trace to the concept of operations
Owner: Student
Date of last change: 7/8/2020
Next, we consider these three alternatives:

• Ask your mother to bake cookies for you.
• Use a tube of Pillsbury refrigerated chocolate chip cookie dough.
• Go to the bakery to buy chocolate chip cookies.

Evaluation data (weights and scores) come from expert opinion and measure-
ments during trips to a grocery store and a bakery.
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The method for combining the data will be the sum of weighted scores combining
function or simply the sum combining function. It is the simplest method for
combining data.

The sum combining function is

f ¼ n

i¼1
wi � xi: ð7Þ

In this equation, n is the number of evaluation criteria to be combined, xi is the
output of a scoring function (with values from 0 to 1) for the ith evaluation criterion,
and wi is the normalized weight of importance for the ith evaluation criterion.
Weights of importance are expected to be normalized and vary from zero to one.
The resulting scores are multiplied by their corresponding weights. The output of the
function is the sum of the weight-times-score for each evaluation criterion. This sum
combining function is commonly used, for example, when computing the grade
point average of a student.

In a simple specific case, where there are only two evaluation criteria,

named y and z with n ¼ 2 then

f ¼ wyyþ wzz:
ð8Þ

This function is used when the evaluation criteria show perfect compensation,
that is, when both criteria contribute to the result and when more of y and less of z is
just as good as less of y and more of z. Stated formally, the sum combining function
is appropriate when the decision-makers’ preferences satisfy additive independence,
which is the case for most industry examples that we have seen.

The question to be answered by the tradeoff study is, “What is the best way for
our student to get chocolate chip cookies?”

These evaluation criteria and alternatives were put into a spreadsheet as shown in
Table 3. We think the organization is clear enough that we do not have to explain
each cell. The exceptions are rolling up the subcriteria into the criteria. So we will
explain one of those.

The following numbers are in the blue-shaded cells of Table 3. Calories for
Mom’s cookies were given a relatively high score of 0.7 (more is better) because
Mom won’t make unhealthy cookies. The subcriteria calories was given a weight of
9, which became a normalized weight of 0.47. This weight was then multiplied by
the score of 0.7 to produce a product of 0.33. Fat and carbohydrates were treated
similarly to give numbers of 0.11 and 0.19. Those three numbers were added
together to give the criteria nutrition a score of 0.63. This score was multiplied by
its normalized weight of 0.24 to give a final score of 0.15.

This tradeoff study shows that Mom’s cookies are the preferred alternative. The
do-nothing alternative is ranked high, which is worrisome. This probably happened
because we do not have any performance criteria, such as Anticipated Tastiness.
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This study was criticized because (1) of its lack of performance and cost evalu-
ation criteria, (2) the customer’s desire for milk was ignored, (3) nothing was stated
about being healthy! That would have posed an interesting contradiction in the
analysis!

This tradeoff study was reviewed by the authors of this chapter and was stored in
the process assets library (PAL). Some chapters in this handbook call this the model
repository.

Risk Analysis Process

Figure 5 presents the risk analysis process. Activities with the highest uncertainty are
marked with a ▼. Once again, preparing for risk requires the identification of risk
events. Risks are explored by the risk analyst working with domain experts using
storytelling, use cases, mental exploration, and envisioning methods to identify risk
events. (This, of course, is not a complete list of the types of analyses used in risk
assessment. There are many whole books filled with risk assessment techniques and
disaster analyses. Most of the MBSE papers in this handbook devote pages to such
analyses. An interesting problem with typical statistical analyses used in risk ana-
lyses is that the results may point to incorrect correlations that throw off risk
determination. One use for a good model is that it could be useful in poking at
causality which makes risk predictions more reliable. Furthermore, likelihood is
almost always wrong – it may be high or low but generally wrong (Mike Sievers,
personal communication).) Once a comprehensive set of risk events is identified, the
risk analysis process proceeds following the steps laid out in Fig. 5.

Risk Analysis Example from a Chocolate Chip Cookie Making System

Risk management starts with the incipient system design. In this section, we
(1) construct a risk register identifying and evaluating the major risks, (2) identify
early tests or other measures that could be used to mitigate at least some of the major
risks, (3) describe a few potential unintended consequences of this system, and
(4) describe a few BiST for this system.

Table 4 shows some of the risks to the system and its primary actor. Likelihood
expresses our feelings about how likely this failure event is, on a scale of 0 to
1. Severity expresses our feelings about how severe this failure event is, on a scale of
0 to 1. Risk is the product of likelihood and severity.

The biggest risk is incorrect ingredient quantities, which is why people prefer to
use a tube of Pillsbury’s Chocolate Chip Cookie dough instead of starting from
scratch. Next, we identify the most likely outcome and the most severe outcome.
Gaining weight is the most likely event that needs to be mitigated, if convenient. A
fire in the oven is the most severe event; therefore, we need to keep an eye on
the oven.
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Now, we should identify early tests or other measures that could be used to
mitigate the major risks.

Possible early mitigation measures include:

1. Check “use by” dates on ingredients.
2. Use an independent (not a part of the oven) thermometer.
3. Use an independent (not a part of the oven) timer.
4. Cutting back on the quantity or quality of the butter or sugar is not a reasonable

mitigation strategy.
5. Build in a governor that will restrict the maximum oven temperature to 550 �F.

It is important to also identify potential unintended consequences of the system.
Two possible negative unintended consequences are (1) the aroma could attract
undesirable neighbors to crash into your home and (2) heat generated by the oven
could heat the house (particularly undesirable in the summer). This could ultimately
contribute to global warming!

All systems should have Built-in Self-Test (BiST). Amazingly, a simple oven
system has at least five BiSTs: (1) The clock indicates that the oven is connected to
electricity, (2) the oven-on light indicates that the function select knob is operable,
(3) the preheated indicator shows that the oven heats up, (4) an internal temperature
probe indicates that the oven is functioning, and (5) the Student being vigilant by
looking for smoke and smelling for cookies burning protects against catastrophic
failures.

Table 4 A risk register

Risk
no Potential failure event Consequences

Likelihood
per system
usage Severity Risk

1 Incorrect ingredient quantities
when baking from scratch

Off-taste; bad
consistency

0.09 0.5 0.045

2 Product is out of date Possible
illness

0.002 0.9 0.018

3 Oven temperature too high Burned
cookies

0.009 0.09 0.0008

4 Baking time too long Burned
cookies

0.009 0.09 0.0008

5 Student could gain weight Student
would be
unhappy

0.1 0.1 0.01

6 Failure to turn oven off The oven
could start a
fire

0.01 0.95 0.0095

7 Student does not wear an oven
mitt and burns his or her hand

Student is
unhappy

0.04 0.8 0.032

Risk is defined as likelihood times severity
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Figure 5 presented the risk analysis process. Risk events are identified by the risk
analyst working with domain experts using storytelling and use cases. Once a
comprehensive set of risk events is identified, they are prioritized and stored in the
risk register.

Comparing the Requirements, Tradeoff, and Risk Processes

As noted earlier, requirements discovery, tradeoff studies, and risk analyses employ
the same underlying structure in their processes. They appear different because they
employ different vocabularies, inputs, and outputs. In this section, we explore the
commonalities among these three processes. These are the actual phrases that were
used in Figs. 2, 4, and 5. The processes that are shown in these figures were
developed years before the Overarching Process was conceived.

Comparing the Activities of the Requirements, Tradeoff, and Risk
Processes

Table 5 compares the requirements discovery, tradeoff studies, and risk analysis
processes in terms of the specific vocabularies used in each activity. It is important to
note that we did not expect a one-to-one mapping between requirements discovery,
tradeoff studies, and risk analysis because they are distinctly different processes
employed in engineering design and systems engineering. However, it is striking
how closely they correspond to each other from the perspective of process structure.
The comparison of these three well-established processes has an added benefit — it
facilitates process improvement. For example, comparing the rows in Table 5 might
suggest that the requirements process should include an activity for expert review
and that all processes should start with an understanding of customer’s needs. In
other words, activities in each row can be evaluated in terms of their relevance
(or not) for the other processes. This activity is intended to introduce consistency and
uniformity into the three processes, making it easier to address uncertainty sources
and uncertainty handling mechanisms in a consistent, uniform way.

Many chapters in this handbook do not use the verify relationship. In MBSE,
verification methods “satisfy” a requirement or possibly “trace” to a requirement but
importantly are maintained separately. Consider that we modify a verification
method in a real project. Doing that will mean a number of steps including stake-
holder reviews and actions by a configuration control board (CCB). Since verifica-
tion methods typically come later in the development life cycle and not all at once,
we are constantly control boarding the requirements document. Rather, we want the
verification methods to be kept somewhere else and managed separately so that we
can make changes as needed without changing requirements. Another point is that
the verification method does not add value for designers, especially since there are
usually separate teams dealing with requirements and verification and validation
(personal communication Mike Sievers, 2021).

Table 6 shows the arguably most important row of Table 5.
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Comparing the Products of the Requirements, Tradeoff, and Risk
Processes

Next, we compare the key products of the requirements discovery, tradeoff studies,
and risk analysis processes. These products appear to be quite different because they
employ different vocabularies and structures.

Fig. 4 Tradeoff study
process. (© 2017, Bahill and
Madni. Used with permission)
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In the following paragraphs, we discuss the foregoing within the context of a
Chocolate Chip Cookie Acquisition System [8]. The Chocolate Chip Cookie Acqui-
sition System is a system that allows a student on an afternoon study break to acquire
chocolate chip cookies using one of several approaches. This illustrative example is
used to convey the key terms associated with our three processes.

A Requirement from the Chocolate Chip Cookie Acquisition System

Table 7 presents a requirement from the Chocolate Chip Cookie Acquisition
System.

Fig. 5 Risk analysis process.
(© 2017, Bahill and Madni.
Used with permission)
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Table 5 Comparison of the vocabularies used in the activities of these three processes

Terms used in the
requirements discovery
process, Fig. 2

Terms used in the tradeoff
studies process, Fig. 4

Terms used in the risk
analysis process, Fig. 5

Identify stakeholders,
understand customer needs,
state the problem, and develop
use case models

State the problem Identify risk events

Discover requirements Describe alternative solutions Analyze risk events

Define attributes Create evaluation criteria Derive values for likelihood
and severity

Prioritize requirements Develop weights of
importance

Adjust the range of the
criteria

Choose utility functions Select scoring functions Choose utility functions

Imply the Boolean AND
function

Choose the combining
function, usually the weighted
sum

State the combining
function, usually the product

Collect evaluation data

Produce tradeoff matrix

Identify cost drivers Perform sensitivity analysis
and identify important
parameters

Perform sensitivity analysis

Discuss the do-nothing
alternative

Identify acceptable risks

Evaluate the alternatives Compute numerical values
for risks

Clarify, decompose, allocate,
and derive requirements

Revise requirements with the
customer

Revise with customer Revise risk package with
customer

Manage risks

Prioritize the requirements set
(find the most important
requirements)

Identify preferred alternatives Prioritize risks (find the
greatest risks)

Test, verify, and validate

Review with the customer and
perform formal inspections

Conduct expert review Perform expert review

Track the marketplace for new
alternatives

Manage risks

Manage requirements (put
results in a requirements
database)

Present results to decision-
maker (DM) and put in PAL

Put results in the risk register

Choose the combining
function

Track outliers (both high
frequency but low severity
and low frequency but high
severity)

Monitor and improve the
requirements process

Monitor and improve the
tradeoff study process

Monitor and improve the
risk process

(continued)
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An Evaluation Criterion from the Chocolate Chip Cookie Acquisition
System

Name of criterion: Audible signal indicating cookies are ready
Description: An audible signal shall indicate when the cookies are ready. This

signal should have a nominal intensity level of 80 � 2 decibels.
Weight of importance 9
Basic measure: Intensity level of an audible signal
Measurement method: During design and construction, the proposed device is

mounted on a test bench and is activated following test instructions. The sound
intensity level in decibels (dB) is measured at a distance of 30 cm. At the final test
and during operation, an actual oven activates the audible signal, and the sound
intensity level in decibels is measured at a distance of 30 cm.

Units: Decibels (dB)
Scoring function input: The measured sound intensity will probably lie between

70 and 90 dB.
Scoring function: SSF5 (76, 78, 80, 82, 84, 0.5, �2, RLS (70–90)) ([54],

pp. 385–397; [8], p. 470). Here, we used the mandatory requirement thresholds of
78 and 82 dB as the baseline values because we expect the values to improve through
the design process.

Scoring function output: 0 to 1 (Fig. 6)
Trace to functional requirement, ReqF5, in the Bake My Cookies use case ([8],

pp. 19–21).
Owner: Engineering
Date of last change: 12/25/2020

Table 5 (continued)

Terms used in the
requirements discovery
process, Fig. 2

Terms used in the tradeoff
studies process, Fig. 4

Terms used in the risk
analysis process, Fig. 5

Inputs

Requirements come from use
cases and stakeholders

Alternatives, evaluation
criteria, weights, and scores
that come from use cases and
the ConOps

Risks come from use cases
and are identified by the risk
analyst

Outputs

Requirements specification Preferred alternatives Risk register

Table 6 This row from Table 5 might be the most important row

The term used in requirements discovery
The term used in
tradeoff studies

The term used in risk
analysis

Prioritize the requirements set (find the most
important requirements)

Identify preferred
alternatives

Prioritize risks (find the
greatest risks)
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A Risk from the Chocolate Chip Cookie Acquisition System

Failure event: Audible signal for “cookies are ready” is too loud.
Potential effects: Someone’s hearing could be damaged.
Relative likelihood: Noise-induced hearing loss affects 10% of Americans. So

we assess this likelihood at 0.1.
Severity of consequences: 1.0
Estimated risk: 0.1
Priority: This should be described with a risk management chart.
Mitigation method: During design, the proposed device is mounted on a test

bench and activated following test instructions. The sound intensity level in decibels
(dB) is measured at a distance of 30 cm. The device is put under configuration
control to ensure that it is not replaced or altered. This design is conservative in that
the device should produce only 80 dB. Exposure to 120 dB or less for only a few
seconds is unlikely to cause permanent hearing loss.

Status: Active
Trace to: ConOps
Assigned to: Pat the engineer
Date: Tracking started on April 1, 2020.

Table 7 A requirement from the Chocolate Chip Cookie Acquisition System

Attribute Explanation

Identification tag (ID) ReqNF4

Name Audible signal for cookies are ready

Text An audible signal shall indicate when the cookies are ready.
This signal shall have an intensity level of 80 � 2 decibels
at a distance of 30 cm and a frequency of 440 Hz

Priority 9

Verification method During design and construction, this requirement will be
verified by test. The proposed device will be mounted on a
test bench and will be activated per test instructions. The
sound power level in decibels (dB) will be measured at a
distance of 30 cm. At the final test and during operation, this
requirement will be verified by demonstration. An actual
oven will activate the audible signal, and the sound power
level in decibels (dB) will be measured at a distance of
30 cm

Verification difficulty It will be easy to verify this requirement

Refined by technical performance
measure (TPM) [46]?

No

DeriveReqt: This requirement refines ReqF5: Cookie shall emit an
audible signal when the timer has elapsed

Owner Pat the engineer

Date of last change January 26, 2021
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Comparing a Requirement, an Evaluation Criterion, and a Risk

Table 8 compares the three descriptions of the auditory output given above. Once
again, it is not surprising that these products are similar because they come from
similar processes. However, we might compare these three products and determine
whether changes to the templates for each of them are warranted.

For example, the tradeoff study process requires scoring functions ([54],
pp. 385–397; [8], pp. 246–258). Should the requirements process and the risk
process also require scoring functions? Some requirements have scoring functions,
but we do not want to require scoring functions for all requirements. We have not
found risk analyses that used scoring functions.

The risk analysis process has an attribute named status. This attribute should
change frequently as the design develops. On the other hand, requirements are not
likely to come and go like risks. But it would be easy to add a column in the
requirements database to cover this possibility. In a tradeoff study, it is not likely that
evaluation criteria would come and go. But the whole tradeoff study could have
status, and possible values would be under construction, gathering data, alternatives
being evaluated, and the decision has been made.

Requirements have an attribute listing the difficulty of satisfying and verifying the
requirement. Should the tradeoff study process and the risk process also have such an
attribute? First, we do not think that the final tradeoff study should. However, it might
be useful to state confidence in the results. This difficulty typically stems from
uncertainty in the measurements and evaluation criteria and qualitatively from how
different the options are. For example, is therapy better than drugs to treat depression?
These are very different alternatives, and thus, it is hard to do a fair comparison. Your
confidence in the result should be low. Second, one school of risk analysis has three
columns in their risk tables: relative likelihood, severity of consequences, and difficulty
of detection. We did not use difficulty of detecting the failure event because we found
that it added complexity without comparable added value.

Both the requirements process and the tradeoff study process have an attribute to
trace where the item came from, for example, from a particular use case or review. It

Fig. 6 The audible signal
scoring function of Chocolate
Chip Cookie Acquisition
System
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might be hard to implement, but this would also be nice for the risk process. For
example, if the risk factor was derived from an FMEA or industrial experience, it
could be marked as such.

This section compared the requirements discovery, tradeoff studies, and risk
analyses processes. It did this by comparing the activities and products of these
processes and by comparing example requirements, evaluation criteria, and risks.

The SIMILAR Process

The SIMILAR process of Fig. 7 is based on Bahill and Gissing [7]. It comprises seven
key activities: State the problem, Investigate alternatives, Model the system, Inte-
grate, Launch the system, Assess performance, and Reevaluate. These seven activ-
ities are conveniently summarized using the acronym SIMILAR. We use this process to

Table 8 Comparison of a requirement, an evaluation criterion, and a risk for the Chocolate Chip
Cookie Acquisition System

Requirement
Evaluation criterion for a
tradeoff study Risk

Name: Audible signal
indicating cookies are ready

Name of criterion: Audible
signal indicating cookies are
ready

Failure event: Audible signal
indicating “cookies are
ready” is too loud

Text: This audible signal shall
have an intensity level of
80 � 2 dB

Description: This audible
signal should have an
intensity level of 80 � 2 dB

Potential effects: Someone’s
hearing could be damaged

Priority: 9 Weight of importance: 9 Relative likelihood: 0.1
Severity of consequences:
1.0
Estimated risk: 0.1
Priority: High

Verification method: The
sound power level in decibels
(dB) will be measured at a
distance of 30 cm

Measurement method: Sound
intensity level in decibels
(dB) is measured at a distance
of 30 cm
Units: dB

Mitigation method: Sound
intensity level in decibels
(dB) is measured at a
distance of 30 cm

Difficulty: Easy to satisfy and
verify

Scoring function SSF
5 (76, 78, 80, 82, 84, 0.5, �2,
RLS (70–90)

Status: Active

Refined by TPM? No
DeriveReqt: This requirement
refines Functional
requirement ReqF5 in the
Bake My Cookies use case

Trace to functional
requirement ReqF5 in the
Bake My Cookies use case
([8], pp. 19–21)

Trace to ConOps

Owner: Engineer Owner: Pat the engineer Assigned to: Pat the engineer

Date of last change: 4/1/20 Date of last change: 12/25/20 Date of last change: 4/1/20
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provide the overall context for problem-solving during system design and every
other human activity. At the outset, we want to clarify that the activities in the SIMILAR

process are performed iteratively and in parallel with many unshown feedback loops.
Each activity in the SIMILAR process is described next.

State the Problem

“The beginning is the most important part of the work” Plato, The Republic, 4th century BC.
“Begin at the beginning,” the King said gravely, “and go on ‘til you come to the end; then
stop.” From Lewis Carroll, Alice’s Adventures in Wonderland.

The problem statement contains many tasks that are performed iteratively, many
of which can be performed in parallel. We examined Figs. 2, 4, and 5 and studied
Tables 5 and 8 and found the following listed tasks that fit into the problem statement
activity.

Fig. 7 The SIMILAR process. (Based on Bahill and Gissing [7])
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• Understanding customer needs is the first and foremost task.
• Identify stakeholders such as end users, operators, maintainers, suppliers,

acquirers, owners, customers, bill payers, regulatory agencies, affected individ-
uals or organizations, victims, sponsors, manufacturers, etc. Our stories that
explain how the system will work are a source for identifying stakeholders.
Stories have villains. Some villains that the system designer might encounter
are competitors, the IRS, the EPA, Mexican drug cartels, and their associated
gangs like MS-13.

• Where do the inputs come from? Requirements come mainly from the use cases
and the stakeholders. They are presented by the customer and the systems
engineer. Evaluation criteria and proposed alternatives for tradeoff studies come
from use cases, meetings, and reviews and are presented by the design engineer.
Risk events are identified in use cases, brainstorming, meetings, and reviews and
are described by the risk analyst (Fig. 8).

• Describe how the system works using stories and use case models. The use case
models provide requirements and test cases.

• State the problem in terms of what needs to be done, not how it must be done. The
problem statement may be in prose form or the form of a model.

• Develop the incipient architecture.
• Define the scope of the project. This shows the boundary between what is inside

the system and the external world.
• Initiate risk analysis. Yes, the risk analysis of the system should begin at the same

time as the requirements discovery and tradeoff study processes.

Fig. 8 Inputs and outputs
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An interesting aside: By law, with minor room for excursions, the role of a US
CEO has historically been defined as maximizing long-term (sic!) shareholder
return. Recently, there has been a movement to redefine this requirement as “benefit-
ting owners, employees, customers, communities, society, etc.” This is going to pose
a huge tradeoff problem (albeit perhaps an appropriate one) for CEOs and boards! It
will at least assure lifetime employment for lawyers (Norm Augustine, personal
communication).

Investigate Alternatives

We examined Figs. 2, 4, and 5 and studied Tables 5 and 8 and found the following
listed tasks that fit into the Investigate Alternatives activity.

• One should investigate alternative requirements, designs, and risk events using
evaluation criteria such as performance, cost, schedule, and risk.

• For quantitative analyses, identify attributes of requirements, evaluation criteria
for tradeoff studies, and the likelihood of occurrence and severity of conse-
quences for risk events. Assign them weights of importance to show priorities.

• Scoring (utility) functions are mandatory for tradeoff studies but are optional for
requirements and risks.

• Select methods for combining the data. State the combining function that will be
used. Usually, this will be the Boolean AND function for requirements, the sum of
weighted products for tradeoff studies, and a chart or a matrix for risks.

• Finally, one must collect evaluation data and use it to assign values to attributes
for requirements, weights and scores for tradeoff studies, and likelihoods and
severities for risk analyses.

Model the System

We examined Figs. 2, 4, and 5 and studied Tables 5 and 8 and found the following
listed tasks that fit into the Model the System activity.

• Models are typically created for most requirements, alternative designs, and risk
events. These models are consistently elaborated ([54], pp. 178–180) (that is,
expanded) throughout the system life cycle. A variety of models can be used.

• Requirements can be modeled with use case models, textual shall statements,
tables, spreadsheets, and specialized databases. Friedenthal et al. [25] and Madni
and Sievers [41] model requirements with Use Case Diagrams (uc), Requirements
Diagrams (req), Sequence Diagrams (sd), Activity Diagrams (act), Block Defini-
tion Diagrams (bdd), and Package Diagrams (pkg). Subsequently, the require-
ments must be clarified, decomposed, allocated, and derived.

• Tradeoff studies are usually modeled with tradeoff matrices implemented with
spreadsheets. The alternative designs within them are modeled with UML
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diagrams, SysML diagrams, analytic equations, computer simulations, and men-
tal models.

• Risks are modeled with tables containing values for the likelihood of occurrence
and severity of consequences and figures displaying these data.

• Everything must be prioritized. The requirements set should be prioritized to find
the most important requirements. For tradeoff studies, the preferred alternatives
are identified with a tradeoff matrix. The ranges for likelihood and severity are
adjusted for risk events to find the greatest risks.

• The results of a sensitivity analysis can be used to validate a model, flag
unrealistic model behavior, point out important assumptions, help formulate
model structure, simplify a model, suggest new experiments, guide future data
collection efforts, suggest accuracy for calculating parameters, adjust numerical
values of parameters, choose an operating point, allocate resources, detect critical
evaluation criteria, suggest tolerance for manufacturing parts, and most impor-
tantly identify cost drivers.

Integrate

We examined Figs. 2, 4, and 5 and studied Tables 5 and 8 and found the following
list of tasks that fit into the Integrate activity.

• Integration means bringing elements together so that they work as a whole to
accomplish their intended purpose and deliver value. (A new systems engineering
buzzword is emergent behavior. It suggests that, in terms of behavior, the result
might be greater than the sum of its parts.) Specifically, systems, enterprises, and
people need to be integrated to achieve desired outcomes. To this end, interfaces
need to be designed between subsystems. Subsystems are typically defined along
natural boundaries in a manner that minimizes the amount of information
exchanged between the subsystems. Feedback loops between individual sub-
systems are easier to manage than feedback loops involving densely
interconnected subsystems.

• Evaluation criteria should trace to requirements. Risks should trace to require-
ments or particular meetings or reviews. Requirements should refine higher-level
requirements and should link to risks. Requirements and risks might be refined by
technical performance measures (TPMs) [46]. TPMs are evaluated continually
during the design process as a way of detecting and mitigating risk.

Launch the System

We examined Figs. 2, 4, and 5 and studied Tables 5 and 8 and found the following
listed tasks that fit into the Launch the System activity.
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• Launching the System means either deploying and running the actual system in
the operational environment or exercising the model in a simulated environment
to produce necessary outputs for evaluation. In a manufacturing environment, this
might mean buying commercial off-the-shelf hardware and software, writing
code, and/or bending metal. The purpose of system launch is to provide an
environment that allows the system or its model to do what it is being designed
to do.

• The outputs of these processes are a requirements specification, preferred alter-
natives, and the risk register. One should continually monitor the requirements
(in the requirements database), alternative designs (in the process assets library,
PAL), and risks (in the risk register) looking for possible changes and bring these
to the attention of the decision-makers. One should continually monitor the
marketplace looking for new requirements, products, designs, and risks and
bring these to the attention of the decision-makers.

Assess Performance

We examined Figs. 2, 4, and 5 and studied Tables 5 and 8 and found the following
listed tasks that fit into the Assess performance activity.

• Test, validation, and verification are important tasks for all processes.
• There should be regularly scheduled and performance-initiated expert reviews.

The results of these reviews are presented to the decision-maker (DM) and are put
in the process assets library (PAL).

• Evaluation criteria, measures, metrics, and TPMs are all used to quantify system
performance. Evaluation criteria are used in requirements discovery, tradeoff
studies, and risk analyses. Measures and metrics are used to help manage a
company’s processes. TPMs are used to mitigate risk during design and
manufacturing.

Reevaluate

The distinction between an engineer and a mathematician is arguably the use of
feedback in design. For two and a half centuries, engineers have used feedback to
control systems and improve performance. It is one of the most fundamental
engineering concepts. Reevaluation is a continual feedback process with multiple
parallel loops. Reevaluation means observing outputs and using this information to
modify the inputs, the system, the product, and/or the process.

The SIMILAR process (Fig. 7) shows the distributed nature of the reevaluate
function in the feedback loops. However, it is important to realize that not all
loops will always come into play all of the time. The loops that are used depend
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on the problem to be solved and the problem context. Reevaluation includes formal
inspections, expert reviews, and reviews with the customer.

A very important and often neglected task in any process is monitoring and
improving the process itself. This self-improvement process is shown explicitly in
Figs. 2, 4, and 5 with the following tasks: Monitor and improve the requirements
process, monitor and improve the tradeoff study process, and monitor and improve
the risk process. These processes use a different timescale than the mainline pro-
cesses. For example, the monitor and improve the X process tasks run with time-
scales of months to years, whereas the mainline processes, like revise with the
customer and prioritize X, run with timescales of days to weeks.

This section presented the SIMILAR process that was developed by Bahill and
Gissing [7]. It has served as a general model for doing everything.

The Overarching Process

We used Figs. 2, 4, 5, and 7 and Tables 5 and 8 and created the Overarching Process
of Fig. 9 that can be used for system design, requirements discovery, decision
analysis and resolution, tradeoff studies, and risk analysis. The processes in these
figures were created many years before the Overarching Process was conceived. This
Overarching Process is a superset of the three processes: requirements, tradeoffs, and
risks. Viewed another way, each of the three processes is a tailoring of the Over-
arching Process [32]. A new feature in the Overarching Process is identifying and
handling uncertainty. In Fig. 9, we have marked with a ▼ those activities that have
the most uncertainty.

It is important to note that this is not a waterfall process. One activity does not
have to wait for the previous activity to end before it can start. Also, it is an iterative
process with a multitude of unshown feedback loops.

In the Investigate Alternatives block, it looks like discover requirements and
describe alternative solutions are performed in parallel. Well, some of them are.
However, this whole figure is very iterative. The systems engineer gets a few
requirements and then gets a few alternatives and criteria. Then he gets a few
more requirements and a few more alternatives and criteria, etc.

Some tasks listed in Figs. 2, 3, and 4 might seem to be missing in the Overarching
Process of Fig. 9. However, these tasks have been subsumed in the activities shown.
For example, the task of “examining the shape of the data” is included in the “choose
combining function activity.” The task of studying the do-nothing alternative is in
the Create Tradeoff Matrix and Evaluate Alternatives activity. The identify important
parameters task is in the perform a sensitivity analysis activity. The Develop
Incipient Architecture task is included in the Describe Alternative Activities activity.
Finally, the task to track outliers (both high frequency but low severity and low
frequency but high severity) is in the Monitor and Manage risks activity.

Sometimes key stakeholders impose system-level constraints, requirements,
goals, etc. The Overarching Process can include collecting and evaluating these
before getting started with stating the problem. That is, we can have work before
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Fig. 9 the goal of which is to establish feasibility. When no solution is evident, then
there must be iterations that add or eliminate the top-level desires so that the option
space is increased. When there is no set of options agreeable to the primary
stakeholders, then we do not continue to the next phase (personal communication
Mike Sievers, 2021).

Fig. 9 The Overarching Process. DAR is decision analysis and resolution. DM is the decision-
maker, PAL is the process assets library, and TPM is a technical performance measure
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Effects of Human Decision-Making on the Overarching Process

The study of human decision-making reveals that the presence of cognitive biases
can never be ruled out [43, 52]. This is also the contention of the economic school of
heuristics and biases, which produced Prospect Theory [29], a theory that describes
how people respond to choices under risk and uncertainty. Innate human biases, and
external circumstances, such as the framing or the context of a question, can
compromise decisions. It is important to note that subjects maintain a strong sense
that they are acting rationally even when they are exhibiting these biases [28].

Other chapters in this handbook do not show MBSE processes, diagrams, or
viewpoints that help ameliorate human biases in decision-making. So this section is
unique in this handbook.

In Fig. 9, we have marked with a▼ the actions that are the biggest contributors to
uncertainty. They all deal with human decision-making rather than uncertainty in the
weather, climate, solar variability, geology, political actions, or experimental data. In
the upcoming paragraphs, we will explain how the activities of Fig. 9 are affected by
uncertainty. Most reasons involve confirmation bias, severity amplifiers, and fram-
ing. Therefore, we will first discuss these three decision modifiers.

Confirmation Bias

Arguably, the most important cause of fallibility in human decision-making is
confirmation bias. Humans hear what they want to hear and reject what they do
not want to hear. Humans filter out information that contradicts their preconceived
notions and remember things that reinforce their beliefs. Confirmation bias causes
decision-makers to actively seek out and assign more weight to evidence that
confirms their hypotheses and ignore or under weigh the evidence that could
disconfirm their hypotheses. For example, mothers emphasize the good deeds of
their children and de-emphasize their bad deeds. This is why we often hear the
mother of a terrorist crying out, “My boy is innocent. He could never have killed all
those people.” People who think that they have perfect memory and perfect recall
tend to ignore instances when they forgot something and tend to secure in long-term
memory instances when they correctly recalled events and facts. Senior citizens
often believe that they are good drivers despite tests that show that they have poor
vision, fading cognitive processes, and slow reflexes. Thirty years ago, most ciga-
rette smokers were in denial about the hazards of smoking. Some people say, “There
must be a storm coming because my arthritic joints are hurting.”

Social media is making this worse. Not only do you filter what you see and hear,
but also Facebook filters what you are exposed to. They present to you things from
the friends you care about. These friends are probably ideologically like you, which
accentuates the filtering process.

Nickerson [44] reported many common instances of confirmation bias. In one, the
subjects were given a triplet such as (2, 4, 6) and were asked to guess the rule that
was used to generate the triplet and then try to prove or disprove that rule by giving
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examples. After each guess, they were told if they were right or wrong. For example,
if the subject’s mental model for the rule was “successive even numbers,” they might
guess (10, 12, 14) or (20, 22, 24), triplets that would confirm their mental model, but
they would seldom guess (1, 3, 5) or (2, 4, 8), triplets that might disprove their
mental model. He also presented another example of confirmation bias – witches.

The execution of 40,000 suspected witches in seventeenth century England is a
particularly horrific case of confirmation bias functioning in an extreme way at the
societal level. From the perspective of the people of the time, belief in witchcraft was
perfectly natural, and sorcery was widely viewed as the reason for all ills and
troubles that could not otherwise be explained. In one test of a woman being a
witch, the mob tied the suspect to a chair and threw her into a river. If she floated, it
was proof that she was a witch, and she was executed. If she sank, well, too bad.

Until the nineteenth century, physicians often did more harm than good because
of confirmation bias. Virtually anything that could be dreamed up for the treatment
of disease was tried and, once tried, lasted decades or even centuries before being
given up. It was, in retrospect, the most frivolous and irresponsible kind of human
experimentation. They used bloodletting, purging, infusions of plant extracts and
solutions of metals, and every conceivable diet including total fasting. Most of these
were based on no scientific evidence. How could such ineffective measures continue
for decades or centuries without their ineffectiveness being discovered? Probably,
because sometimes patients got better when they were treated, sometimes they did
not, and sometimes they got better when they were not treated at all. Peoples’ beliefs
about the efficacy of specific treatments seem to have been influenced more strongly
by those instances in which treatment was followed by recovery than by those
instances in which there was no recovery. A tendency to focus on positive cases
could explain why the discovery that diseases have a natural history and people often
recover from them with or without treatment was not made until much later.

Most people react to news articles with confirmation bias. If a left-wing liberal
reads a news story about a scientific study that showed how effective it was to give
money to poor people, he might think, “That’s an insightful article. I’ll remember it.”
However, if one of those same people reads about a new study showing that giving
people money when they are unemployed just makes their lives worse, then he might
start looking for flaws in the study. If a person has a long-felt belief that the income
gap between the rich and the poor in America is too large and is growing too fast,
then a new study that challenges this belief might be met with hostility and
resistance. However, if that person readily accepts a study that confirms his belief,
then that is confirmation bias.

Before a person participates in an activity that involves evaluating requirements,
alternatives, evaluation criteria, weights, scores, or risks, they should be reminded
about confirmation bias. During the evaluation process, people should be on the
lookout for instances of confirmation bias exhibited by other people and politely
suggest that it might be influencing their evaluations.

Most people do not think like scientists: They think like lawyers. They form an
opinion and then emphasize only evidence that backs up that opinion.
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In filling out the tradeoff study matrix for the Cookie Acquisition System of
Table 3, a physical fitness pundit might want to add more (possibly dependent)
subcriteria such as protein, fiber, antioxidants, and unsaturated fats to the nutrition
evaluation criterion. The system engineer must explain to the team why some people
might want more subcriteria and the effects of adding dependent subcriteria.

Severity Amplifiers

Interpersonal variability in evaluating the seriousness of a situation depends on the
circumstances surrounding the event. An evaluation may depend on factors such as
how the criterion affects that person, whether that person voluntarily exposed
himself to the risk, how well that person understands the alternative technologies,
and the severity of the results. The following are severity amplifiers: lack of control,
lack of choice, lack of trust, lack of warning, lack of understanding, being
man-made, newness, dreadfulness, fear, personalization, ego, recallability, availabil-
ity, representativeness, vividness, uncertainty, and immediacy.

The following paragraphs explain some severity amplifiers. Lack of control: A
man may be less afraid of driving his car up a steep mountain road at 55 mph than
having an autonomous vehicle drive him to school at 35 mph. Lack of choice: We are
more afraid of risks that are imposed on us than those we take by choice. Lack of
trust: We are less afraid while listening to the head of the Centers for Disease Control
explaining anthrax than while listening to a politician explain it. Lack of warning:
People dread earthquakes more than hurricanes because hurricanes give days of
warning. People in California follow strict earthquake regulations in new construc-
tion. People in New Orleans seem to ignore the possibility of hurricanes. Lack of
understanding: We are more afraid of ionizing radiation from a nuclear reactor than
of infrared radiation from the sun. In the 1980s, engineers invented nuclear magnetic
resonance imaging (NMRI). When the medical community adopted it, they renamed
it magnetic resonance imaging (MRI). They dropped the adjective nuclear to make it
sound friendlier. Man-made: We are more afraid of nuclear power accidents than
solar radiation.

Newness: We are more afraid when a new disease (e.g., swine flu, SARS, MERS,
Ebola, Zika, and COVID-19) first shows up in our area than after it has been around
a few years. Dreadfulness: We are more afraid of dying in an airplane crash than of
dying from heart disease. Fear: If a friend tells you that a six-foot rattlesnake struck
at him, how long do you think the snake was? We suspect 3 ft. But of course, the
length of the snake is irrelevant to the harm it could cause. It is only related to the fear
it might induce. Personalization: A risk threatening us is worse than that same risk
threatening you. Ego: A risk threatening our reputations is more serious than one
threatening the environment.

Recallability: If something can be readily recalled, it must be more important
than alternatives that are not as readily recalled. We are more afraid of cancer if a
friend has recently died of cancer. We are more afraid of traffic accidents if we have
just observed one. Recallability is often called availability. Something readily
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available to the mind must be more important than alternatives that are not as readily
available. Representativeness: The degree to which an event is similar in essential
characteristics to its parent population increases its importance. In the dice game of
craps, rolling a seven would be typical of random rolls, and therefore, it would be
representative of the parent population and would therefore be important. Vividness
of description: An Edgar Allen Poe story read by Vincent Price will be scarier, than
one that either of us reads to you. Ambiguity or uncertainty: Most people would
rather hear their ophthalmologist say, “You have a detached retina. We will operate
tonight” than “You might have a detaching vitreous, or it could be a detaching retina,
or maybe its cancer. We will do some tests and let you know the results in a week.”
Immediacy: A famous astrophysicist was explaining a model for the life cycle of the
universe. He said, “In a billion years, our sun will run out of fuel, and the earth will
become a frozen rock.” Aman who was slightly dozing awoke suddenly, jumped up,
and excitedly exclaimed, “What did you just say?” The astrophysicist repeated, “In a
billion years, our sun will run out of fuel, and the earth will become a frozen rock.”
With a sigh of relief, the disturbed man said, “Oh, thank God. I thought you said in a
million years.”

In filling out the tradeoff study matrix for the Cookie Acquisition System of
Table 3, personalization was an important severity amplifier. It created variability in
the responses of the team making the evaluations. For example, a diabetic or
someone on a strict diet will certainly want to give a much higher weight to the
nutrition evaluation criterion and will give different weights to the nutrition sub-
criteria. Similarly, a dietitian or a nutritionist will also give different weights to the
nutrition subcriteria. When these large variabilities occur, the systems engineer
should explain possible causes to the team.

Framing

In the human decision-making community, utility is a subjective measure of happi-
ness, satisfaction, or reward a person gains (or loses) from receiving a good or
service. Utility is considered not in an absolute sense (from zero), but subjectively
from a reference point, established by the decision-maker’s (DM) perspective and
wealth before the decision, which is his frame of reference [28]. (Kahneman and
Tversky’s [29] utility functions show a human’s subjective utility as a function of its
objective value ([8], pp. 167–176). Economists use utility functions to show con-
sumer preference of one product over another and assign a numerical value to that
preference. Systems engineers use utility functions in tradeoff studies to relate
different evaluation criteria that use different units of measure. Despite the incom-
patibility of the measures, these diverse evaluation criteria (measures of effective-
ness) may nevertheless contribute to the same overall goal. Utility functions
therefore convert the different input evaluation criteria (physical characteristics)
into output quantities (called utility values) which are mutually and completely
compatible. Wymore’s scoring functions ([8], pp. 246–257) are eloquent mathemat-
ical elaborations of such utility functions.) Framing (the context of a question) could
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affect his decision. The section on severity amplifiers stated that interpersonal
variability in evaluating the seriousness of a situation depends on framing. That is,
the circumstances surrounding the event will affect how a DM responds to it. An
evaluation may depend on factors such as how the criterion affects that DM, whether
that DM voluntarily exposed himself to the risk, how well that DM understands the
alternative technologies, and the severity of the results. In the previous section, we
gave over a dozen severity amplifiers that would affect the framing of a problem.

In contrast to defining framing in passing, as we have done so far, we will now
explain framing directly, based on Beach and Connolly [12]. The DM has a vision, a
mission, values, morals, ethics, beliefs, evaluation criteria, and standards for how
things should be and how people ought to behave. Collectively, these are called
principles. They are what the DM, the group, or the organization stands for. They
limit the goals that are worthy of pursuing and acceptable ways of pursuing these
goals. These principles are difficult to articulate, but they powerfully influence the
DM’s behavior. They are the foundation of the DM’s decisions and goals; actions
that contradict them will be unacceptable. The utility of the outcomes of decisions
derives from the degree to which these decisions conform to and enhance the DM’s
preconceived principles.

Goals are what the DM wants to accomplish. The goals are dictated by the
principles, the problem, the problem statement, opportunities, desires, competitive
issues, or gaps encountered in the environment. Goals might seed more principles.
Goals should be SMART: specific, measurable, achievable, realistic, and time-
bound.

The DM has plans for implementing the goals. Each goal has an accompanying
plan. Each plan has two aspects: (1) Tactics are the concrete behavioral aspects that
deal with local environmental conditions, and (2) forecasts are the anticipation of the
future that provides a scenario for forecasting what might result if the tactics are
successful. The plans for the various goals must be coordinated so that they do not
interfere with each other and so that the DM can maintain an orderly pursuit of the
goals. The plans are also fed back to the principles; therefore, they might foment
more principles.

Framing means embedding observed events into a context that gives them
meaning. Events do not occur in isolation; the DM usually has an idea about what
led up to them. This knowledge supplies the context, the ongoing story that gives
coherence to experiences, without which things would appear random and unrelated.
A frame consists of the principles, goals, and plans that are deemed relevant to the
decision at hand and that fixes the set of principles that influence that decision.

The DM uses contextual information to probe his or her memory. If the probe
locates a contextual memory that has similar features to the current context, then the
current context is said to be recognized. Recognition defines which principles, goals,
and plans are relevant to the current context and provides information about the goals
and plans that were previously pursued in this context. If a similar goal is being
pursued this time, then the plan that was used before may be used again.

In summary, framing means describing all aspects of the problem, the problem
statement, and the DM’s mind that will affect decisions.

7 Overarching Process for Systems Engineering and Design 241



In filling out the tradeoff study matrix for the Cookie Acquisition System of
Table 3, framing was important. The student’s frame of mind includes his or her
present grade in the class and the scheduled occurrence or not of an exam the next
day. These will affect his or her weights and scores for the lost study time evaluation
criterion. The tradeoff study team must be aware of their teammates’ frames of mind.

Because of these human mental mistakes, and many more [14, 52], weights and
scores in tradeoff studies and other values that depend on human judgments are
subjective and have large variations. This is the reason for performing sensitivity
analyses: to identify simple judgments that have a large effect on the outcome.

The Overarching Process

Figure 9 shows a diagram for the Overarching Process. We have marked with a ▼
those activities that are the biggest contributors to uncertainty. We will now examine
these activities. Specifically, we identify human psychological factors that can
adversely influence human decision-making when dealing with uncertainty. Here,
we only give short phrases listing these factors. Three are described in detail above.
The others are explained in detail in Smith et al. [52] and Bohlman and Bahill [14].

• State the problem. This activity tends to be affected by severity amplifiers and
framing. Additionally, it is affected by incorrect phrasing, attribute substitution,
political correctness, and feeling invincible.

• Identify stakeholders. This activity is affected by framing.
• Understand customer needs. This activity is affected by confirmation bias, sever-

ity amplifiers, and framing.
• Define the scope, which is given in a high-level use case.
• Create use case models.
• Initiate risk analysis.
• Investigate alternative solutions. This activity is affected by confirmation bias,

severity amplifiers, and framing.
• Identify and analyze risk events. This activity is affected by confirmation bias and

severity amplifiers.
• Create evaluation criteria. This activity is affected by severity amplifiers. Addi-

tionally, it is affected by dependent evaluation criteria, relying on personal
experience, the Forer Effect, and attribute substitution.

• Develop weights of importance. This activity tends to be affected by severity
amplifiers. Additionally, it can be affected by whether the weights are the result of
choice or calculation.

• Select scoring functions. Mistakes here include mixing gains and losses, not using
scoring functions, and anchoring. The biggest mistake is stating output scores
with false precision.

• Choose combining functions. Lack of knowledge is the key problem in this
activity. There are several appropriate combining functions. One of the oldest
and most studied means for combining data under uncertainty is the certainty
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factor calculus employed by the Mycin expert system at Stanford University in
the 1980s [16]. It is now called the sum combining function.

• Assign values to (1) attributes, (2) weights and scores, and (3) likelihood and
severity. All three of these activities can be adversely affected by confirmation
bias, severity amplifiers, relying on personal experience, magnitude and reliabil-
ity, and judging probabilities poorly. In addition to these human decision-making
errors, we also have metrology errors. No measurement is exact: You can always
do better (that is, until we get to subatomic particles). Therefore, you decide how
much uncertainty you will allow in your measurements and budget appropriately.
– Our understanding of the laws of physics is not accurate. This precludes

precise models for nature. Likewise, our models for dark energy and dark
matter are inaccurate. But these physics problems do not manifest in most of
our design problems.

– If models are being used to compute values for risks, evaluation criteria, etc.,
then statistical measures like mean, standard deviation, and correlation coef-
ficients can be used to identify the range of expected values. For some
problems, for example, calculating the time for an asteroid to impact the
earth, the best we can do is give uncertainty ranges.

• Prioritize alternatives. This activity is affected by confirmation bias, severity
amplifiers, and framing. This activity can be degraded by serial consideration of
alternatives, isolated or juxtaposed alternatives, conflicting evaluation criteria,
adding alternatives, maintaining the status quo, and uneven level of detail. The
order in which the alternatives are listed has a big effect on the values that humans
give for the evaluation data. Therefore, a tradeoff study matrix should be filled out
row by row with the status quo being the alternative in the first column. This
makes the evaluation data for the status quo the anchors needed for estimating the
evaluation data for the other alternatives. This is a good choice because the
anchoring alternative is known and is consistent, and you have control over
it. Prioritization also depends on the algorithm being used to combine the data.

• Perform sensitivity analyses. Done right, there should be no problems. Otherwise,
lack of training and the Hawthorne effect can potentially confound the study.

• Monitor the marketplace and the environment. This activity is typically affected
by severity amplifiers. Additionally, tunnel vision can throw off the analysis.
Therefore, to avoid tunnel vision, the environment must be a part of the framing.

• Conduct formal inspections [24] and expert reviews. These inspections and
reviews are done entirely by humans. Therefore, every human limitation such
as cognitive biases, misconceptions, and preconceptions must be addressed.

• Review with stakeholders and revise. The most common mistake in design pro-
jects is failing to engage stakeholders and consult with experts in universities and
local industries [14]. It is imperative to engage all stakeholders, especially in
upfront engineering, to avoid the likelihood of extraneous design iterations and
rework.

• The out arrow at the lower right feeds back to all of the boxes in Fig. 9.
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Most of these areas of uncertainty involved human decision-making, and our
models for this are imprecise. Overall, the biggest cause of uncertainty is simply that
we cannot predict the future. A total reversal of the Earth’s magnetic field is
imminent, but we cannot predict when it will occur.

Uncertainty in Stating the Problem for the Overarching Process

Now that we have identified sources of uncertainty in the Overarching Process, we
will present examples of some techniques for handling uncertainty in the tradeoff
study process. The first and most important step in performing a tradeoff study is
stating the problem. Uncertainty can cause mistakes in the problem statement. This
section is based on Diogenes [1]. These are some of the tasks that were described in
the state the problem paragraph of the SIMILAR process section of this chapter:

• Using stories and use cases, explain what the system is supposed to do.
• Understand customer needs.
• Identify stakeholders.
• Discover the inputs and their sources.

At the beginning of any system design, we do not know exactly what the finished
product will do. Functions, requirements, and desirements may have been stated, but
incomplete understanding, mistakes, unknown technology, and improvement oppor-
tunities usually change the preconceived functioning of any system. To understand
and explain what the system is supposed to do and how it works, we use a multitude
of stories and use case models. An example of a use case model for handling
uncertainty is coming up shortly.

It turns out that all of these activities involve human decision-making. Therefore,
most of the mistakes caused by uncertainty will be found in the system models and
documentation.

Understanding customer needs, identifying stakeholders, and discovering the
system inputs are all affected by uncertainty, confirmation bias, severity amplifiers,
framing, and many mental mistakes [52].

The primary reason that these mental mistakes are so important is that people do
not realize that they exist. And the people that know of their existence believe that
these mistakes do not affect their decision-making. However, when the results of
these mistakes are pointed out, most people are willing to rewrite to eliminate their
undesirable effects. So the best way to get rid of such mistakes is to bring them out in
the open.

A System for Handling Uncertainty in Models and Documentation

We will now present our process for ameliorating such mental mistakes. To handle
uncertainty, all of the work products must be available for public view, must be
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subjected to formal reviews, and must be approved in expert reviews, and all of these
activities must be in a feedback control loop with frequent small iterations.

The first step in our process is to prepare a document that explains confirmation
bias, severity amplifiers, and framing, as well as the mental mistakes of poor problem
stating, incorrect phrasing, attribute substitution, political correctness, and feeling
invincible [52]. Portions of this chapter could serve this purpose. All people involved
in the process must read this document in advance. We have been using this
approach for over a decade [1], but it may seem new to the systems engineering
community. The following use case is our process for identifying and ameliorating
mistakes in a system design.

The system described by this use case can be used to handle uncertainty in the
models and documentation of the Overarching Process. It is an abstract that included
use case.

Name: Perform Formal Inspection to Find Mistakes Caused by Uncertainty
Iteration: 4.6
Derived from the concept exploration document, Diogenes [1]
Brief description: A formal inspection is a structured group review process used

to find defects and mistakes in requirements, programming code, test plans, models,
and designs [24]. The flow of this use case is called from the handling uncertainty
use case, which is not described in this chapter. When this sub-flow ends, the use
case instance continues from where this included use case was called.

Level: Medium
Priority: Medium
Scope: The Inspection Team, the work products to be inspected, and the process

assets library (PAL).
Added value: The company will be able to look for unresolved uncertainties,

mental mistakes, risks, opportunities for Built-in Self-Test (BiST), and unintended
consequences of the system being designed all at the same time. This should increase
efficiency. Furthermore, discovering positive unintended consequences could pro-
vide additional revenue.

Goal: Find defects caused by uncertainty and mental mistakes. Find unidentified
risks, opportunities for BiST, and unintended consequences of the system being
designed.

Primary actors: The Inspection Team is comprised of the moderator, systems
engineer, author/designer, reader, recorder, and additional inspectors

The moderator leads the inspection, schedules meetings, distributes inspection
materials, controls the meetings, reports inspection results, and follows up on rework
issues. Moderators should be trained in how to conduct inspections. Risk or quality
assurance managers often serve in this role.

The systems engineer coordinates the inspection with the overall design process.
The systems engineer delivers the lists of unresolved uncertainties, mistakes, risks,
opportunities for BiST, and unintended consequences to risk management, test
engineering, marketing, management, and legal. He or she also puts these lists in
the project PAL.
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The author/designer creates and/or maintains the work products being inspected.
The author/designer answers questions asked about the work products during the
inspection, looks for defects, and fixes defects. The author/designer, or other mem-
bers of the design team, cannot serve as moderator, reader, or recorder.

During the meeting, the reader leads the Inspection Team through the work
products being inspected, interprets sections of the artifact by paraphrase, and
highlights important parts.

The recorder classifies and records unresolved uncertainties, mental mistakes,
risks, opportunities for BiST, unintended consequences of the system being
designed, and issues raised during the inspection. The moderator might perform
this role in a small Inspection Team.

The inspector attempts to find errors in the work products. This role is filled by
several people. All participants act as inspectors, in addition to any other responsi-
bilities. The following may make good inspectors: the person who wrote the
specification for the work products being inspected; the people responsible for
implementing, testing, or maintaining the work product; a quality assurance repre-
sentative; a representative of the user community; and someone who is not involved
in the project but has infinite experience and impeccable wisdom.

Secondary actors: The process assets library (PAL)
Frequency: Once a month or before specified reviews
Precondition: An author/designer has requested an inspection of his work

product.
Trigger: This use case will be included from the handling uncertainty use case.
Main Success Scenario:

1. Planning activity: The moderator selects the Inspection Team, obtains the
problem statement and the work products to be inspected from the author/
designer, and distributes them along with other relevant documents to the
Inspection Team. As a rule of thumb, the work products to be inspected typically
comprises 200 lines of code or 2000 lines of text.

2. Overview meeting: The moderator explains the inspection process to the
Inspection Team. This will take from 10 min to 3 h depending on the back-
grounds of the team members. The author/designer may describe the key
features of the work products.

3. Preparation: Each member of the Inspection Team examines the work products
before the actual inspection meeting. Each member should be looking for
unresolved uncertainties, mental mistakes, risks, opportunities for BiST, and
unintended consequences of the system being designed. (Often, risks are han-
dled by a separate department isolated from design. But there is no reason why it
has to be this way. And it may be more efficient to include it with these other
activities.) Typically, this will take 2 h for each member. The amount of time
each person spends will be recorded. This time would be substantially increased
for an inspector running models and simulations to verify the system.

4. Inspection meeting: The moderator and reader lead the team through the work
products. The issues are brought up one by one, and each one is discussed in a
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round-robin fashion where each member comments on each issue. (Although
time constraints may try to prevent this, the moderator should ensure that each
participant says something. This promotes the sense of inclusion and most
importantly is the best mechanism for discovering unknown unknowns.) During
the discussion, all inspectors can report unresolved uncertainties, mental mis-
takes, risks, opportunities for BiST, and unintended consequences of the system
being designed, all of which are documented by the recorder. The meeting
should last no more than 2 h.
How can we prime our inspectors to look for unresolved uncertainties and

unintended consequences?
If they are looking at an activity, action, process, procedure, or another verb

phrase (an active verb followed by a measurable noun), then tell them to ask,
“What problems could this activity create for other systems?” “How could
doing this activity hurt other systems?” “If this activity failed, how could that
hurt other systems?”

If they are looking at an object, component, model, or another noun phrase, then
tell them to ask, “How could this object hurt other systems?” “How could this
object fail?” For each failure event, ask, “How could this failure event hurt
other systems?”

If they are looking at a risk, then tell them to ask, “How could this failure event
hurt other systems?”

If they are looking at a use case scenario or other sequences of events, then tell
them to ask, “What-if?” For example, when the document states, “The user
does this and the system does that.” Ask, “What if it doesn’t?”

Inspectors should look for common mental mistakes that people make [52],
particularly for attribute substitution, which is the most common mental
mistake [51].

Inspectors should look to see if the designers used fundamental principles of
good design [5], including design for resiliency [39, 45].

But we really want the mindset of looking for unresolved uncertainties and
unintended consequences to become a part of company culture.

5. Databases: The team creates and maintains five databases that contain newly
resolved and unresolved uncertainties, mistakes, risks, opportunities for BiST,
and unintended consequences of the system being designed.

6. Prioritized. lists: The moderator and the systems engineer consolidate and edit
the five databases to create five prioritized [15] lists.
The list of newly resolved and unresolved uncertainties is given to the systems

engineer.
The prioritized list of mistakes is given to the author/designer for rework and

resolution.
The prioritized list of risks that could adversely affect the system being designed

is given to risk management.
The prioritized list of opportunities for Built-in Self-Test (BiST) is given to test

engineering.
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The prioritized list of positive unintended consequences that could beneficially
affect other systems is given to marketing.

The prioritized list of negative unintended consequences that could adversely
affect other systems is given to management and the legal department.

7. PAL: The systems engineer puts these prioritized lists in the project PAL.
8. Rework: The author/designer fixes the mistakes. Each of the other owners will

know what to do with his or her list.
9. Follow-up: The moderator must verify that all fixes are effective and that no

additional mistakes have been created. The moderator checks the exit criteria for
completing an inspection.

10. Update PAL: The team updates the project PAL (exit use case).
Postcondition: The project PAL has been updated, and the systems engineer

is ready to schedule a new inspection.
Specific requirements can be derived from this use case [20] as follows.

These requirements came directly from the main success scenario.

Functional Requirements:

FR3-1 The moderator shall form the Inspection Team.
FR3-2 The moderator shall collect the inspection work products and other relevant

materials and distribute them to the Inspection Team To Be Determined (TBD)
days before the inspection.

FR3-3 The moderator shall chair the overview meeting.
FR3-4 Each member of the Inspection Team shall examine the work products before

the actual inspection meeting looking for unresolved uncertainties, mental mis-
takes, risks, opportunities for BiST, and unintended consequences of the system
being designed.

FR3-5 Each member of the Inspection Team shall record and report the number of
hours he or she spent inspecting the materials. Typically, this will be 2 h.

FR3-6 The moderator shall chair the inspection meeting.
FR3-7 The recorder shall create and maintain the five databases that contain newly

resolved and unresolved uncertainties, mistakes, risks, opportunities for BiST,
and unintended consequences of the system being designed.

FR3-8 The moderator and the systems engineer shall consolidate and edit the
databases to create prioritized lists.

FR3-9 The systems engineer shall deliver the lists to their respective owners.
Stipulation: Each owner will know what to do with his or her list.
FR3-10 The systems engineer shall put these prioritized lists in the project PAL.
FR3-11 The moderator shall verify that all fixes are effective and that no additional

defects have been created. The moderator shall check the exit criteria for com-
pleting an inspection.

It is often said that we can impose requirements on our system, but we cannot
impose requirements on operators, pilots, and other secondary actors. This is still
true. However, here, we are imposing requirements on members of the Inspection
Team. That is all right because they are a part of our system.
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Nonfunctional Requirements:

NFR3-1 The moderator shall schedule the inspection meeting for 2 h. The moderator
shall prepare about two-dozen pages of models and documentation for each
inspection.

Author/owner: Terry Bahill
Last changed: January 29, 2021
This is the end of the section describing our process for ameliorating uncertainty

in the models and documentation caused by human mental mistakes.

Chapter Summary

In the year 2020, the COVID-19 pandemic devastated the world. Scientists contin-
ually produced new scientific results and new models using uncertain knowledge of
the virus and the pandemic. Inevitably, predictions made with these models were
uncertain. Politicians, supposedly using these scientific “facts” and uncertain
models, frequently strutted out new policies – policies that often contradicted
previous policies. Because of this flip-flopping, people lost faith in their govern-
ments’ abilities to understand and interpret scientific results from models.

In the next few pages, we will show how governments could have used the
principles in this chapter to help manage this pandemic. The third activity in the
Overarching Process is to model the system. As shown in this chapter, making
models is affected by confirmation bias, severity amplifiers, and framing. These
phenomena affected the interpretation of scientific results and the assumptions made
in models of this pandemic.

The early COVID pandemic models needed improvements. These early models
were created and used by scientists, the media, government bureaucrats, and politi-
cians. We will refer to this group collectively as they. Their models needed additional
knowledge about the COVID virus, such as transmission by asymptomatic carriers,
the impact of super-spreaders, a diminished role for children, the role of airborne
aerosol-mediated transmission, and the usefulness of wearing masks. And most
importantly, they should have predicted human behavioral responses to
government-imposed policy interventions and the mental health problems created
by social isolation and the closing of schools.

They form a pyramid. Around 106 to 107 peer-reviewed journal papers are
published each year. Of course, not all of them are about COVID or even about
science. Only 10% are scientific. These scientific papers are not read by the public.
Then there are on the order of 105 science writers who convert these papers into
layman articles. These articles are given to maybe 104 people in the media, who
transform them into summaries and snippets fed to the public. The media also report
the number of COVID cases and deaths both geographically and temporally. But
these numbers are not science. They are just a collection of numbers. They were not
derived using the scientific method. They are not even displayed scientifically (with
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mean, variance, and sources). To further explain this point, consider the Watson-
Crick DNA double helix model published in 1953 that won the Nobel Prize in 1962.
Now that was science. Compare that to the dozens of DNA ancestry tests on the
market today, which do their analyses based on cheek swabs and spit. These
companies collect those data to build their databases that include millions of people.
They have lots of numbers. But we see little scientific usefulness in those numbers.
Just collecting lots of numbers does not make it science. Now, back to the pyramid.
Around 103 bureaucrats (government bureau chiefs and department heads) filter this
information to around 100 politicians making policies for the COVID pandemic.
Finally, there is one US president who makes the final decisions. All of these people
make up what, in this chapter, we call they.

As the year went on, they gathered some of the missing knowledge mentioned
above and improved their models. However, they never stated that their old models
were based on incorrect assumptions and that these old models were being replaced
by new models based on new data and new assumptions. At the beginning of this
chapter, we wrote,

A model is a simplified representation of some aspect of a real system. Models are
ephemeral: They are created, they explain a phenomenon, they stimulate discussion, they
foment alternatives, and then they are replaced by newer models.

Therefore, old models are supposed to be replaced by new models: It is the nature of
modeling. It is not something to be ashamed of, something to be covered up. It is
good to state that because of new knowledge and insights, an old model is being
replaced by a new model. It is very bad to cover up incorrect knowledge and bad
assumptions of an old model.

People infected with the coronavirus (COVID) were generally contagious for
around 4 days before they showed symptoms, and some infected people never
showed symptoms at all. Because people with influenza (the flu) are most contagious
for only 1 day before symptoms appear, this contradicted the decision-makers’
preconceived notions about how the virus spread. It took a long time for them to
overcome this cognitive bias (tunnel vision).

Their risk analyses were puzzling. Elderly people were at the highest risk;
however, elderly people did not get the highest priority for prevention, treatment,
or vaccinations. Indeed, New York sent elderly infected COVID patients back into
nursing homes! In covering up this fiasco, they never explained why, in their
risk analyses, the estimated likelihoods and severities gave such a bizarre
recommendation.

Initially, there were frantic efforts to accelerate the manufacturing of ventilators.
After they were manufactured and delivered, many were not used. It turned out that
high-flow oxygen was a better treatment alternative than ventilators. A tradeoff study
might have revealed this mistake earlier.

Their tradeoff studies were faulty or nonexistent. In trying to determine how the
virus was transmitted, instead of doing a tradeoff study, they jumped to a single-point
solution. They assumed that the virus, like the flu, was spread by touching people
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and contaminated surfaces. They recommended that people disinfect highly touched
surfaces often and wash their hands frequently. Initially, they only looked at evi-
dence that confirmed their bias for this mode of transmission. They ignored the
alternative that the virus was spread by aerosol-mediated transmission through the
air. As a consequence, in March, they told the public that masks were not useful and
people should not wear them. (Some have suggested that their secret ulterior motive
was to save the good masks for medical personnel.) Several months later, they
realized that the coronavirus was transmitted through the air. Then they mandated
the wearing of masks for everyone, everywhere, all the time.

To prioritize their alternatives, throughout the year, bureaucrats and politicians
made decisions without the benefits of documented tradeoff studies. Thus, they
missed golden opportunities to gain public trust. One of the prime benefits of a
tradeoff study is that making the evaluation criteria and the scores public produces
transparency and greatly increases public trust in the decision-makers.

In prioritizing vaccine distribution, they failed to explain and justify their evalu-
ation criteria. Sometimes, this was a deliberate attempt to disguise their true intent,
such as with the contrived evaluation criterion “equity.” As a result, their decisions
lacked transparency, and people did not trust them. Notably, some vaccination
prioritization schemes might have put politicians first (because they were essential
workers), but they never told that to the public. In fact, the evidence of this that the
public saw was media photographs of high-ranking politicians getting the first
vaccinations.

They created a divisive fiction that Americans were either science believers (those
that agreed with scientific results filtered by bureaucrats and summarized by the
media) or science deniers (those who were not convinced by those media summa-
ries). The science deniers were shamed as bad people. Actually, neither of these
groups existed [26]. However, Americans were deeply divided. There seemed to be a
group that fearfully followed orders and did whatever the government told them to
do and another group that did not question scientific results but rather questioned
government policies that could hardly have been based on these scientific results,
policies such as wearing masks; obeying lockdowns of restaurants, bars, and
churches; accepting job losses; closing schools; and letting loved ones die alone.
The people labeled science deniers were mostly people who accepted scientific
results but disagreed with government policies to ameliorate the problem. The
most important activity of the Overarching Process is stating the problem. The
invention of science believers and science deniers caused political delight and
media churning. But what problem was it supposed to solve?

The biggest problem remaining in 2021 may have been side effects of vaccina-
tions. The scientists probably did risk analyses of the two-dozen admitted vaccine
side effects, but the media did not publish their estimated likelihoods and severities.
So the public did not understand the risks of the vaccines’ side effects.

The most outstanding success during the COVID pandemic was Investigating
Alternatives. The search for a vaccine started with dozens of alternatives. Scientific
researchers and companies kept a half-dozen alternatives alive throughout the entire
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year. Developing a half-dozen vaccines and inoculating millions of people in less
than a year was the fastest vaccine development and deployment in history.

Note added in proof: This summary was written in the Spring of 2021. This note
is being inserted in the Summer of 2022. The predictions of this section have held up
well over the last year and no changes were made to this section.

But that is enough about the COVID pandemic. Let us now summarize uncer-
tainty in systems engineering and design in general.

Uncertainty arises from factors that are both external and internal to the system.
Examples of factors that contribute to external uncertainty are changes in market
conditions, the operational environment, new competitors or threats, emerging
requirements, partial observability, changes in priorities, and delays in maturation
times of promising new technologies. By far, the greatest uncertainty is coping with
unknown futures. This problem requires designing for alternate futures – the hall-
mark of resilient design [39, 45]. Internal uncertainties stem from human behavior
and unanticipated challenges that surface during program/project execution, system
design and implementation, and creating performance requirements.

There are several traditional approaches to dealing with uncertainty depending on
the context. Uncertainty may stem from incomplete/fuzzy requirements or technol-
ogy maturation rate. If requirements and technologies are both stable in a project,
then it is relatively straightforward to plan ahead and execute the plan because there
is very little uncertainty to further ameliorate. On the other hand, when a project
intends to capitalize on new or emerging technologies, uncertainty is best handled by
placing “smart bits” or incorporating real options in both system architecture/design
and program schedule [37]. Finally, when the technology aspect is relatively stable,
but the requirements continue to evolve, then an incremental commitment approach
needs to be pursued [13].

This chapter presented a requirements discovery process, a tradeoff study pro-
cess, and a risk analysis process. It compared and contrasted these three processes
and then combined them into one Overarching Process. The three original processes
could then be viewed as tailorings of the resulting Overarching (superset) Process.
This Overarching Process can also be a top-level or a precursor process for MBSE
implementations. The Overarching Process itself is not an MBSE implementation.
For example, it does not even use SysML diagrams. This Overarching Process is not
a subset of MBSE: It is a superset.

In conclusion, the requirements discovery, tradeoff studies, and risk processes
shown in the figures of this chapter were developed many years before the Over-
arching Process was conceived.

This chapter identified activities in the Overarching Process that were responsible
for creating uncertainty. Then it addressed uncertainty handling for the three core
processes (requirements discovery, tradeoff studies, and risk analysis) and the
general Overarching Process. The approach presented reduces overall complexity
in uncertainty management by first creating an enveloping Overarching Process,
then systematizing the process of uncertainty handling for this Overarching Process,
and then instantiating the approach for the three core processes. This approach
should appeal to both engineering and management professionals engaged in model-
ing, analysis, and design of complex systems in the presence of uncertainty.
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